Construction and equivalence for generalized Boolean functions

Ayça Çeşmelioğlu

Özyeğin University

(joint work with Wilfried Meidl)

A function $f : \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}$ is called a **generalized** *p*-ary **function**. If p = 2, *f* is called a **generalized Boolean function**.

Any such function can be uniquely represented as

$$f(x) = a_0(x) + a_1(x)p + \cdots + a_{k-1}(x)p^{k-1}$$

with $a_0, a_1, \cdots, a_{k-1} : \mathbb{V}_n^{(p)} \to \mathbb{F}_p$.

The generalized Walsh transform of a function $f : \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}$ is defined as

$$\mathcal{H}_{f}(c, u) = \sum_{x \in \mathbb{V}_{n}^{(p)}} \zeta_{p^{k}}^{cf(x)} \zeta_{p}^{u.x}$$

for each nonzero
$$c \in \mathbb{Z}_{p^k}$$
 and $u \in \mathbb{V}_n^{(p)}$ where $\zeta_{p^k} = e^{2\pi i/p^k}$ and $\zeta_p = e^{2\pi i/p}$.

Definition

f is a generalized bent function if

$$|\mathcal{H}_f(1,u)| = p^{n/2}$$
 for each $u \in \mathbb{V}_n^{(p)}$.

Notation : $\mathcal{H}_f(1, u) = \mathcal{H}_f(u)$.

Two functions $f, g : \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}$ are **extended affine equivalent** if

$$g(x) = \phi_2(f(\phi_1(x) + a)) + \psi(x) + b$$

for a linear permutation ϕ_1 of $\mathbb{V}_n^{(p)}$, $\phi_2 \in Aut(\mathbb{Z}_{p^k})$, $\psi \in Hom(\mathbb{V}_n^{(p)}, \mathbb{Z}_{p^k})$, $a \in \mathbb{V}_n^{(p)}$, $b \in \mathbb{Z}_{p^k}$. If $\psi = 0$, then f and g are affine equivalent, and linear equivalent if additionally a = 0, b = 0.

 $f, g: \mathbb{F}_{p^n} \to \mathbb{Z}_{p^k}$ are **CCZ-equivalent** if

$$\{(x,g(x)): x \in \mathbb{F}_{p^n}\} = \{\phi(A,z,c,\gamma)(x,f(x)) + (u,v): x \in \mathbb{F}_{p^n}\}$$

where $\phi(A, z, c, \gamma) \in Aut(\mathbb{F}_{p^n} \times \mathbb{Z}_{p^k})$ and $(u, v) \in \mathbb{F}_{p^n} \times \mathbb{Z}_{p^k}$.

 $f,g:\mathbb{F}_{p^n}
ightarrow \mathbb{Z}_{p^k}$ are **CCZ-equivalent** if

$$\{(x,g(x)): x \in \mathbb{F}_{p^n}\} = \{\phi(A, z, c, \gamma)(x, f(x)) + (u, v): x \in \mathbb{F}_{p^n}\}$$

where $\phi(A, z, c, \gamma) \in Aut(\mathbb{F}_{p^n} \times \mathbb{Z}_{p^k})$ and $(u, v) \in \mathbb{F}_{p^n} \times \mathbb{Z}_{p^k}$.

To understand the CCZ-equivalence for generalized p-ary functions, we need the description of $Aut(\mathbb{F}_{p^n} \times \mathbb{Z}_{p^k})$.

Theorem (Ç., Meidl, 2024)

