Further investigations on the QAM method for Finding APN Functions

Nadiia Ichanska, Nikolay S. Kaleyski

University of Bergen BFA 2024

September 13, 2024

Vectorial Boolean Functions and APN functions

- \mathbb{F}_{2^n} finite field with 2^n elements, $n \in \mathbb{N}$.
 - A function F : F_{2ⁿ} → F_{2ⁿ} is called (n,n)-function or Vectorial Boolean Function.
 - $F(x) = \sum_{i=0}^{2^n-1} a_i \cdot x^i$, $a_i \in \mathbb{F}_{2^n}$ its univariate representation.
 - D_aF(x) = F(a + x) + F(x) its derivative in the direction a ∈ 𝔽_{2ⁿ} \{0}.
 - Δ_aF(x) = F(a+x) + F(x) + F(a) + F(0) symmetric derivative in the direction a ∈ 𝔽_{2ⁿ} \{0} of F.

Preliminaries
0 • 00000Matrix structure
0000Restriction methods
00000Algorithm 1
00000Algorithm 2
00000Conclusions
00

Vectorial Boolean Functions and APN functions

\mathbb{F}_{2^n} - finite field with 2^n elements, $n \in \mathbb{N}$.

- A function F : 𝔽_{2ⁿ} → 𝔽_{2ⁿ} is called (n,n)-function or Vectorial Boolean Function.
- $F(x) = \sum_{i=0}^{2^n-1} a_i \cdot x^i$, $a_i \in \mathbb{F}_{2^n}$ its univariate representation.
- △F(a, x) = F(a + x) + F(x) + F(a) + F(0) symmetric derivative in the direction a ∈ ℝ_{2ⁿ} \{0} of F.
- ► $\delta_F = \max_{a,b \in \mathbb{F}_{2^n}, a \neq 0} |\{x \in \mathbb{F}_{2^n} : \Delta F(a,x) = b\}|$ its differential unifomity.
- *F* is almost perfect nonlinear(APN) if $\delta_F = 2$.

Preliminaries 00●0000	Matrix structure	Restriction methods 00000	Algorithm 1 00000	Algorithm 2 000000	

- ▶ The algebraic degree of a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is $\deg(F) = \max_{\substack{0 \le i \le 2^n 1 \\ a_i \ne 0}} w_2(i)$, where $w_2(i)$ is the 2-weight of the exponent *i*.
- *F* is a **linear** function if $F(x) = \sum_{0 \le i < n} a_i x^{2^i}$, $a_i \in \mathbb{F}_{2^n}$.
- F is affine if it is a sum of a linear function and a constant.
- F is quadratic if deg(F) = 2.
- We will consider homogeneous quadratic (n, n)-function F

$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i+2^j}, \ a_{i,j} \in \mathbb{F}_{2^n}.$$

Preliminaries 000●000	Matrix structure 000	Restriction methods	Algorithm 1 00000	Algorithm 2 000000	

Equivalence

The functions F and F' from \mathbb{F}_{2^n} to itself are called

- ► affine equivalent (or linear equivalent) if F' = A₁ ∘ F ∘ A₂ for affine (linear) permutations A₁, A₂ from F_{2ⁿ} to itself.
- EA-equivalent if F' and F + A are affine equivalent for an affine mapping A.
- Carlet-Charpin-Zinoviev (CCZ-equivalent).

For quadratic APN (n, n) - functions, F and F' are CCZ-equivalent if and only if they are EA-equivalent [4].

Preliminaries Matrix structure Restriction methods Algorithm 1 Algorithm 2 Conclusions 0000000 000 00000 000000 000000 00 00

QAM of the quadratic function over \mathbb{F}_{2^n}

• Let
$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i+2^j}$$
 over \mathbb{F}_{2^n} .

• Set a normal basis $\mathcal{B} = \{b, b^2, \dots, b^{2^{n-1}}\}$ of \mathbb{F}_{2^n} over \mathbb{F}_2 .

