Further investigations on the QAM method for Finding APN Functions

Nadiia Ichanska, Nikolay S. Kaleyski

University of Bergen BFA 2024

September 13, 2024

Vectorial Boolean Functions and APN functions

- \mathbb{F}_{2^n} finite field with 2^n elements, $n \in \mathbb{N}$.
	- A function $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is called (n,n) -function or Vectorial Boolean Function.
	- ▶ $F(x) = \sum_{i=0}^{2^n-1} a_i \cdot x^i$, $a_i \in \mathbb{F}_{2^n}$ its univariate representation.
	- $D_aF(x) = F(a+x) + F(x)$ its **derivative** in the direction $a \in \mathbb{F}_{2^n} \backslash \{0\}.$
	- $\triangleright \Delta_a F(x) = F(a+x) + F(x) + F(a) + F(0)$ symmetric derivative in the direction $a \in \mathbb{F}_{2^n} \backslash \{0\}$ of F.

[Preliminaries](#page-1-0) [Matrix structure](#page-8-0) [Restriction methods](#page-11-0) [Algorithm 1](#page-16-0) [Algorithm 2](#page-21-0) [Conclusions](#page-27-0)
 COOOO COOO COOOO COOOO COOOO COOOO

Vectorial Boolean Functions and APN functions

\mathbb{F}_{2^n} - finite field with 2^n elements, $n \in \mathbb{N}$.

- A function $F: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is called (n,n) -function or Vectorial Boolean Function.
- ▶ $F(x) = \sum_{i=0}^{2^n-1} a_i \cdot x^i$, $a_i \in \mathbb{F}_{2^n}$ its univariate representation.
- \triangleright $\Delta F(a,x) = F(a+x) + F(x) + F(a) + F(0)$ symmetric **derivative** in the direction $a \in \mathbb{F}_{2^n} \backslash \{0\}$ of F.
- $\triangleright \delta_F = \max_{a,b \in \mathbb{F}_{2^n}, a \neq 0} |\{x \in \mathbb{F}_{2^n} : \Delta F(a,x) = b\}|$ its differential unifomity.
- \blacktriangleright F is almost perfect nonlinear(APN) if $\delta_F = 2$.

- ▶ The algebraic degree of a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is $\deg(\mathcal{F}) = \max\limits_{0 \leq i \leq 2^n-1} w_2(i)$, where $w_2(i)$ is the 2-weight of the $a_i \neq 0$ exponent i.
- ▶ F is a linear function if $F(x) = \sum a_i x^{2^i}$, $a_i \in \mathbb{F}_{2^n}$. $0 < i < n$
- \blacktriangleright F is affine if it is a sum of a linear function and a constant.
- \blacktriangleright F is quadratic if deg(F) = 2.
- \blacktriangleright We will consider homogeneous quadratic (n, n) -function F

$$
F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i + 2^j}, \ a_{i,j} \in \mathbb{F}_{2^n}.
$$

Equivalence

The functions F and F' from \mathbb{F}_{2^n} to itself are called

- ▶ affine equivalent (or linear equivalent) if $F' = A_1 \circ F \circ A_2$ for affine (linear) permutations A_1, A_2 from \mathbb{F}_{2^n} to itself.
- EA-equivalent if F' and $F + A$ are affine equivalent for an affine mapping A.
- ▶ Carlet-Charpin-Zinoviev (CCZ-equivalent).

For quadratic APN (n, n) - functions, F and F' are CCZ-equivalent if and only if they are EA-equivalent [\[4\]](#page-28-1).

[Preliminaries](#page-1-0) [Matrix structure](#page-8-0) [Restriction methods](#page-11-0) [Algorithm 1](#page-16-0) [Algorithm 2](#page-21-0) [Conclusions](#page-27-0)

QAM of the quadratic function over \mathbb{F}_{2^n}

Let
$$
F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i + 2^j}
$$
 over \mathbb{F}_{2^n} .

▶ Set a normal basis $\mathcal{B} = \{b, b^2, \ldots, b^{2^{n-1}}\}$ of \mathbb{F}_{2^n} over \mathbb{F}_2 .