The elements of $Aut(\mathbb{F}_{p^n} \times \mathbb{Z}_{p^k})$ are $\varphi(A, z, c, \gamma)$ with

$$\varphi(A, z, c, \gamma)(x, y) = (A(x) + \alpha_z(y), \beta_c(x) + \gamma y),$$

where A is a linearized permutation of \mathbb{F}_{p^n} , $\gamma \in \mathbb{Z}_{p^k}^*$, and for $z, c \in \mathbb{F}_{p^n}$, the maps $\alpha_z : \mathbb{Z}_{p^k} \to \mathbb{F}_{p^n}$ and $\beta_c : \mathbb{F}_{p^n} \to \mathbb{Z}_{p^k}$ are given by

$$\alpha_z(y) = z(y \mod p),$$

$$\beta_c(x) = p^{k-1} \operatorname{Tr}_n(cx).$$

CCZ-equivalence in generalized Boolean functions

 $f,g: \mathbb{F}_{p^n} \to \mathbb{Z}_{p^k} \text{ are } \mathbf{CCZ-equivalent if}$ $\{(x,g(x)): x \in \mathbb{F}_{p^n}\} = \{ \underbrace{\phi(A, z, c, \gamma)(x, f(x))}_{(A(x) + \alpha_z(f(x)), \beta_c(x) + \gamma f(x))} + (u, v) : x \in \mathbb{F}_{p^n} \}$ where

 $\phi(A, z, c, \gamma)(x, f(x)) = (A(x) + z(f(x) \mod p), p^{k-1} \operatorname{Tr}_n(cx) + \gamma f(x))$ with $(u, v) \in \mathbb{F}_{p^n} \times \mathbb{Z}_{p^k}$, A is a linearized permutation of \mathbb{F}_{p^n} , $\gamma \in \mathbb{Z}_{p^k}^*$, $z, c \in \mathbb{F}_{p^n}$.

CCZ-equivalence in generalized Boolean functions

 $f,g: \mathbb{F}_{p^n} \to \mathbb{Z}_{p^k} \text{ are } \mathbf{CCZ-equivalent if}$ $\{(x,g(x)): x \in \mathbb{F}_{p^n}\} = \{ \underbrace{\phi(A, z, c, \gamma)(x, f(x))}_{(A(x)+\alpha_z(f(x)), \beta_c(x)+\gamma f(x))} + (u, v): x \in \mathbb{F}_{p^n} \}$ $(A(x)+\alpha_z(f(x)), \beta_c(x)+\gamma f(x))$ where $\phi(A, z, c, \gamma)(x, f(x)) = (A(x)+z(f(x) \mod p), p^{k-1}\mathrm{Tr}_n(cx)+\gamma f(x))$

with $(u, v) \in \mathbb{F}_{p^n} \times \mathbb{Z}_{p^k}$, A is a linearized permutation of \mathbb{F}_{p^n} , $\gamma \in \mathbb{Z}_{p^k}^*$, $z, c \in \mathbb{F}_{p^n}$.

•
$$f(x) \mod p = a_0(x)$$
.

CCZ-equivalence in generalized Boolean functions

 $f, g : \mathbb{F}_{p^n} \to \mathbb{Z}_{p^k} \text{ are } \mathbf{CCZ-equivalent if}$ $\{(x, g(x)) : x \in \mathbb{F}_{p^n}\} = \{ \begin{array}{c} \phi(A, z, c, \gamma)(x, f(x)) \\ (A(x) + \alpha_z(f(x)), \beta_c(x) + \gamma f(x)) \end{array} + (u, v) : x \in \mathbb{F}_{p^n} \}$ $(A(x) + \alpha_z(f(x)), \beta_c(x) + \gamma f(x))$ where $\phi(A, z, c, \gamma)(x, f(x)) = (A(x) + z(f(x) \mod p), p^{k-1} \operatorname{Tr}_n(cx) + \gamma f(x))$

with $(u, v) \in \mathbb{F}_{p^n} \times \mathbb{Z}_{p^k}$, A is a linearized permutation of \mathbb{F}_{p^n} , $\gamma \in \mathbb{Z}_{p^k}^*$, $z, c \in \mathbb{F}_{p^n}$.

•
$$f(x) \mod p = a_0(x)$$
.

• If z = 0, then f and g are **EA-equivalent**.

Equivalence of functions between elementary abelian groups

When we have functions between elementary abelian groupsCCZ-equivalence is coarser than EA-equivalence.

- CCZ-equivalence is coarser than EA-equivalence.
- Algebraic degree and the number of bent components are invariant under EA-equivalence but not under CCZ-equivalence.