- ▶ The **rank** of the vector $v \in \mathbb{F}_{2^n}^n$ is the dimension of the \mathbb{F}_2 -subspace spanned by its elements.
- ▶ The **derivative matrix** [3], [5] $M_F \in \mathbb{F}_{2^n}^{n \times n}$ of function *F* is

$$M_{F}(\mathcal{B}) = \begin{bmatrix} \Delta F(b,b) & \Delta F(b,b^{2}) & \dots & \Delta F\left(b,b^{2^{n-1}}\right) \\ \Delta F(b^{2},b) & \Delta F(b^{2},b^{2}) & \dots & \Delta F\left(b^{2,b^{2^{n-1}}}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \Delta F\left(b^{2^{n-1}},b\right) & \Delta F\left(b^{2^{n-1}},b^{2}\right) & \dots & \Delta F\left(b^{2^{n-1}},b^{2^{n-1}}\right) \end{bmatrix}$$

Preliminaries Matrix structure Restriction methods Algorithm 1 Algorithm 2 00000●0 000 00000 000000 000000 000000

QAM of the quadratic function over \mathbb{F}_{2^n}

The **derivative matrix** $M_F \in \mathbb{F}_{2^n}^{n \times n}$ of function F(x)

$$M_{F} = \begin{bmatrix} \Delta F(b,b) & \Delta F(b,b^{2}) & \dots & \Delta F\left(b,b^{2^{n-1}}\right) \\ \Delta F(b,b^{2}) & \Delta F(b^{2},b^{2}) & \dots & \Delta F\left(b^{2},b^{2^{n-1}}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \Delta F\left(b,b^{2^{n-1}}\right) & \Delta F\left(b^{2},b^{2^{n-1}}\right) & \dots & \Delta F\left(b^{2^{n-1}},b^{2^{n-1}}\right) \end{bmatrix}$$
(1)

- is called a Quadratic APN Matrix (QAM) [5] if:
 - 1. M_F is symmetric and the elements in its main diagonal are all zeros;
 - 2. Every nonzero linear combination of the *n* rows (or columns, since M_F is symmetric) of M_F has rank n 1.

Preliminaries	Matrix structure 000	Restriction methods 00000	Algorithm 1 00000	Algorithm 2 000000	

Following Corollary 5 from [3], we get that the function

$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i + 2^j}, \ a_{i,j} \in \mathbb{F}_{2^n}$$
(2)

is APN if and only if its derivative matrix M_F is QAM.

Structure of the derivative matrix (1)

▶ Let
$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i + 2^j}$$
 with coefficients $a_{i,j} \in \mathbb{F}_{2^m}$,

•
$$(F(x))^{2^{m}} = F(x^{2^{m}}), \ (\Delta F(a,x))^{2^{m}} = \Delta F(a^{2^{m}}, x^{2^{m}});$$

• $M_{i+m,j+m} = (M_{i,j})^{2^{m}}$

$$\begin{bmatrix} \Delta F(b,b) & \Delta F(b,b^2) & \Delta F(b,b^{2^2}) & \dots & \Delta F\left(b,b^{2^{n-1}}\right) \\ \Delta F(b^2,b) & \Delta F(b^2,b^2) & \ddots & \dots & \Delta F\left(b^2,b^{2^{n-1}}\right) \\ \vdots & \ddots & \ddots & \ddots & \Delta F(b^{2^2},b^{2^{n-1}}) \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \Delta F\left(b,b^{2^{n-1}}\right) & \Delta F\left(b^2,b^{2^{n-1}}\right) & \dots & \Delta F\left(b^{2^{n-2}},b^{2^{n-1}}\right) & \Delta F\left(b^{2^{n-1}},b^{2^{n-1}}\right) \end{bmatrix}$$

Preliminaries 0000000	Matrix structure 0●0	Restriction methods	Algorithm 1 00000	Algorithm 2 000000	

Structure of the derivative matrix (1)

• Let
$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i + 2^j}$$
 with coefficients $a_{i,j} \in \mathbb{F}_{2^m}$
• $(F(x))^{2^m} = F(x^{2^m}), \quad (\Delta F(a,x))^{2^m} = \Delta F(a^{2^m}, x^{2^m})$
• $M_{i+m,j+m} = (M_{i,j})^{2^m}$
 $\begin{bmatrix} 0 & \Delta F(b,b^2) & \Delta F(b,b^{2^2}) & \dots & \Delta F(b,b^{2^n}) \\ \Delta F(b,b^2) & 0 & \ddots & \dots & \Delta F(b^{2^n}) \\ \Delta F(b,b^{2^2}) & \ddots & \ddots & (\Delta F(b,b^2))^{2^m} & (\Delta F(b,b^{2^2}))^{2^m} & \vdots \\ \vdots & \ddots & (\Delta F(b,b^2))^{2^m} & 0 & \dots & \vdots \\ \vdots & \ddots & (\Delta F(b,b^2))^{2^m} & \ddots & \dots & \vdots \\ \Delta F(b,b^{2^n}) & \Delta F(b^2,b^{2^n}) & \dots & \dots & 0 \end{bmatrix}$