- ▶ The rank of the vector $v \in \mathbb{F}_{2^n}^n$ is the dimension of the \mathbb{F}_2 -subspace spanned by its elements.
- ▶ The derivative matrix [\[3\]](#page-28-2), [\[5\]](#page-28-3) $M_F \in \mathbb{F}_{2^n}^{n \times n}$ of function F is

$$
M_F(\mathcal{B}) = \left[\begin{array}{cccc} \Delta F(b,b) & \Delta F(b,b^2) & \dots & \Delta F\left(b,b^{2^{n-1}}\right) \\ \Delta F(b^2,b) & \Delta F(b^2,b^2) & \dots & \Delta F\left(b^2,b^{2^{n-1}}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \Delta F\left(b^{2^{n-1}},b\right) & \Delta F\left(b^{2^{n-1}},b^2\right) & \dots & \Delta F\left(b^{2^{n-1}},b^{2^{n-1}}\right) \end{array}\right]
$$

.

[Preliminaries](#page-1-0) [Matrix structure](#page-8-0) [Restriction methods](#page-11-0) [Algorithm 1](#page-16-0) [Algorithm 2](#page-21-0) [Conclusions](#page-27-0)

00000000 00000 00000 00000 00000 00000

QAM of the quadratic function over \mathbb{F}_{2^n}

The **derivative matrix** $M_F \in \mathbb{F}_{2^n}^{n \times n}$ of function $F(x)$

$$
M_F = \left[\begin{array}{cccc} \Delta F(b,b) & \Delta F(b,b^2) & \dots & \Delta F\left(b,b^{2^{n-1}}\right) \\ \Delta F(b,b^2) & \Delta F(b^2,b^2) & \dots & \Delta F\left(b^2,b^{2^{n-1}}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \Delta F\left(b,b^{2^{n-1}}\right) & \Delta F\left(b^2,b^{2^{n-1}}\right) & \dots & \Delta F\left(b^{2^{n-1}},b^{2^{n-1}}\right) \end{array}\right] \tag{1}
$$

- is called a Quadratic APN Matrix (QAM) [\[5\]](#page-28-3) if:
	- 1. M_F is symmetric and the elements in its main diagonal are all zeros;
	- 2. Every nonzero linear combination of the n rows (or columns, since M_F is symmetric) of M_F has rank $n-1$.

Following Corollary 5 from [\[3\]](#page-28-2), we get that the function

$$
F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i + 2^j}, \ a_{i,j} \in \mathbb{F}_{2^n} \tag{2}
$$

is APN if and only if its derivative matrix M_F is QAM.

Structure of the derivative matrix [\(1\)](#page-6-1)

Let
$$
F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i + 2^j}
$$
 with coefficients $a_{i,j} \in \mathbb{F}_{2^m}$,

$$
(F(x))^{2^m} = F(x^{2^m}), \ (\Delta F(a, x))^{2^m} = \Delta F(a^{2^m}, x^{2^m});
$$

\n
$$
M_{i+m,j+m} = (M_{i,j})^{2^m}
$$

$$
\begin{bmatrix}\n\Delta F(b,b) & \Delta F(b,b^2) & \Delta F(b,b^{2^2}) & \cdots & \Delta F(b,b^{2^{n-1}}) \\
\Delta F(b^2,b) & \Delta F(b^2,b^2) & \cdots & \Delta F(b^2,b^{2^{n-1}}) \\
\vdots & \vdots & \ddots & \vdots \\
\Delta F(b,b^{2^{n-1}}) & \Delta F(b^2,b^{2^{n-1}}) & \cdots & \Delta F(b^{2^{n-2}},b^{2^{n-1}})\n\end{bmatrix}
$$

Structure of the derivative matrix [\(1\)](#page-6-1)

Let
$$
F(x) = \sum_{0 \le i < j \le n-1} a_{i,j}x^{2^{i}+2^{j}}
$$
 with coefficients $a_{i,j} \in \mathbb{F}_{2^m}$
\n
$$
(F(x))^{2^m} = F(x^{2^m}), \quad (\Delta F(a, x))^{2^m} = \Delta F(a^{2^m}, x^{2^m})
$$
\n
$$
M_{i+m,j+m} = (M_{i,j})^{2^m}
$$
\n
$$
\Delta F(b, b^2)
$$
\n
$$
\Delta F(b, b^2)^{2^m}
$$

Structure of the search

$$
M_F=\left(\begin{array}{ccccc} 0 & \Omega_1 & \Omega_2 & \Omega_3 & \ldots & \ldots & \ldots & \ldots & \ldots \\ \Omega_1 & 0 & \ddots & \ddots & \ddots & \ddots & \ldots & \vdots \\ \Omega_2 & \ldots & 0 & \Omega_1^{2^m} & \Omega_2^{2^m} & \Omega_3^{2^m} & \ldots & \vdots \\ \Omega_3 & \ddots & \Omega_1^{2^m} & 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \Omega_2^{2^m} & \ldots & \Omega_1^{2^{2m}} & \Omega_3^{2^{2m}} & \ldots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \end{array}\right),
$$

where $\Omega_1, \Omega_2, \ldots, \Omega_l$ - variables. A variable Ω_i is located on the *i*-th **level**.

