

UNIVERSITY OF TWENTE.

On Maximal Families of Polynomials with Pairwise Linear Common Factors

Maximilien Gadouleau, Luca Mariot, Federico Mazzone

l.mariot@utwente.nl

BFA 2024 - Dubrovnik, September 12, 2024

Notation:

- Let $n \in \mathbb{N}$ and q be a power of a prime
- $S_n := \{ f \in \mathbb{F}_q[x] : \deg(f) = n, f \operatorname{monic}, f(0) \neq 0 \}$

Problem

Given $d \in \{0, ..., n\}$, define \mathcal{M}_n^d as:

$$\mathcal{M}_n^d := \{ R \subseteq S_n : \forall f \neq g \in R, \deg(\gcd(f,g)) \le d \}$$

What is the size of the largest subset $R \in \mathcal{M}_n^d$?

Network Coding and Subspace Codes

Cellular Automata and Linear Recurring Sequences

Subspace Codes from CA

Maximal Families of Polynomials with Pairwise Linear GCD

Network Coding and Subspace codes

Routing packets on networks is not always efficient [K12]

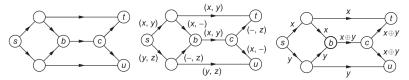


Image credits: F. R. Kschischang, An Introduction to Network Coding

- Network Coding: combine packets together as linear combinations
- Noncoherent setting: does not consider the underlying topology of the network (subspace codes)

Notation:

- $\mathbb{F}_q = \{0, 1\}$: finite field of order q
- ▶ $\mathbb{F}_q^n = \{0, 1\}^n$: *n*-dimensional vector space over \mathbb{F}_q

Definition

A (n, k, d) binary linear code C: A (n, d) code C that is also a k-dimensional subspace of \mathbb{F}_q^n

$$g_1, \cdots, g_k \in \mathbb{F}_q^n$$
 basis of $C \Leftrightarrow G = \begin{pmatrix} g_1 \\ \vdots \\ g_k \end{pmatrix} k \times n$ generator matrix of C

- Idea: codewords are not vectors, but vector subspaces
- **Distance** between two subspaces:

$$d(A,B) = dim(A) + dim(B) - 2dim(A \cap B)$$

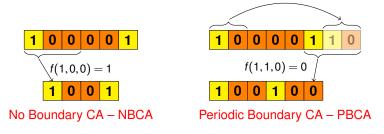
Definition ([KK08])

A subspace code *C* of parameters $[n, \ell(C), \log_q |C|, D(C)]$ is a family of subsets of \mathbb{F}_q^n where $\ell(C) = \max_{V \in C} \{ \dim(V) \}$ and D(C) is the minimum distance of *C*, defined as:

$$D(C) = \min_{U,V \in C} \{d(U,V)\}$$

▶ Vectorial functions $F : \mathbb{F}_q^n \to \mathbb{F}_q^m$ with *uniform* (shift-invariant) coordinates [MPLJ19]

Example: q = 2, n = 6, d = 3, $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$



Linear CA

Local rule: linear combination of the neighborhood cells

$$f(x_1,\cdots,x_d)=a_1x_1+\cdots+a_dx_d \ ,\ a_i\in\mathbb{F}_q$$

Associated polynomial:

$$f \mapsto p_f(X) = a_1 + a_2X + \cdots + a_dX^{d-1} \in \mathbb{F}_q[X]$$

• $(n-d+1) \times n$ transition matrix:

$$M_{F} = \begin{pmatrix} a_{1} & \cdots & a_{d} & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & a_{1} & \cdots & a_{d} & 0 & \cdots & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 0 & a_{1} & \cdots & a_{d} \end{pmatrix}, \quad x \mapsto M_{F} x^{\top}$$

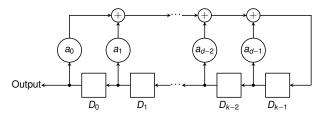
Remark: a linear rule is bipermutive iff $a_1, a_d \neq 0$

