Construction and equivalence for generalized Boolean functions

Ayça Çeşmelioğlu

Özyeğin University

(joint work with Wilfried Meidl)

A function $f: \mathbb{V}_n^{(p)} \rightarrow \mathbb{Z}_{p^k}$ is called a **generalized** p -ary **function**. If $p = 2$, f is called a **generalized Boolean function**.

Any such function can be uniquely represented as

$$
f(x) = a_0(x) + a_1(x)p + \cdots + a_{k-1}(x)p^{k-1}
$$

with $a_0, a_1, \cdots, a_{k-1}: \mathbb{V}_n^{(p)} \rightarrow \mathbb{F}_p$.

The generalized Walsh transform of a function $f: \mathbb{V}_n^{(p)} \rightarrow \mathbb{Z}_{p^k}$ is defined as

$$
\mathcal{H}_f(c, u) = \sum_{x \in \mathbb{V}_n^{(p)}} \zeta_{p^k}^{cf(x)} \zeta_p^{u.x}
$$

for each nonzero
$$
c \in \mathbb{Z}_{p^k}
$$
 and $u \in \mathbb{V}_n^{(p)}$ where $\zeta_{p^k} = e^{2\pi i/p^k}$ and $\zeta_p = e^{2\pi i/p}$.

Definition

 f is a generalized bent function if

$$
|\mathcal{H}_f(1, u)| = p^{n/2} \text{ for each } u \in \mathbb{V}_n^{(p)}.
$$

Notation : $\mathcal{H}_f(1, u) = \mathcal{H}_f(u)$.

Two functions $f,g: \mathbb{V}_n^{(\rho)} \to \mathbb{Z}_{\rho^k}$ are $\mathsf{extended}$ affine equivalent if

$$
g(x) = \phi_2(f(\phi_1(x) + a)) + \psi(x) + b
$$

for a linear permutation ϕ_1 of $\mathbb{V}_n^{(\rho)},\ \phi_2\in Aut(\mathbb{Z}_{p^k}),\ \psi\in Hom(\mathbb{V}_n^{(\rho)},\mathbb{Z}_{p^k}),$ $a\in \mathbb{V}_n^{(p)}$, $b\in \mathbb{Z}_{p^k}.$ If $\psi = 0$, then f and g are affine equivalent, and linear equivalent if additionally $a = 0$, $b = 0$.

 $f,g:\mathbb{F}_{\rho^n}\rightarrow \mathbb{Z}_{\rho^k}$ are CCZ-equivalent if

$$
\{(x,g(x)): x \in \mathbb{F}_{p^n}\} = \{\phi(A,z,c,\gamma)(x,f(x)) + (u,v) : x \in \mathbb{F}_{p^n}\}\
$$

where $\phi(A,z,c,\gamma)\in Aut(\mathbb{F}_{\rho^n}\times \mathbb{Z}_{\rho^k})$ and $(u,v)\in \mathbb{F}_{\rho^n}\times \mathbb{Z}_{\rho^k}.$

 $f,g:\mathbb{F}_{\rho^n}\rightarrow \mathbb{Z}_{\rho^k}$ are CCZ-equivalent if

$$
\{(x,g(x)): x \in \mathbb{F}_{p^n}\} = \{\phi(A,z,c,\gamma)(x,f(x)) + (u,v) : x \in \mathbb{F}_{p^n}\}\
$$

where $\phi(A,z,c,\gamma)\in Aut(\mathbb{F}_{\rho^n}\times \mathbb{Z}_{\rho^k})$ and $(u,v)\in \mathbb{F}_{\rho^n}\times \mathbb{Z}_{\rho^k}.$

To understand the CCZ-equivalence for generalized p-ary functions, we need the description of $Aut(\mathbb{F}_{p^n}\times \mathbb{Z}_{p^k})$.

