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Problem Statement

Notation:
▶ Let n ∈ N and q be a power of a prime
▶ Sn := {f ∈ Fq[x] : deg(f) = n, f monic, f(0) , 0}

Problem
Given d ∈ {0, . . . ,n}, defineMd

n as:

Md
n := {R ⊆ Sn : ∀f , g ∈ R ,deg(gcd(f ,g)) ≤ d}

What is the size of the largest subset R ∈Md
n?
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Network Coding and Subspace codes

▶ Routing packets on networks is not always efficient [K12]

Image credits: F. R. Kschischang, An Introduction to Network Coding

▶ Network Coding: combine packets together as linear
combinations

▶ Noncoherent setting: does not consider the underlying
topology of the network (subspace codes)
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Linear Codes

Notation:
▶ Fq = {0,1}: finite field of order q
▶ Fn

q = {0,1}n: n-dimensional vector space over Fq

Definition
A (n,k ,d) binary linear code C: A (n,d) code C that is also a
k -dimensional subspace of Fn

q

g1, · · · ,gk ∈ F
n
q basis of C ⇔ G =


g1
...

gk

 k ×n generator matrix of C
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Subspace Codes

▶ Idea: codewords are not vectors, but vector subspaces
▶ Distance between two subspaces:

d(A ,B) = dim(A)+dim(B)−2dim(A ∩B) .

Definition ([KK08])

A subspace code C of parameters [n, ℓ(C), logq |C|,D(C)] is a
family of subsets of Fn

q where ℓ(C) = maxV∈C{dim(V)} and D(C) is
the minimum distance of C, defined as:

D(C) = min
U,V∈C

{
d(U,V)

}
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Cellular Automata

▶ Vectorial functions F : Fn
q→ F

m
q with uniform (shift-invariant)

coordinates [MPLJ19]

Example: q = 2, n = 6, d = 3, f(si ,si+1,si+2) = si ⊕si+1 ⊕si+2

1 0 0 1

f(1,0,0) = 1

01 0 0 0 1

No Boundary CA – NBCA

01 0 1 0 0

f(1,1,0) = 0

01 0 0 0 1 1 0

Periodic Boundary CA – PBCA
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Linear CA

▶ Local rule: linear combination of the neighborhood cells

f(x1, · · · ,xd) = a1x1 + · · ·+adxd , ai ∈ Fq

▶ Associated polynomial:

f 7→ pf (X) = a1 +a2X + · · ·+adXd−1 ∈ Fq[X ]

▶ (n−d +1)×n transition matrix:

MF =


a1 · · · ad 0 · · · · · · · · · · · · 0
0 a1 · · · ad 0 · · · · · · · · · 0
...
...
...
. . .

...
...
...
. . .

...

0 · · · · · · · · · · · · 0 a1 · · · ad

 , x 7→MFx⊤

▶ Remark: a linear rule is bipermutive iff a1,ad , 0
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Linear Recurring Sequences (LRS)

▶ Sequence {xi}i∈N satisfying the following relation [LN97]:

a0xi +a1xi+1 + ...+ad−1xi+d−1 = xi+d

▶ Computed by a Linear Feedback Shift Register (LFSR):

D0

Output

a0 a1

+

D1

· · ·

ad−2

+· · ·

Dk−2

ad−1

+

Dk−1

▶ Feedback polynomial:

f(X) = a0 +a1X + · · ·ad−1Xd−1 +Xd
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Linear map associated to a LRS

▶ Take the projection of all sequences satisfying the LRS
defined by f(X) onto their first 2d coordinates [GMP23]

▶ Consider the d-dim subspace Sf ⊆ F
2d
q which is the kernel of

the linear map F : F2d
q → F

d
q :

F(x0, · · · ,x2d−1)i = a0xi +a1xi+1 + ...+ad−1xi+d−1 +xi+d ,

associated matrix:

MF =


a0 · · · ad−1 1 · · · · · · · · · · · · 0
0 a0 · · · ad−1 1 · · · · · · · · · 0
...
...

...
. . .

...
...
...

. . .
...