(3)

Orbit restrictions

Theorem 3 [\[5\]](#page-28-3)

For any linear permutation I on \mathbb{F}_{2^n} and $M\in \mathbb{F}_{2^n}^{n\times n}$ s.t. $M=M_F$ then any $M' = M_{F'}$ produced by

$$
M'_{i,j} = I(M_{i,j}) \text{ for all } 1 \leq i,j \leq n \tag{4}
$$

will be $F' = I \circ F$ linearly equivalent to F.

Let $\mathcal L$ be a set of all linear (n,n) -permutations on $\mathbb F_{2^n}$ with subfield \mathbb{F}_{2^m} coefficients. Then the **orbit** of $a \in \mathbb{F}_{2^n}$

$$
Orb(a, \mathcal{L}) = \{l(a) : l \in \mathcal{L}\}.
$$
 (5)

Orbit Restrictions

 $\mathbb{F}_{2^n} = \mathit{Orb}(a_1,\mathcal{L}) \cup \cdots \cup \mathit{Orb}(a_k,\mathcal{L}),$ for some $a_i \in \mathbb{F}_{2^n}, 1 \leq i \leq k$.

$$
M_{F'} = \begin{pmatrix} 0 & L(\Omega_1) & L(\Omega_2) & \cdots & \cdots & \cdots \\ L(\Omega_1) & 0 & \ddots & \cdots & \cdots \\ L(\Omega_2) & \cdots & 0 & L(\Omega_1^{2^m}) & L(\Omega_2^{2^m}) & \cdots \\ \vdots & \vdots & L(\Omega_2^{2^m}) & 0 & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},
$$

where
$$
L(\Omega_i^{2^{m+j}}) = (L(\Omega_i))^{2^{m+j}}
$$
, $j \in \{1, \ldots, n/m-1\}$ for any variable Ω_i , $1 \leq i \leq l$.

N. Ichanska, N.S. Kaleyski [QAM method](#page-0-0) 10 / 25

Orbit partition level by level $\mathbb{F}_{2^n} = Orb(A, \mathcal{L})\cup \ldots, A\in \mathbb{F}_{2^n}.$

> $M_F =$ $\begin{pmatrix} 0 & A & \Omega_2 & \dots & \dots & \dots \end{pmatrix}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ A 0 Ω_2 ... 0 A^{2^m} $\Omega_2^{2^m}$ $\frac{2^m}{2}$... \vdots A^{2^m} 0 $\Omega_2^{2^m}$ $\frac{2^m}{2}$... 0 \setminus $\begin{array}{c} \hline \end{array}$

 $Orb_{A}(\Omega_2, \mathcal{L}) = \{l(\Omega_2): l \in \mathcal{L} \mid l(A) = A\}.$

$$
S = \{\Omega_1, \ldots, \Omega_{k-1}\}
$$

Orb_S $(\Omega_k, \mathcal{L}) = \{I(\Omega_k) : I \in \mathcal{L} \mid \forall X \in S : I(X) = X\}.$

.

Submatrix method

- ▶ Let $M \in \mathbb{F}_{2^n}^{n \times n}$ be a derivative matrix.
- ▶ *M* is QAM if and only if every submatrix $S \in \mathbb{F}_{2^n}^{p \times q}$ $_{2^n}^{\rho\times q},$ $1 \leq p, q \leq n$ of M is **proper**.
- \triangleright S proper if every nonzero linear combinations of the p rows has rank at least $q - 1$.

Submatrix method

▶

- ▶ Let $M \in \mathbb{F}_{2^n}^{n \times n}$ be a derivative matrix.
- ▶ *M* is QAM if and only if every submatrix $S \in \mathbb{F}_{2^n}^{p \times q}$ $\frac{p\times q}{2^n},$ $1 \leq p, q \leq n$ of M is proper.

▶ By considering $F' = F \circ L$, where $L = a_j x^{2^i}$, $a_j \in \mathbb{F}_{2^m}$, we can eliminate the number of submatrices for this test.