Theorem (C., Meidl, 2024)

The elements of $Aut(\mathbb{F}_{p^n}\times \mathbb{Z}_{p^k})$ are $\varphi(A,z,c,\gamma)$ with

$$
\varphi(A,z,c,\gamma)(x,y)=(A(x)+\alpha_z(y),\beta_c(x)+\gamma y),
$$

where A is a linearized permutation of \mathbb{F}_{p^n} , $\gamma\in\mathbb{Z}_p^*$ $p^*_{p^k}$, and for $z, c \in \mathbb{F}_{p^n}$, the maps $\alpha_z:\mathbb{Z}_{p^k}\to\mathbb{F}_{p^n}$ and $\beta_c:\mathbb{F}_{p^n}\to\mathbb{Z}_{p^k}$ are given by

$$
\alpha_z(y) = z(y \mod p),
$$

$$
\beta_c(x) = p^{k-1} \text{Tr}_n(cx).
$$

CCZ-equivalence in generalized Boolean functions

 $f,g:\mathbb{F}_{\rho^n}\rightarrow \mathbb{Z}_{\rho^k}$ are CCZ-equivalent if $\{(x, g(x)) : x \in \mathbb{F}_{p^n}\} = \{ \phi(A, z, c, \gamma)(x, f(x)) + (u, v) : x \in \mathbb{F}_{p^n}\}$ $({\cal A}(x)+\alpha_z(f(x)),\overline{\beta_c(x)}+\gamma f(x))$ where

 $\phi(A, z, c, \gamma)(x, f(x)) = (A(x) +$ α _z(f(x)) $z(f(x) \mod p),$ $\beta_c(x)$ $\sqrt{p^{k-1}\text{Tr}_n(cx)} + \gamma f(x)$ with $(u,v)\in \mathbb{F}_{\rho^n}\times \mathbb{Z}_{\rho^k}$, A is a linearized permutation of $\mathbb{F}_{\rho^n},\ \gamma\in \mathbb{Z}_{\rho}^*$ $_{p^{k}}^{\ast}$ $z, c \in \mathbb{F}_{p^n}$.

CCZ-equivalence in generalized Boolean functions

 $f,g:\mathbb{F}_{\rho^n}\rightarrow \mathbb{Z}_{\rho^k}$ are CCZ-equivalent if $\{(x, g(x)) : x \in \mathbb{F}_{p^n}\} = \{ \phi(A, z, c, \gamma)(x, f(x)) + (u, v) : x \in \mathbb{F}_{p^n}\}$ $({\cal A}(x)+\alpha_z(f(x)),\overline{\beta_c(x)}+\gamma f(x))$ where $\phi(A, z, c, \gamma)(x, f(x)) = (A(x) +$ α _z(f(x)) $z(f(x) \mod p),$ $\beta_c(x)$ $\sqrt{p^{k-1}\text{Tr}_n(cx)} + \gamma f(x)$ with $(u,v)\in \mathbb{F}_{\rho^n}\times \mathbb{Z}_{\rho^k}$, A is a linearized permutation of $\mathbb{F}_{\rho^n},\ \gamma\in \mathbb{Z}_{\rho}^*$ $_{p^{k}}^{\ast}$ $z, c \in \mathbb{F}_{p^n}$.

•
$$
f(x)
$$
 mod $p = a_0(x)$.

CCZ-equivalence in generalized Boolean functions

 $f,g:\mathbb{F}_{\rho^n}\rightarrow \mathbb{Z}_{\rho^k}$ are CCZ-equivalent if $\{(x, g(x)) : x \in \mathbb{F}_{p^n}\} = \{ \phi(A, z, c, \gamma)(x, f(x)) + (u, v) : x \in \mathbb{F}_{p^n}\}$ $({\cal A}(x)+\alpha_z(f(x)),\overline{\beta_c(x)}+\gamma f(x))$ where $\phi(A, z, c, \gamma)(x, f(x)) = (A(x) +$ α _z(f(x)) $z(f(x) \mod p),$ $\beta_c(x)$ $\sqrt{p^{k-1}\text{Tr}_n(cx)} + \gamma f(x)$ with $(u,v)\in \mathbb{F}_{\rho^n}\times \mathbb{Z}_{\rho^k}$, A is a linearized permutation of $\mathbb{F}_{\rho^n},\ \gamma\in \mathbb{Z}_{\rho}^*$ $_{p^{k}}^{\ast}$ $z, c \in \mathbb{F}_{p^n}$. • $f(x)$ mod $p = a_0(x)$.

• If $z = 0$, then f and g are **EA-equivalent**.