Preliminaries 0000000	Matrix structure 00●	Restriction methods	Algorithm 1 00000	Algorithm 2 000000	

Structure of the search

$$M_{F} = \begin{pmatrix} 0 & \Omega_{1} & \Omega_{2} & \Omega_{3} & \dots & \dots & \dots & \dots & \dots \\ \Omega_{1} & 0 & \ddots & \vdots \\ \Omega_{2} & \ddots & 0 & \Omega_{1}^{2^{m}} & \Omega_{2}^{2^{m}} & \Omega_{3}^{2^{m}} & \ddots & \dots & \vdots \\ \Omega_{3} & \ddots & \Omega_{1}^{2^{m}} & 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \Omega_{2}^{2^{m}} & \ddots & 0 & \Omega_{1}^{2^{2m}} & \Omega_{3}^{2^{2m}} & \dots \\ \vdots & \ddots & \ddots & \Omega_{2}^{2^{m}} & \ddots & \Omega_{1}^{2^{2m}} & \Omega_{1}^{2^{2m}} & \Omega_{3}^{2^{2m}} & \dots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \end{pmatrix},$$

where $\Omega_1, \Omega_2, \ldots, \Omega_i$ - variables. A variable Ω_i is located on the *i*-th **level**.

(3)

Preliminaries 0000000	Matrix structure	Restriction methods •0000	Algorithm 1 00000	Algorithm 2 000000	

Orbit restrictions

Theorem 3 [5]

For any linear permutation I on \mathbb{F}_{2^n} and $M \in \mathbb{F}_{2^n}^{n \times n}$ s.t. $M = M_F$ then any $M' = M_{F'}$ produced by

$$M'_{i,j} = I(M_{i,j})$$
 for all $1 \le i,j \le n$ (4)

will be $F' = I \circ F$ linearly equivalent to F.

Let \mathcal{L} be a set of all linear (n, n)-permutations on \mathbb{F}_{2^n} with subfield \mathbb{F}_{2^m} coefficients. Then the **orbit** of $a \in \mathbb{F}_{2^n}$

$$Orb(a, \mathcal{L}) = \{ l(a) : l \in \mathcal{L} \}.$$
(5)

Preliminaries 0000000	Matrix structure 000	Restriction methods	Algorithm 1 00000	Algorithm 2 000000	

Orbit Restrictions

 $\mathbb{F}_{2^n} = Orb(a_1, \mathcal{L}) \cup \cdots \cup Orb(a_k, \mathcal{L}), \text{ for some } a_i \in \mathbb{F}_{2^n}, \ 1 \leq i \leq k.$

$$M_{F'} = \begin{pmatrix} 0 & L(\Omega_1) & L(\Omega_2) & \dots & \dots & \dots \\ L(\Omega_1) & 0 & \ddots & \ddots & \dots & \dots \\ L(\Omega_2) & \dots & 0 & L(\Omega_1^{2^m}) & L(\Omega_2^{2^m}) & \dots \\ \vdots & \vdots & L(\Omega_1^{2^m}) & 0 & \dots & \dots \\ \vdots & \vdots & L(\Omega_2^{2^m}) & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

where
$$L(\Omega_i^{2^{m+j}}) = (L(\Omega_i))^{2^{m+j}}, j \in \{1, \ldots, n/m-1\}$$
 for any variable $\Omega_i, 1 \leq i \leq l$.