- \blacktriangleright $F(x)$ over $\mathbb{F}_{2^{10}}$ with coefficients in \mathbb{F}_{2} ,
- $|\mathcal{L}| = 1024$ linear permutations with coefficients in \mathbb{F}_2 ,
- \blacktriangleright The number of variables $=$ levels in this dimension is 5.

Found 577 APN functions fell into three CCZ-equivalent classes corresponding to x^3, x^9 and $x^3 + a^{-1} \text{Tr}_n(a^3 x^9)$ [\[1\]](#page-28-4).

32 3 months and not finished

Number of parallel processes that were done 32

3 months and not finished

 $(n, m) = (10, 2)$ with first 5 levels fixed

Problem

First N variables of the derivative matrix M characterize ≤ 1 possible APN function F over \mathbb{F}_{2^n} with coefficients in $\mathbb{F}_{2^m}.$ Partial backward search for $F = x^{288} + a^{682}x^{96} + a^{341}x^9 + x^3$

$$
A = a^{5}, B = a^{358}, C = a^{10}, D = a^{275}; \forall E \in \mathcal{E}_{A,B,C,D}^{Sub} \setminus \{a^{215}\},
$$

$$
|\mathcal{E}_{A,B,C,D}^{Sub}| = 900.
$$

 $E = a^{884}$ - 15,5 days in 32 cores; $E = a^{189}$ - 15 days in 32 cores; $E = a^{796}$ - 14 days in 32 cores;

Can we partition into orbits without the set of linear permutations?

- ▶ For cases $(9, 3)$ and $(8, 4)$ we get $(2^3)^9$ and $(2^4)^8$ linear functions;
- \triangleright Case (10, 2) gets an "Out of Memory error" for low-memory servers (i.e. 64 GB RAM);
- ▶ More permutations better partition.

[Preliminaries](#page-1-0) [Matrix structure](#page-8-0) [Restriction methods](#page-11-0) [Algorithm 1](#page-16-0) [Algorithm 2](#page-21-0) [Conclusions](#page-27-0)

Algorithm for partitioning without pre-generated \mathcal{L}

Lemma 1

Let $a \in \mathbb{F}_{2^n}$. We categorize a into the following cases:

- 1. $Cat_1 = \{a : a \in \mathbb{F}_{2^n} \mid a + a^{2^m} = 0\},\$ 2. $Cat_2 = \{a : a \in \mathbb{F}_{2^n} \mid a + a^{2^m} + a^{2^{2m}} + \cdots + a^{2^{n-m}} = 0\},$ 3. $Cat_3 = \{a : a \in \mathbb{F}_{2^n} \mid a + a^{2^m} + a^{2^{2m}} = 0\},$
- 4. $Cat_{Ind} = \{a : a \in \mathbb{F}_{2^n} | a \notin Cat_i \text{ for any } i\},\$

Theorem 1

. . .

Let $a, b \in \mathcal{C}at_{\mathsf{Ind}}$. If there exists $\mathit{I}(x) = \sum_{i=0}^{n-1} c_i x^{2^i}, \ c_i \in \mathbb{F}_{2^m}$ s.t. $l(a) = b, \; l(a^{2^m}) = b^{2^m}, \ldots, \; l(a^{2^{n-m}}) = b^{2^{n-m}}.$ Then there exists a linear permutation $L \in \mathcal{L}$ s.t. $L(a) = b$.

 $(n, m) = (9, 3)$

- \blacktriangleright $F(x)$ over \mathbb{F}_{2^9} with coefficients in \mathbb{F}_{2^3} .
- \blacktriangleright The number of variables $=$ levels in this dimension is 12.
- ▶ Let $a \in \mathbb{F}_{2^9}$. Then a can be categorized into the following cases:

1.
$$
Cat_1 = \{a : a \in \mathbb{F}_{2^9} \mid a + a^{2^3} = 0\},
$$

\n2.
$$
Cat_2 = \{a : a \in \mathbb{F}_{2^9} \mid a + a^{2^3} + a^{2^6} = 0\},
$$

\n3.
$$
Cat_{Ind} = \{a : a \in \mathbb{F}_{2^9} \mid a \notin Cat_1, a \notin Cat_2\},
$$

Corollary 1

Let $a, b \in Cat_{Ind}$. If there exist $I(x) = \sum_{i=0}^{9} c_i x^{2^i}, c_i \in \mathbb{F}_{2^3}$ s.t. $l(a) = b, \; l(a^{2^3}) = b^{2^3}, \; l(a^{2^6}) = b^{2^6}.$ Then there exists a linear permutation $L \in \mathcal{L}$ s.t. $L(a) = b$.