0 · · · · · · · · · · · · a0 · · · ad−1 1


▶ ... but this is exactly the global rule of a linear CA!
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Kernel as CA preimage computation

0y = 0 0 · · ·

⇔
· · ·µ0µ= µδ−1 µδ

µδ = f(µ0, · · · ,µδ−1,0)
↓

· · ·

µ0

a0 a1

+

µ1 · · ·

aδ−2

+· · ·

µδ−2

aδ−1

+

µδ−1

aδ

+

· · · 0 0 0

Kernel⇔ 0-preimage of CA [ML18]
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Partial Spreads from Coprime Polynomials

Partial spread: A family S of subspaces of Fn
q with pairwise trivial

intersection [C21]

Lemma ( [MM23])
Given f ,g ∈ Fq[X ] over Fq of degree d ≥ 1, defined as:

f(X) = a0 +a1X + · · ·+ad−1Xd−1 +Xd , (1)

g(X) = b0 +b1X + · · ·+bd−1Xd−1 +Xd , (2)

Then, the kernels of F ,G : F2d
q → F

d
q have trivial intersection if and

only if gcd(f ,g) = 1

Consequence: a family of t pairwise coprime polynomials gives
CA kernels that form a partial spread
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Subspaces Codes from kernels of linear CA

Theorem ( [MM23])
Let F be a set of linear CA of length 2k and diameter d, k = d −1.
Then, the minimum distance of the subspace code CF is:

D(CF ) = 2k −2 · max
F ,G∈F
F,G

{
deg(gcd(Pf ,Pg))

}
, (3)

where Pf ,Pg are the polynomials associated to F and G.

▶ Coprime case: maximum distance (partial spread
codes [GR14], bent functions [GMP23])

▶ trade-off: the higher the degree of the GCD, the lower the
distance, the more subspaces we can squeeze into the code
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Maximal Families with Pairwise Linear GCD

Problem
Given d ∈ {0, . . . ,n}, defineMd

n as:

Md
n := {R ⊆ Sn : ∀f , g ∈ R ,deg(gcd(f ,g)) ≤ d}

What is the size of the largest subset R ∈Md
n?

Contributions (this abstract):
▶ Lower bound for the general case
▶ Optimal construction for d = 1 and q = 2

Notation:
▶ Ik : set of all irreducible polynomials of degree k , Ik = |Ik |
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Lower Bound

Given n and d, construct R as follows:

Construction-Lower-Bound(n,d)

1. Add all irreducible polynomials of degree n, i.e. In.

2. For i ∈ {1, . . . ,d}, for all h ∈ In−i , pick g ∈ Ii and add gh.

3. For i ∈ {d +1, . . . , ⌊(n−1)/2⌋}, for all g ∈ Ii , pick h ∈ In−i not
previously used and add gh.

4. If n is even, add g2 for all g ∈ In/2

5. For i ∈ {1, . . . ,d}, for all g ∈ Ii , pick h ∈ In−⌊n/i⌋i and add g⌊n/i⌋h.

Size of R:

|R |=
⌊n/2⌋∑
i=1

Ii +
n−1∑

i=n−d

Ii + In
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Optimal Construction for d = 1, q = 2

If d = 1 and q = 2, the only possible GCDs are 1 and X +1.

Construction-Maximal(n)

1. Add all irreducible polynomials of degree n, i.e. In

2. For all g ∈ In−1, add (x +1)g

3. For i ∈ {2, . . . , ⌊(n−1)/2⌋}, for all g ∈ Ii , pick h ∈ In−i not
previously used and add gh

4. If n is even, add g2 for all g ∈ In/2

5. Add (x +1)n.

Theorem
For q = 2, any maximal element ofM1

n has cardinality:

Nn =
⌊n/2⌋∑
i=1

Ii + In−1 + In
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Conclusions and Future Works

Summing up:
▶ Furthered the study of subspace codes defined by linear CA
▶ Characterized the maximal families of binary polynomials with

pairwise linear GCD

Future work:
▶ Generalization to larger GCD degrees: just found an optimal

construction for d < n/4!
▶ Characterize families with uniform degree of pairwise GCD

(equidistant codes)
▶ Investigate decoding efficiency of CA-based subspace

codes [ML18a]
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