- CCZ-equivalence is coarser than EA-equivalence.
- Algebraic degree and the number of bent components are invariant under EA-equivalence but not under CCZ-equivalence.
- Two Boolean or p-ary functions are CCZ-equivalent iff they are EA-equivalent.

- CCZ-equivalence is coarser than EA-equivalence.
- Algebraic degree and the number of bent components are invariant under EA-equivalence but not under CCZ-equivalence.
- Two Boolean or p-ary functions are CCZ-equivalent iff they are EA-equivalent.
- Two (vectorial) bent functions are CCZ-equivalent iff they are EA-equivalent.

- CCZ-equivalence is coarser than EA-equivalence.
- Algebraic degree and the number of bent components are invariant under EA-equivalence but not under CCZ-equivalence.
- Two Boolean or p-ary functions are CCZ-equivalent iff they are EA-equivalent.
- Two (vectorial) bent functions are CCZ-equivalent iff they are EA-equivalent.

Budaghyan, Carlet (2010, 2011), Budaghyan, Helleseth (2011)

Results on CCZ and EA Equivalence of generalized Boolean functions

Which of the above results can be generalized to generalized Boolean or p-ary functions? Can we identify classes of generalized Boolean (p-ary) functions such that EA- and CCZ-equivalence do (not) coincide?

Which of the above results can be generalized to generalized Boolean or p-ary functions? Can we identify classes of generalized Boolean (p-ary) functions such that EA- and CCZ-equivalence do (not) coincide?

Theorem

Let p be an arbitrary prime. For functions from $\mathbb{V}_{n}^{(p)}$ to $\mathbb{Z}_{p^{k}}$ CCZ-equivalence is more general than EA-equivalence.

- EA-equivalence preserves the algebraic degree of the components (and their linear combinations) and the number of bent components. CCZ-equivalence does not necessarily preserve them.
- To show that CCZ is coarser than EA-equivalence, we need to find an example where CCZ changes the algebraic degree.
- The CCZ equivalence should transform the graph of *f* to the graph of another function. That gives a special condition on *a*₀.

Even with that condition if $a_0(x)$ is linear then CCZ drops down to EA. So we need a special a_0 which is not linear to show CCZ is coarser than EA.

Example

Consider the extension field $\mathbb{F}_{2^4} = \mathbb{F}_2(w)$ where w is the root of the polynomial $x^4 + x + 1 \in \mathbb{F}_2[x]$. Choose the automorphism $\phi(A, z, c, \gamma)$ with the linear permutation $A(x) = x^8 + wx^2$ of \mathbb{F}_{2^4} and z = w. Then $\delta = A^{-1}(z) = w^{14}$. We select

$$\begin{aligned} a_0(x) &= (w^3 + 1)x^{12} + (w^2 + w)x^{10} + (w^3 + w^2 + 1)x^9 + (w^3 + 1)x^8 \\ &+ (w^3 + w + 1)x^6 + (w^2 + w + 1)x^5 + (w^3 + w + 1)x^4 \\ &+ (w^3 + w^2 + w)x^3 + (w^3 + w^2 + w)x^2 + (w^3 + w^2 + 1)x. \end{aligned}$$

so that $\wp(x) = A(x) + za_0(x) = x^8 + wx^2 + wa_0(x)$ is a permutation of \mathbb{F}_{2^4} . For a_1 we take the quadratic bent function

$$a_1(x)=\mathrm{Tr}_4(w^4x^3).$$

Then $f : \mathbb{F}_{2^4} \to \mathbb{Z}_4$ equals $f(x) = a_0(x) + 2a_1(x)$ where each of a_0, a_1 and $a_0 + a_1$ is quadratic.