N. Ichanska, N.S. Kaleysk

Orbit partition level by level $\mathbb{F}_{2^n} = Orb(A, \mathcal{L}) \cup \dots, A \in \mathbb{F}_{2^n}.$

 $M_{F} = \begin{pmatrix} 0 & A & \Omega_{2} & \dots & \dots & \dots \\ A & 0 & \ddots & \ddots & \dots & \dots \\ \Omega_{2} & \dots & 0 & A^{2^{m}} & \Omega_{2}^{2^{m}} & \dots \\ \vdots & \vdots & A^{2^{m}} & 0 & \dots & \dots \\ \vdots & \vdots & \Omega_{2}^{2^{m}} & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$

$$Orb_A(\Omega_2, \mathcal{L}) = \{ I(\Omega_2) : I \in \mathcal{L} \mid I(A) = A \}.$$

$$S = \{\Omega_1, \dots, \Omega_{k-1}\}$$

$$Orb_S(\Omega_k, \mathcal{L}) = \{I(\Omega_k) : I \in \mathcal{L} \mid \forall X \in S : I(X) = X\}.$$

QAM method

Submatrix method

- Let $M \in \mathbb{F}_{2^n}^{n \times n}$ be a derivative matrix.
- *M* is QAM if and only if every submatrix $S \in \mathbb{F}_{2^n}^{p \times q}$, $1 \le p, q \le n$ of *M* is **proper**.
- ► S proper if every nonzero linear combinations of the p rows has rank at least q - 1.

Submatrix method

- Let $M \in \mathbb{F}_{2^n}^{n \times n}$ be a derivative matrix.
- *M* is QAM if and only if every submatrix $S \in \mathbb{F}_{2^n}^{p \times q}$, $1 \le p, q \le n$ of *M* is **proper**.

▶ By considering $F' = F \circ L$, where $L = a_j x^{2^i}$, $a_j \in \mathbb{F}_{2^m}$, we can eliminate the number of submatrices for this test.

Preliminaries 0000000	Matrix structure 000	Restriction methods	Algorithm 1 ●0000	Algorithm 2 000000	
(n, m) =	= (10, 1)				

- F(x) over $\mathbb{F}_{2^{10}}$ with coefficients in \mathbb{F}_2 ,
- ▶ $|\mathcal{L}| = 1024$ linear permutations with coefficients in \mathbb{F}_2 ,
- The number of variables = levels in this dimension is 5.

	First level representatives $\mathcal{A} \in \mathcal{A}$							
1	а	a ⁵	a ¹⁵	a ³³	a ⁵⁷	a ⁹⁹	a ³⁴¹	
	Number of orbits \mathcal{B}_A that passed the submatrix test							
0	746	1012	753	71	112	78	8	
		Number c	of parallel pro	cesses tha	at were do	ne		
-	32	48	32	8	16	8	16	
Time taken								
-	2,5 month	3 month	2,6 month	4 days	10 days	12 days	12 days	

Found 577 APN functions fell into three CCZ-equivalent classes corresponding to x^3, x^9 and $x^3 + a^{-1} \text{Tr}_n(a^3 x^9)$ [1].

Preliminaries 0000000	Matrix structure	Restriction methods	Algorithm 1 0000	Algorithm 2 000000	
(n, m) = ► 4 ► 4	$= (10, 2)$ $F(x) \text{ over } \mathbb{F}_{2^{10}} \times \mathbb{F}_{2^{10}}$ $f^{10} = 1048576 \text{ I}$ were constructed the number of	with coefficients i linear function wi d, where 367200 variables = levels	n \mathbb{F}_{2^2} , th coefficien permutation in this dime	ts in the sub s, ension is 9.	field

First level representatives $\mathcal{A}\in\mathcal{A}$						
1	а	a ⁵				
Number of orbits \mathcal{B}_A	that p	assed the submatrix test				
3	28	46				
Number of orbits $C_{B,a}$	that	passed the submatrix test				
80						
Average number of orbits ${\cal D}$	C,B,a	that passed the submatrix test				
64						
Number of paralle	l proc	esses that were done				
32						
3 months and not finished						

Preliminaries 0000000	Matrix structure 000	Restriction methods	Algorithm 1 00000	Algorithm 2 000000	
(n, m) = F 4^1 T	(10, 2) (x) over $\mathbb{F}_{2^{10}}$ = 1048576 l ere constructed he number of	with coefficients i inear function wi d, where 367200 variables = levels	n \mathbb{F}_{2^2} , th coefficien permutation in this dime	ts in the sub s, ension is 9.	field

First level representatives $\mathcal{A}\in\mathcal{A}$				
1	а	a ⁵		
Number of orbits \mathcal{B}_A that passed the submatrix test				
3	28	46		
Number of orbits $C_{B,a}$ that passed the submatrix test				
80				
Average number of orbits $\mathcal{D}_{C,B,a}$ that passed the submatrix test				
64				
Number of parallel processes that were done				
32				
3 months and not finished				

(n, m) = (10, 2) with first 5 levels fixed

Problem

First N variables of the derivative matrix M characterize ≤ 1 possible APN function F over \mathbb{F}_{2^n} with coefficients in \mathbb{F}_{2^m} .