Linear Recurring Sequences (LRS)

Sequence $\{x_i\}_{i \in \mathbb{N}}$ satisfying the following relation [LN97]:

$$a_0 x_i + a_1 x_{i+1} + \dots + a_{d-1} x_{i+d-1} = x_{i+d}$$

Computed by a Linear Feedback Shift Register (LFSR):



Feedback polynomial:

$$f(X) = a_0 + a_1 X + \cdots + a_{d-1} X^{d-1} + X^d$$

Linear map associated to a LRS

- Take the projection of all sequences satisfying the LRS defined by f(X) onto their first 2d coordinates [GMP23]
- Consider the *d*-dim subspace S_f ⊆ ℝ^{2d}_q which is the kernel of the linear map F : ℝ^{2d}_q → ℝ^d_q:

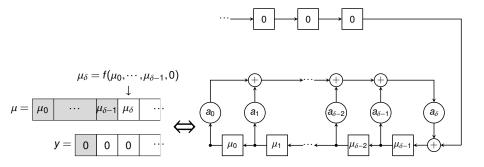
$$F(x_0, \cdots, x_{2d-1})_i = a_0 x_i + a_1 x_{i+1} + \dots + a_{d-1} x_{i+d-1} + x_{i+d} ,$$

associated matrix:

$$M_{F} = \begin{pmatrix} a_{0} & \cdots & a_{d-1} & 1 & \cdots & \cdots & \cdots & 0\\ 0 & a_{0} & \cdots & a_{d-1} & 1 & \cdots & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & \cdots & \cdots & \cdots & a_{0} & \cdots & a_{d-1} & 1 \end{pmatrix}$$

... but this is exactly the global rule of a linear CA!

Kernel as CA preimage computation



Kernel ⇔ 0-preimage of CA [ML18]

Partial spread: A family S of subspaces of \mathbb{F}_q^n with pairwise trivial intersection [C21]

Lemma ([MM23])

Given $f, g \in \mathbb{F}_q[X]$ over \mathbb{F}_q of degree $d \ge 1$, defined as:

$$f(X) = a_0 + a_1 X + \dots + a_{d-1} X^{d-1} + X^d , \qquad (1)$$

$$g(X) = b_0 + b_1 X + \dots + b_{d-1} X^{d-1} + X^d , \qquad (2)$$

Then, the kernels of F, G : $\mathbb{F}_q^{2d} \to \mathbb{F}_q^d$ have trivial intersection if and only if gcd(f,g) = 1

Consequence: a family of *t* pairwise coprime polynomials gives CA kernels that form a partial spread

Theorem ([MM23])

Let \mathcal{F} be a set of linear CA of length 2k and diameter d, k = d - 1. Then, the minimum distance of the subspace code $C_{\mathcal{F}}$ is:

$$D(C_{\mathcal{F}}) = 2k - 2 \cdot \max_{\substack{F, G \in \mathcal{F} \\ F \neq G}} \left\{ \deg(\gcd(P_f, P_g)) \right\} , \qquad (3)$$

where P_f , P_g are the polynomials associated to F and G.

- Coprime case: maximum distance (partial spread codes [GR14], bent functions [GMP23])
- trade-off: the higher the degree of the GCD, the lower the distance, the more subspaces we can squeeze into the code

Problem

Given $d \in \{0, \ldots, n\}$, define \mathcal{M}_n^d as:

 $\mathcal{M}_n^d := \{ R \subseteq S_n : \forall f \neq g \in R, \deg(\gcd(f,g)) \le d \}$

What is the size of the largest subset $R \in \mathcal{M}_n^d$?