Moreover, the Walsh spectrum of a_0 is $\{-8^1, 0^{12}, 8^3\}$, the Walsh spectrum of a_1 is $\{-4^6, 4^{10}\}$ (a_1 is a bent function), and $a_0 + a_1$ has Walsh spectrum $\{-8^1, 0^{12}, 8^3\}$. We choose c = 1 and $\gamma = 1$ for simplicity and from f, with the automorphism $\varphi(A, z, c, \gamma)$, we obtain the CCZ-equivalent function

$$\begin{split} \mathsf{g}(x) &= \gamma f(\wp^{-1}(x)) + 2 \mathrm{Tr}_4(c\wp^{-1}(x)) \\ &= \mathsf{a}_0(\wp^{-1}(x)) + 2(\mathsf{a}_1(\wp^{-1}(x)) + \mathrm{Tr}_4(\wp^{-1}(x))) \\ &:= \mathsf{b}_0(x) + 2\mathsf{b}_1(x). \end{split}$$

Then for the algebraic degrees and the Walsh spectra of $b_0(x) = a_0(\wp^{-1}(x)), \ b_1(x) = a_1(\wp^{-1}(x)) + \operatorname{Tr}_4(\wp^{-1}(x))$ and $b_0(x) + b_1(x)$ we have the following:

- b_0 has algebraic degree 2 and Walsh spectrum $\{-8^1, 0^{12}, 8^3\}$,
- b_1 has algebraic degree 3 and Walsh spectrum $\{-4^4, 0^6, 4^4, 8^2\}$,
- $b_0 + b_1$ has algebraic degree 3 and Walsh spectrum $\{-8^1, -4^2, 0^6, 4^6, 8\}$.

Then for the algebraic degrees and the Walsh spectra of $b_0(x) = a_0(\wp^{-1}(x)), \ b_1(x) = a_1(\wp^{-1}(x)) + \operatorname{Tr}_4(\wp^{-1}(x))$ and $b_0(x) + b_1(x)$ we have the following:

- b_0 has algebraic degree 2 and Walsh spectrum $\{-8^1, 0^{12}, 8^3\}$,
- b_1 has algebraic degree 3 and Walsh spectrum $\{-4^4, 0^6, 4^4, 8^2\}$,
- $b_0 + b_1$ has algebraic degree 3 and Walsh spectrum $\{-8^1, -4^2, 0^6, 4^6, 8\}$.

The Walsh spectrum of all components of both f and g are $\{-8^2, -4^6, 0^{24}, 4^{10}, 8^6\}$ which is fixed under CCZ-equivalence. But the number of bent components changed!

We can extend the previous example to a function $f' : \mathbb{F}_{2^4} \times G \to \mathbb{Z}_4$, where G is a finite abelian group, using a result from Pott, Zhou (2013). And by adding dummy components, we can extend the result to generalized Boolean functions.

Corollary

For the generalized Boolean functions $f : \mathbb{F}_{2^n} \to \mathbb{Z}_{2^k}$, CCZ-equivalence is coarser then EA-equivalence.

We obtain a similar result for p = 3 and we aim to extend the result to general p using the same method.

Theorem

Let
$$f: \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}$$
 be given as $f(x) = \sum_{i=0}^{k-1} a_i(x) p^i$.
If

- the Walsh transform of a_0 satisfies $\mathcal{W}_{a_0}(b) \neq 0$ for all $b \in \mathbb{V}_n^{(p)}$, or
- a₀ is linear,

then CCZ-equivalence drops down to EA-equivalence.

Characterization of generalized bent functions

Recall f is a generalized bent (gbent) function if

$$|\mathcal{H}_f(1,u)| = p^{n/2}$$
 for each $u \in \mathbb{V}_n^{(p)}$.

Theorem (Mesnager et al., 2018)

Let p = 2 and n be even, or let p be odd and n be an arbitrary integer.

$$f(x) = a_0(x) + \dots + a_{k-2}(x)p^{k-2} + a_{k-1}(x)p^{k-1}$$

 $f: \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}$ is a gbent function, if and only if for every $C: \mathbb{V}_n^{(p)} \to \mathbb{F}_p$ which is constant on the sets of the partition \mathcal{P}_a , the function $a_{k-1}(x) + C(x)$ is bent.

Characterization of generalized bent functions

Recall f is a generalized bent (gbent) function if

$$|\mathcal{H}_f(1,u)| = p^{n/2}$$
 for each $u \in \mathbb{V}_n^{(p)}$.