Equivalence of functions between elementary abelian groups

When we have functions between elementary abelian groups CCZ-equivalence is coarser than EA-equivalence.

- CCZ-equivalence is coarser than EA-equivalence.
- Algebraic degree and the number of bent components are invariant under EA-equivalence but not under CCZ-equivalence.

- CCZ-equivalence is coarser than EA-equivalence.
- Algebraic degree and the number of bent components are invariant under EA-equivalence but not under CCZ-equivalence.
- Two Boolean or p-ary functions are CCZ-equivalent iff they are EA-equivalent.

- CCZ-equivalence is coarser than EA-equivalence.
- Algebraic degree and the number of bent components are invariant under EA-equivalence but not under CCZ-equivalence.
- Two Boolean or p-ary functions are CCZ-equivalent iff they are EA-equivalent.
- Two (vectorial) bent functions are CCZ-equivalent iff they are EA-equivalent.

- CCZ-equivalence is coarser than EA-equivalence.
- Algebraic degree and the number of bent components are invariant under EA-equivalence but not under CCZ-equivalence.
- Two Boolean or p-ary functions are CCZ-equivalent iff they are EA-equivalent.
- Two (vectorial) bent functions are CCZ-equivalent iff they are EA-equivalent.

Budaghyan, Carlet (2010, 2011), Budaghyan, Helleseth (2011)

Results on CCZ and EA Equivalence of generalized Boolean functions

Which of the above results can be generalized to generalized Boolean or p-ary functions? Can we identify classes of generalized Boolean (p-ary) functions such that EA- and CCZ-equivalence do (not) coincide?

Results on CCZ and EA Equivalence of generalized Boolean functions

Which of the above results can be generalized to generalized Boolean or p-ary functions? Can we identify classes of generalized Boolean (p-ary) functions such that EA- and CCZ-equivalence do (not) coincide?

Theorem

Let p be an arbitrary prime. For functions from $\mathbb{V}_n^{(\rho)}$ to \mathbb{Z}_{p^k} CCZ-equivalence is more general than EA-equivalence.

- EA-equivalence preserves the algebraic degree of the components (and their linear combinations) and the number of bent components. CCZ-equivalence does not necessarily preserve them.
- To show that CCZ is coarser than EA-equivalence, we need to find an example where CCZ changes the algebraic degree.
- \bullet The CCZ equivalence should transform the graph of f to the graph of another function. That gives a special condition on a_0 .

Even with that condition if $a_0(x)$ is linear then CCZ drops down to EA. So we need a special a_0 which is not linear to show CCZ is coarser than EA.

Example

Consider the extension field $\mathbb{F}_{2^4} = \mathbb{F}_2(w)$ where w is the root of the polynomial $x^4 + x + 1 \in \mathbb{F}_2[x]$. Choose the automorphism $\phi(\mathcal{A}, z, c, \gamma)$ with the linear permutation $A(x) = x^8 + wx^2$ of \mathbb{F}_{2^4} and $z = w$. Then $\delta = A^{-1}(z) = w^{14}.$ We select

$$
a_0(x) = (w^3 + 1)x^{12} + (w^2 + w)x^{10} + (w^3 + w^2 + 1)x^9 + (w^3 + 1)x^8
$$

+
$$
(w^3 + w + 1)x^6 + (w^2 + w + 1)x^5 + (w^3 + w + 1)x^4
$$

+
$$
(w^3 + w^2 + w)x^3 + (w^3 + w^2 + w)x^2 + (w^3 + w^2 + 1)x.
$$

so that $\wp(\mathsf{x}) = \mathsf{A}(\mathsf{x}) + \mathsf{z} \mathsf{a}_0(\mathsf{x}) = \mathsf{x}^8 + \mathsf{w} \mathsf{x}^2 + \mathsf{w} \mathsf{a}_0(\mathsf{x})$ is a permutation of \mathbb{F}_{2^4} . For a_1 we take the quadratic bent function

$$
a_1(x)=\mathrm{Tr}_4(w^4x^3).
$$

Then $f: \mathbb{F}_{2^4} \to \mathbb{Z}_4$ equals $f(x) = a_0(x) + 2a_1(x)$ where each of a_0, a_1 and $a_0 + a_1$ is quadratic.