 $(n, m) = (8, 4)$

- \blacktriangleright $F(x)$ over \mathbb{F}_{2^8} with coefficients in \mathbb{F}_{2^4} .
- \blacktriangleright The number of variables = levels in this dimension is 16, with 4 them in the subfield.
- ▶ Let $a \in \mathbb{F}_{2^8}$. Then a can be categorized into the following cases:

1.
$$
Cat_1 = \{a : a \in \mathbb{F}_{2^8} \mid a + a^{2^4} = 0\},
$$

2.
$$
Cat_{Ind} = \{a : a \in \mathbb{F}_{2^8} \mid a \notin Cat_1\},
$$

Corollary 2

Let $a, b \in Cat_{Ind}$. If there exist $I(x) = \sum_{i=0}^{8} c_i x^{2^i}, c_i \in \mathbb{F}_{2^4}$ s.t. $l(a) = b$, $l(a^{2^4}) = b^{2^4}$. Then there exists a linear permutation $L \in \mathcal{L}$ s.t. $L(a) = b$.

Partition on the second level

We fix $A \mapsto A$ on the first level.

Theorem 2

1. For
$$
A \in Cat_{\text{Ind}}
$$
, we get $\forall a, b \in \mathbb{F}_{2^n}$: $a \sim b$, if there exist $l(x) = \sum_{i=0}^{8} c_i x^{2^i}$, $c_i \in \mathbb{F}_{2^4}$ s.t.
\n $l(a) = b$, $l(a^{2^4}) = b^{2^4}$, $l(A) = A$, $l(A^{2^4}) = A^{2^4}$.

2. For
$$
A \in Cat_1
$$
, we get $\forall a, b \in \mathbb{F}_{2^n}$: $a \sim b$, if there exist $l(x) = \sum_{i=0}^{8} c_i x^{2^i}$, $c_i \in \mathbb{F}_{2^4}$ s.t.
\n $l(a) = b$, $l(a^{2^4}) = b^{2^4}$, $l(b) = a$, $l(b^{2^4}) = a^{2^4}$, $l(A) = A$.

Partitioning until k-th level

Theorem 3

For $\Omega_1, \Omega_2, \ldots, \Omega_k \in \mathcal{C}$ at_{Ind}. After we fixed k variables, in order to partition $k + 1$ -level:

1. Choose $\Omega_{k+1} \in \mathcal{C}at_{Ind}$ s.t. $\{\Omega_1, \ldots, \Omega_{k+1}\}\$ - linearly independent set of vectors;

2. Then
$$
\forall a, b \in \mathbb{F}_{2^{n}}
$$
: $a \sim b$, if there exist
\n $l(x) = \sum_{i=0}^{8} c_i x^{2^i}$, $c_i \in \mathbb{F}_{2^4}$ s.t.
\n $l(a) = b$, $l(a^{2^4}) = b^{2^4}$, $l(b) = a$, $l(b^{2^4}) = a^{2^4}$, $\forall i \in$
\n $\{1, ..., k + 1\}$: $l(\Omega_i) = \Omega_i$, $l(\Omega_i^{2^4}) = \Omega_i^{2^4}$.

We could efficiently partition A, B, C, D, E, F, G, H in our search; with brute-forcing last 8 levels. Partial search with all restrictions for this case takes 6 days to finish into 64 parallel processes.

Conclusions

- ▶ For $F(x)$ over \mathbb{F}_{2^n} with coefficients in \mathbb{F}_{2^m} we run searches (n, m) for $(10, 2), (10, 1), (9, 3), (8, 4)$;
- ▶ We provide a classification for all quadratic APN functions with coefficients in \mathbb{F}_2 over $\mathbb{F}_{2^{10}}$;
- ▶ A method for applying the orbit partitioning algorithm for cases where it did not work before was proposed.

Future work

- 1. How many variables of the derivative matrix define the APN function?
- 2. How to identify the branches that contain QAM?
- 3. Optimize the method, implementation, and classification for other choices of (n, m) .

F

Yuyin Yu, Mingsheng Wang, and Yongqiang Li. A matrix approach for constructing quadratic APN functions. Designs, codes and cryptography, 73(2):587–600, 2014.