Theorem (Mesnager et al., 2018)

Let p = 2 and n be even, or let p be odd and n be an arbitrary integer.

$$f(x) = a_0(x) + \dots + a_{k-2}(x)p^{k-2} + a_{k-1}(x)p^{k-1}$$

 $f: \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}$ is a gbent function, if and only if for every $C: \mathbb{V}_n^{(p)} \to \mathbb{F}_p$ which is constant on the sets of the partition \mathcal{P}_a , the function $a_{k-1}(x) + C(x)$ is bent.

The partition
$$\mathcal{P}_a = \{P_{\mathbf{c}} : \mathbf{c} = (c_0, \cdots, c_{k-2}) \in \mathbb{F}_p^{k-1}\}$$
 where
 $P_{\mathbf{c}} = \{x \in \mathbb{V}_n^{(p)} : a_0(x) = c_0, \cdots, a_{k-2}(x) = c_{k-2}\}.$

Characterization of generalized bent functions

Recall f is a generalized bent (gbent) function if

$$|\mathcal{H}_f(1,u)| = p^{n/2}$$
 for each $u \in \mathbb{V}_n^{(p)}$.

Theorem (Mesnager et al., 2018)

Let p = 2 and n be even, or let p be odd and n be an arbitrary integer.

$$f(x) = a_0(x) + \dots + a_{k-2}(x)p^{k-2} + a_{k-1}(x)p^{k-1}$$

 $f: \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}$ is a gbent function, if and only if for every $C: \mathbb{V}_n^{(p)} \to \mathbb{F}_p$ which is constant on the sets of the partition \mathcal{P}_a , the function $a_{k-1}(x) + C(x)$ is bent.

The partition $\mathcal{P}_{a} = \{P_{\mathbf{c}} : \mathbf{c} = (c_{0}, \cdots, c_{k-2}) \in \mathbb{F}_{p}^{k-1}\}$ where $P_{\mathbf{c}} = \{x \in \mathbb{V}_{p}^{(p)} : a_{0}(x) = c_{0}, \cdots, a_{k-2}(x) = c_{k-2}\}.$ In this case, $a(x) := a_{k-1}(x)$ is called **admissible relative to the partition** \mathcal{P}_{a} , and the gbent function is denoted by (a, \mathcal{P}_{a}) . The set

$$\{a_{k-1}(x) + C(x) : C : \mathbb{V}_n^{(p)} \to \mathbb{F}_p \text{ is constant on the sets of } \mathcal{P}_a\}$$

can also be described as the set

$$\mathcal{A} = \{a_{k-1}(x) + F(a_0(x), a_1(x), \dots, a_{k-2}(x)) : F : \mathbb{F}_p^{k-1} \to \mathbb{F}_p\},\$$

where $F(x_0, \dots, x_{k-2})$ is arbitrary. A is an affine space of bent functions of dimension $|\mathcal{P}_a|$. **Target:** Given such affine spaces of bent functions, we construct another affine space of bent functions (h, \mathcal{P}_h) using the known secondary constructions of bent functions to obtain generalized bent functions.

Theorem

. .

Let
$$f: \mathbb{V}_m^{(p)} \to \mathbb{Z}_{p^k}, f(x) = \sum_{i=0}^{k-1} a_i(x)p^i$$
 and
 $g: \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}, g(x) = \sum_{i=0}^{k-1} b_i(x)p^i$ be gbent.

Then the bent functions $a(x) := a_{k-1}(x)$ and $b(x) := b_{k-1}(x)$ are admissible relative to the partitions

$$\mathcal{P}_{a} = \{P_{0}, P_{1}, \cdots, P_{p^{k-1}-1}\}$$
 where $P_{i} = \{x \in \mathbb{V}_{m}^{(p)} : f(x) \equiv i \mod p^{k-1}\}$
and

$$\mathcal{P}_b = \{Q_0, Q_1, \cdots, Q_{p^{k-1}-1}\}$$
 where $Q_i = \{x \in \mathbb{V}_n^{(p)} : g(x) \equiv i \mod p^{k-1}\}$

Theorem

Let
$$f: \mathbb{V}_m^{(p)} \to \mathbb{Z}_{p^k}, f(x) = \sum_{i=0}^{k-1} a_i(x)p^i$$
 and
 $g: \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}, g(x) = \sum_{i=0}^{k-1} b_i(x)p^i$ be gbent.