Moreover, the Walsh spectrum of a_0 is $\{-8^1, 0^{12}, 8^3\}$, the Walsh spectrum of a_1 is $\{-4^6,4^{10}\}$ $(\mathsf{a}_1$ is a bent function), and $\mathsf{a}_0 + \mathsf{a}_1$ has Walsh spectrum $\{-8^1, 0^{12}, 8^3\}$. We choose $c = 1$ and $\gamma = 1$ for simplicity and from f, with the automorphism $\varphi(A, z, c, \gamma)$, we obtain the CCZ-equivalent function

$$
g(x) = \gamma f(\wp^{-1}(x)) + 2\mathrm{Tr}_4(c\wp^{-1}(x))
$$

= $a_0(\wp^{-1}(x)) + 2(a_1(\wp^{-1}(x)) + \mathrm{Tr}_4(\wp^{-1}(x)))$
:= $b_0(x) + 2b_1(x)$.

Then for the algebraic degrees and the Walsh spectra of $b_0(x) = a_0(\wp^{-1}(x)),\; b_1(x) = a_1(\wp^{-1}(x)) + {\rm Tr}_4(\wp^{-1}(x))$ and $b_0(x) + b_1(x)$ we have the following:

- b_0 has algebraic degree 2 and Walsh spectrum $\{-8^1, 0^{12}, 8^3\},$
- b_1 has algebraic degree 3 and Walsh spectrum $\{-4^4, 0^6, 4^4, 8^2\}$,
- $b_0 + b_1$ has algebraic degree 3 and Walsh spectrum $\{-8^1, -4^2, 0^6, 4^6, 8\}.$

Then for the algebraic degrees and the Walsh spectra of $b_0(x) = a_0(\wp^{-1}(x)),\; b_1(x) = a_1(\wp^{-1}(x)) + {\rm Tr}_4(\wp^{-1}(x))$ and $b_0(x) + b_1(x)$ we have the following:

- b_0 has algebraic degree 2 and Walsh spectrum $\{-8^1, 0^{12}, 8^3\},$
- b_1 has algebraic degree 3 and Walsh spectrum $\{-4^4, 0^6, 4^4, 8^2\}$,
- $b_0 + b_1$ has algebraic degree 3 and Walsh spectrum $\{-8^1, -4^2, 0^6, 4^6, 8\}.$

The Walsh spectrum of all components of both f and g are $\{-8^2,-4^6,0^{24},4^{10},8^6\}$ which is fixed under CCZ-equivalence. But the number of bent components changed!

We can extend the previous example to a function $f^{'}: \mathbb{F}_{2^4} \times \mathit{G} \rightarrow \mathbb{Z}_4$, where G is a finite abelian group, using a result from Pott, Zhou (2013). And by adding dummy components, we can extend the result to generalized Boolean functions.

Corollary

For the generalized Boolean functions $f: \mathbb{F}_{2^n} \rightarrow \mathbb{Z}_{2^k}$, CCZ-equivalence is coarser then EA-equivalence.

We obtain a similar result for $p = 3$ and we aim to extend the result to general p using the same method.

Theorem

Let
$$
f: \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}
$$
 be given as $f(x) = \sum_{i=0}^{k-1} a_i(x) p^i$.
If

- the Walsh transform of a₀ satisfies $\mathcal{W}_{a_0}(b)\neq 0$ for all $b\in \mathbb{V}_n^{(p)}$, or
- \bullet a₀ is linear,

then CCZ-equivalence drops down to EA-equivalence.

Characterization of generalized bent functions

Recall f is a generalized bent (gbent) function if

$$
|\mathcal{H}_f(1, u)| = p^{n/2} \text{ for each } u \in \mathbb{V}_n^{(p)}.
$$

Theorem (Mesnager et al., 2018)

Let $p = 2$ and n be even, or let p be odd and n be an arbitrary integer.

$$
f(x) = a_0(x) + \cdots + a_{k-2}(x)p^{k-2} + a_{k-1}(x)p^{k-1}
$$

 $f:{\mathbb V}_n^{(p)}\to{\mathbb Z}_{p^k}$ is a gbent function, if and only if for every $C:{\mathbb V}_n^{(p)}\to{\mathbb F}_p$ which is constant on the sets of the partition P_{a} , the function $a_{k-1}(x) + C(x)$ is bent.