Partial backward search for $F = x^{288} + a^{682}x^{96} + a^{341}x^9 + x^3$ $A = a^5, B = a^{358}, C = a^{10}, D = a^{275}; \forall E \in \mathcal{E}^{Sub}_{A,B,C,D} \setminus \{a^{215}\}, |\mathcal{E}^{Sub}_{A,B,C,D}| = 900.$

 $E = a^{884}$ - 15,5 days in 32 cores; $E = a^{189}$ - 15 days in 32 cores; $E = a^{796}$ - 14 days in 32 cores;

Can we partition into orbits without the set of linear permutations?

- For cases (9,3) and (8,4) we get (2³)⁹ and (2⁴)⁸ linear functions;
- Case (10, 2) gets an "Out of Memory error" for low-memory servers (i.e. 64 GB RAM);
- More permutations better partition.

Algorithm for partitioning without pre-generated $\mathcal L$

Lemma 1

Let $a \in \mathbb{F}_{2^n}$. We categorize a into the following cases:

- 1. $Cat_1 = \{a : a \in \mathbb{F}_{2^n} \mid a + a^{2^m} = 0\},\$ 2. $Cat_2 = \{a : a \in \mathbb{F}_{2^n} \mid a + a^{2^m} + a^{2^{2m}} + \dots + a^{2^{n-m}} = 0\},\$
- 3. $Cat_3 = \{a : a \in \mathbb{F}_{2^n} \mid a + a^{2^m} + a^{2^{2m}} = 0\},\$
- 4. $Cat_{Ind} = \{a : a \in \mathbb{F}_{2^n} \mid a \notin Cat_i \text{ for any } i\},\$

Theorem 1

. . .

Let $a, b \in Cat_{Ind}$. If there exists $I(x) = \sum_{i=0}^{n-1} c_i x^{2^i}$, $c_i \in \mathbb{F}_{2^m}$ s.t. I(a) = b, $I(a^{2^m}) = b^{2^m}$, ..., $I(a^{2^{n-m}}) = b^{2^{n-m}}$. Then there exists a linear permutation $L \in \mathcal{L}$ s.t. L(a) = b.

Preliminaries 0000000	Matrix structure 000	Restriction methods 00000	Algorithm 1 00000	Algorithm 2	

(n,m) = (9,3)

- F(x) over \mathbb{F}_{2^9} with coefficients in \mathbb{F}_{2^3} .
- The number of variables = levels in this dimension is 12.
- Let a ∈ 𝔽₂⁹. Then a can be categorized into the following cases:

1.
$$Cat_1 = \{a : a \in \mathbb{F}_{2^9} \mid a + a^{2^3} = 0\},\$$

2. $Cat_2 = \{a : a \in \mathbb{F}_{2^9} \mid a + a^{2^3} + a^{2^6} = 0\},\$
3. $Cat_{Ind} = \{a : a \in \mathbb{F}_{2^9} \mid a \notin Cat_1, a \notin Cat_2\}\$

Corollary 1

Let $a, b \in Cat_{Ind}$. If there exist $l(x) = \sum_{i=0}^{9} c_i x^{2^i}$, $c_i \in \mathbb{F}_{2^3}$ s.t. l(a) = b, $l(a^{2^3}) = b^{2^3}$, $l(a^{2^6}) = b^{2^6}$. Then there exists a linear permutation $L \in \mathcal{L}$ s.t. L(a) = b.

(n,m)=(8,4)

- F(x) over \mathbb{F}_{2^8} with coefficients in \mathbb{F}_{2^4} .
- The number of variables = levels in this dimension is 16, with 4 them in the subfield.
- Let a ∈ 𝔽_{2⁸}. Then a can be categorized into the following cases:

1.
$$Cat_1 = \{a : a \in \mathbb{F}_{2^8} \mid a + a^{2^4} = 0\},\$$

2. $Cat_{Ind} = \{a : a \in \mathbb{F}_{2^8} \mid a \notin Cat_1\},\$

Corollary 2

Let $a, b \in Cat_{Ind}$. If there exist $l(x) = \sum_{i=0}^{8} c_i x^{2^i}$, $c_i \in \mathbb{F}_{2^4}$ s.t. l(a) = b, $l(a^{2^4}) = b^{2^4}$. Then there exists a linear permutation $L \in \mathcal{L}$ s.t. L(a) = b.