Then the bent functions $a(x) := a_{k-1}(x)$ and $b(x) := b_{k-1}(x)$ are admissible relative to the partitions

$$\mathcal{P}_{a} = \{P_{0}, P_{1}, \cdots, P_{p^{k-1}-1}\}$$
 where $P_{i} = \{x \in \mathbb{V}_{m}^{(p)} : f(x) \equiv i \mod p^{k-1}\}$
and

$$\mathcal{P}_{b} = \{Q_{0}, Q_{1}, \cdots, Q_{p^{k-1}-1}\} \text{ where } Q_{i} = \{x \in \mathbb{V}_{n}^{(p)} : g(x) \equiv i \mod p^{k-1}\}$$

For the direct sum $f(x) + g(y)$, $\mathcal{H}_{f+g}(u, v) = \mathcal{H}_{f}(u)\mathcal{H}_{g}(v)$. Therefore,
 $f + g$ is gbent.

Let (h, \mathcal{P}_h) be the affine bent function space associated with f(x) + g(y). **Question:** What is the partition \mathcal{P}_h of $\mathbb{V}_m^{(p)} \times \mathbb{V}_n^{(p)}$ relative to which h is admissible?

And what is the corresponding function h?

Theorem

The function
$$h: \mathbb{V}_m^{(p)} imes \mathbb{V}_n^{(p)} o \mathbb{F}_p$$
 given by

 $h(x,y) = r \text{ if } (f(x)+g(y)) \mod p^k \in \{rp^{k-1}, rp^{k-1}+1, \dots, (r+1)p^{k-1}-1\}$

is bent and admissible to the partition $\mathcal{P}_h = \{R_1, \ldots, R_{p^{k-1}-1}\}$ of $\mathbb{V}_m^{(p)} \times \mathbb{V}_n^{(p)}$, where for $0 \le j \le p^{k-1} - 1$,

$$R_j = igcup_{i=0}^{p^{k-1}-1} P_i imes Q_{j-i}$$
 (indices are determined modulo p^{k-1}).

A representation of (h, \mathcal{P}_h) is the direct sum $H(x, y) = f(x) + g(y) = \sum_{i=0}^{k-1} h_i(x, y)p^i$, for which $h_{k-1} = h$. In general, $h(x, y) \neq a(x) + b(y)$, and $\{R_0, R_1, \dots, R_{p^{k-1}-1}\}$ is not a partition for a(x) + b(y).

References

- A. Pott and Y. Zhou, CCZ and EA equivalence between mappings over finite Abelian groups, *Des. Codes Cryptogr.*, **66** (2013), 99–109.
- A. Çeşmelioğlu, W. Meidl, Equivalence for generalized Boolean functions. Adv. Math. Commun., (2024), 18(6), 1590–1604.
- L. Budaghyan, C. Carlet, CCZ-equivalence of single and multi output Boolean functions. Finite fields: theory and applications, 43-54, Contemp. Math., 518, Amer. Math. Soc., Providence, RI, 2010.
- L. Budaghyan, C. Carlet, CCZ-equivalence of bent vectorial functions and related constructions. Des. Codes Cryptogr. 59 (2011), 69–87.
- L. Budaghyan and T. Helleseth, Tor, On isotopisms of commutative presemifields and CCZ-equivalence of functions, *Internat. J. Found. Comput. Sci.*, **22** (2011), 1243–1258.
 - S. Mesnager, C. Tang, Y. Qi, L. Wang, B. Wu, K. Feng, Further results on generalized bent functions and their complete characterization. IEEE Trans. Inform. Theory 64 (2018), 5441–5452,