.

Characterization of generalized bent functions

Recall f is a generalized bent (gbent) function if

$$
|\mathcal{H}_f(1, u)| = p^{n/2} \text{ for each } u \in \mathbb{V}_n^{(p)}.
$$

Theorem (Mesnager et al., 2018)

Let $p = 2$ and n be even, or let p be odd and n be an arbitrary integer.

$$
f(x) = a_0(x) + \cdots + a_{k-2}(x)p^{k-2} + a_{k-1}(x)p^{k-1}
$$

 $f:{\mathbb V}_n^{(p)}\to{\mathbb Z}_{p^k}$ is a gbent function, if and only if for every $C:{\mathbb V}_n^{(p)}\to{\mathbb F}_p$ which is constant on the sets of the partition P_{a} , the function $a_{k-1}(x) + C(x)$ is bent.

The partition
$$
\mathcal{P}_a = \{P_{\mathbf{c}} : \mathbf{c} = (c_0, \dots, c_{k-2}) \in \mathbb{F}_p^{k-1}\}\
$$
 where

$$
P_{\mathbf{c}} = \{x \in \mathbb{V}_n^{(p)} : a_0(x) = c_0, \dots, a_{k-2}(x) = c_{k-2}\}.
$$

.

Characterization of generalized bent functions

Recall f is a generalized bent (gbent) function if

$$
|\mathcal{H}_f(1, u)| = p^{n/2} \text{ for each } u \in \mathbb{V}_n^{(p)}.
$$

Theorem (Mesnager et al., 2018)

Let $p = 2$ and n be even, or let p be odd and n be an arbitrary integer.

$$
f(x) = a_0(x) + \cdots + a_{k-2}(x)p^{k-2} + a_{k-1}(x)p^{k-1}
$$

 $f:{\mathbb V}_n^{(p)}\to{\mathbb Z}_{p^k}$ is a gbent function, if and only if for every $C:{\mathbb V}_n^{(p)}\to{\mathbb F}_p$ which is constant on the sets of the partition P_{a} , the function $a_{k-1}(x) + C(x)$ is bent.

The partition $\mathcal{P}_a = \{P_\textbf{c} : \textbf{c} = (c_0, \cdots, c_{k-2}) \in \mathbb{F}_p^{k-1}\}$ where $P_{\mathbf{c}} = \{x \in \mathbb{V}_n^{(p)} : a_0(x) = c_0, \cdots, a_{k-2}(x) = c_{k-2}\}.$ In this case, $a(x) := a_{k-1}(x)$ is called **admissible relative to the partition** \mathcal{P}_a , and the gbent function is denoted by (a, \mathcal{P}_a) .

.

The set

 ${a_{k-1}(x) + C(x) : C : \mathbb{V}_n^{(p)} \to \mathbb{F}_p$ is constant on the sets of \mathcal{P}_a}

can also be described as the set

$$
\mathcal{A} = \{a_{k-1}(x) + F(a_0(x), a_1(x), \ldots, a_{k-2}(x)) : F : \mathbb{F}_p^{k-1} \to \mathbb{F}_p\},\
$$

where $F(x_0, \dots, x_{k-2})$ is arbitrary. A is an affine space of bent functions of dimension $|\mathcal{P}_a|$. Target: Given such affine spaces of bent functions, we construct another affine space of bent functions (h, P_h) using the known secondary constructions of bent functions to obtain generalized bent functions.

Theorem

Let
$$
f: \mathbb{V}_m^{(p)} \to \mathbb{Z}_{p^k}, f(x) = \sum_{i=0}^{k-1} a_i(x) p^i
$$
 and
 $g: \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}, g(x) = \sum_{i=0}^{k-1} b_i(x) p^i$ be *gbent.*