Partition on the second level

We fix $A \mapsto A$ on the first level.

Theorem 2

1. For
$$A \in Cat_{Ind}$$
, we get $\forall a, b \in \mathbb{F}_{2^n}$: $a \sim b$, if there exist $l(x) = \sum_{i=0}^{8} c_i x^{2^i}$, $c_i \in \mathbb{F}_{2^4}$ s.t. $l(a) = b$, $l(a^{2^4}) = b^{2^4}$, $l(A) = A$, $l(A^{2^4}) = A^{2^4}$.

2. For
$$A \in Cat_1$$
, we get $\forall a, b \in \mathbb{F}_{2^n}$: $a \sim b$, if there exist $l(x) = \sum_{i=0}^{8} c_i x^{2^i}$, $c_i \in \mathbb{F}_{2^4}$ s.t. $l(a) = b$, $l(a^{2^4}) = b^{2^4}$, $l(b) = a$, $l(b^{2^4}) = a^{2^4}$, $l(A) = A$.

Partitioning until *k*-th level

Theorem 3

For $\Omega_1, \Omega_2, \ldots, \Omega_k \in Cat_{Ind}$. After we fixed k variables, in order to partition k + 1-level:

1. Choose $\Omega_{k+1} \in Cat_{Ind}$ s.t. $\{\Omega_1, \ldots, \Omega_{k+1}\}$ - linearly independent set of vectors;

2. Then
$$\forall a, b \in \mathbb{F}_{2^n}$$
: $a \sim b$, if there exist
 $l(x) = \sum_{i=0}^{8} c_i x^{2^i}, \ c_i \in \mathbb{F}_{2^4}$ s.t.
 $l(a) = b, \ l(a^{2^4}) = b^{2^4}, \ l(b) = a, \ l(b^{2^4}) = a^{2^4}, \ \forall i \in \{1, \dots, k+1\} : \ l(\Omega_i) = \Omega_i, \ l(\Omega_i^{2^4}) = \Omega_i^{2^4}.$

We could efficiently partition A, B, C, D, E, F, G, H in our search; with brute-forcing last 8 levels. Partial search with all restrictions for this case takes 6 days to finish into 64 parallel processes.

Preliminaries 0000000	Matrix structure 000	Restriction methods	Algorithm 1 00000	Algorithm 2 000000	Conclusions ●0

Conclusions

- For F(x) over 𝔽_{2ⁿ} with coefficients in 𝔽_{2^m} we run searches (n, m) for (10,2), (10,1), (9,3), (8,4);
- We provide a classification for all quadratic APN functions with coefficients in F₂ over F_{2¹⁰};
- A method for applying the orbit partitioning algorithm for cases where it did not work before was proposed.

Future work

- 1. How many variables of the derivative matrix define the APN function?
- 2. How to identify the branches that contain QAM?
- 3. Optimize the method, implementation, and classification for other choices of (n, m).

Preliminaries	Matrix structure	Restriction methods	Algorithm 1 00000	Algorithm 2 000000	Conclusions
Refere	nces				
	Lilya Budaghyan, Cla Constructing new AF	ude Carlet, and Grego N functions from kno	or Leander. wn ones, 2009.		
	Lilya Budaghyan, To A new family of APN IEEE Transactions of	r Helleseth, and Nikola I quadrinomials. n Information Theory,	y Kaleyski. 66(11):7081–70	087, 2020.	
	Diana Davidova and Classification of all D $GF(3^n)$ for n up to 7 Cryptology ePrint Ar	Nikolay Kaleyski. O planar polynomials chive, Paper 2022/105	with prime field	l coefficients over	
	Satoshi Yoshiara. Equivalences of quad Journal of Algebraic	ratic APN functions. Combinatorics, 35(3):	461–475, 2012.		
	Yuyin Yu, Mingsheng A matrix approach fo Designs, codes and c	Wang, and Yongqian or constructing quadra cryptography, 73(2):58	g Li. tic APN functic 7–600, 2014.	ins.	ALL REPORT