Contributions (this abstract):

- Lower bound for the general case
- Optimal construction for d = 1 and q = 2

Notation:

• I_k : set of all irreducible polynomials of degree k, $I_k = |I_k|$

Given *n* and *d*, construct *R* as follows:

Construction-Lower-Bound(n, d)

- 1. Add all irreducible polynomials of degree n, i.e. I_n .
- 2. For $i \in \{1, \ldots, d\}$, for all $h \in \mathcal{I}_{n-i}$, pick $g \in \mathcal{I}_i$ and add gh.
- 3. For $i \in \{d + 1, ..., \lfloor (n-1)/2 \rfloor\}$, for all $g \in \mathcal{I}_i$, pick $h \in \mathcal{I}_{n-i}$ not previously used and add *gh*.
- 4. If *n* is even, add g^2 for all $g \in I_{n/2}$
- 5. For $i \in \{1, \ldots, d\}$, for all $g \in \mathcal{I}_i$, pick $h \in \mathcal{I}_{n-\lfloor n/i \rfloor i}$ and add $g^{\lfloor n/i \rfloor}h$.

Size of R:

$$|\mathbf{R}| = \sum_{i=1}^{\lfloor n/2 \rfloor} I_i + \sum_{i=n-d}^{n-1} I_i + I_n$$

Optimal Construction for d = 1, q = 2

If d = 1 and q = 2, the only possible GCDs are 1 and X + 1.

Construction-Maximal(n)

- 1. Add all irreducible polynomials of degree n, i.e. I_n
- 2. For all $g \in I_{n-1}$, add (x+1)g
- 3. For $i \in \{2, ..., \lfloor (n-1)/2 \rfloor\}$, for all $g \in \mathcal{I}_i$, pick $h \in \mathcal{I}_{n-i}$ not previously used and add gh
- 4. If *n* is even, add g^2 for all $g \in I_{n/2}$
- 5. Add $(x+1)^n$.

Theorem

For q = 2, any maximal element of \mathcal{M}_n^1 has cardinality:

$$N_n = \sum_{i=1}^{\lfloor n/2 \rfloor} I_i + I_{n-1} + I_n$$

Summing up:

- Furthered the study of subspace codes defined by linear CA
- Characterized the maximal families of binary polynomials with pairwise linear GCD

Future work:

- Generalization to larger GCD degrees: just found an optimal construction for d < n/4!</p>
- Characterize families with uniform degree of pairwise GCD (equidistant codes)
- Investigate decoding efficiency of CA-based subspace codes [ML18a]

References

[C21] Carlet, C.: Boolean functions for cryptography and coding theory. Cambridge University Press (2021)

[GMP23] M. Gadouleau, L. Mariot, S. Picek. Bent functions in the partial spread class generated by linear recurring sequences. Des. Codes and Cryptogr. 91(1): 63-82 (2023)

[GR14] E. Gorla, A. Ravagnani: Partial spreads in random network coding. Finite Fields Their Appl. 26: 104–115 (2014)

[KK08] R. Koetter, F.R. Kschischang: Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8): 3579–3591 (2008)

[K12] F.R. Kschischang: An introduction to network coding. In: Network Coding. Elsevier, pp. 1–37 (2012)

[LN97] R. Lidl, H. Niederreiter: Finite fields. Cambridge University Press (1997)

[MM23] L. Mariot, F. Mazzone: On the Minimum Distance of Subspace Codes Generated by Linear Cellular Automata. In: Proceedings of AUTOMATA 2023, LNCS vol. 14152, pp. 105-119, Springer (2023)

[MPLJ9] L. Mariot, S. Picek, A. Leporati, and D. Jakobovic. Cellular automata based S-boxes. Cryptography and Communications 11(1): 41-62 (2019)

[ML18] L. Mariot, A. Leporati: A cryptographic and coding-theoretic perspective on the global rules of cellular automata. Nat. Comput. 17(3): 487-498 (2018)

[ML18a] L. Mariot, A. Leporati: Inversion of mutually orthogonal cellular automata. In: Proceedings of ACRI 2018, LNCS vol. 11115, pp. 364–376, Springer (2018)