Then the bent functions $a(x) := a_{k-1}(x)$ and $b(x) := b_{k-1}(x)$ are admissible relative to the partitions

$$
\mathcal{P}_a = \{P_0, P_1, \cdots, P_{p^{k-1}-1}\} \text{ where } P_i = \{x \in \mathbb{V}_m^{(p)} : f(x) \equiv i \mod p^{k-1}\}
$$

and

$$
\mathcal{P}_b = \{Q_0, Q_1, \cdots, Q_{p^{k-1}-1}\} \text{ where } Q_i = \{x \in \mathbb{V}_n^{(p)} : g(x) \equiv i \mod p^{k-1}\}.
$$

Theorem

Let
$$
f: \mathbb{V}_m^{(p)} \to \mathbb{Z}_{p^k}, f(x) = \sum_{i=0}^{k-1} a_i(x) p^i
$$
 and
 $g: \mathbb{V}_n^{(p)} \to \mathbb{Z}_{p^k}, g(x) = \sum_{i=0}^{k-1} b_i(x) p^i$ be *gbent.*

Then the bent functions $a(x) := a_{k-1}(x)$ and $b(x) := b_{k-1}(x)$ are admissible relative to the partitions

$$
\mathcal{P}_a = \{P_0, P_1, \cdots, P_{p^{k-1}-1}\} \text{ where } P_i = \{x \in \mathbb{V}_m^{(p)} : f(x) \equiv i \mod p^{k-1}\}
$$

and

$$
\mathcal{P}_b = \{Q_0, Q_1, \cdots, Q_{p^{k-1}-1}\} \text{ where } Q_i = \{x \in \mathbb{V}_n^{(p)} : g(x) \equiv i \mod p^{k-1}\}.
$$

For the direct sum $f(x) + g(y)$, $\mathcal{H}_{f+g}(u, v) = \mathcal{H}_f(u)\mathcal{H}_g(v)$. Therefore,
 $f+g$ is gbent.

Let (h, P_h) be the affine bent function space associated with $f(x) + g(y)$. **Question:** What is the partition \mathcal{P}_h of $\mathbb{V}_m^{(p)}\times\mathbb{V}_n^{(p)}$ relative to which h is admissible?

And what is the corresponding function h?

Theorem

The function
$$
h: \mathbb{V}_m^{(p)} \times \mathbb{V}_n^{(p)} \to \mathbb{F}_p
$$
 given by

 $h(x,y) = r$ if $(f(x)+g(y))$ mod $p^k \in \{rp^{k-1}, rp^{k-1}+1, ..., (r+1)p^{k-1}-1\}$

is bent and admissible to the partition $\mathcal{P}_h = \{R_1, \ldots, R_{p^{k-1}-1}\}$ of $\mathbb{V}_m^{(p)}\times \mathbb{V}_n^{(p)}$, where for $0\leq j\leq p^{k-1}-1$,

$$
R_j = \bigcup_{i=0}^{p^{k-1}-1} P_i \times Q_{j-i} \quad \text{(indices are determined modulo } p^{k-1}\text{)}.
$$

A representation of (h, P_h) is the direct sum $H(x, y) = f(x) + g(y) = \sum_{i=0}^{k-1} h_i(x, y) p^i$, for which $h_{k-1} = h$.

In general, $h(x,y) \neq a(x) + b(y)$, and $\{R_0, R_1, \cdots, R_{p^{k-1}-1}\}$ is not a partition for $a(x) + b(y)$.

References

-
- A. Pott and Y. Zhou, CCZ and EA equivalence between mappings over finite Abelian groups, Des. Codes Cryptogr., 66 (2013), 99–109.
- A. Çeşmelioğlu, W. Meidl, Equivalence for generalized Boolean functions. Adv. Math. Commun., (2024), 18(6), 1590–1604.
- L. Budaghyan, C. Carlet, CCZ-equivalence of single and multi output Boolean functions. Finite fields: theory and applications, 43-54, Contemp. Math., 518, Amer. Math. Soc., Providence, RI, 2010.
- L. Budaghyan, C. Carlet, CCZ-equivalence of bent vectorial functions and related constructions. Des. Codes Cryptogr. 59 (2011), 69–87.
- L. Budaghyan and T. Helleseth, Tor, On isotopisms of commutative presemifields and CCZ-equivalence of functions, Internat. J. Found. Comput. Sci., 22 (2011), 1243–1258.
	- S. Mesnager, C. Tang, Y. Qi, L. Wang, B. Wu, K. Feng, Further results on generalized bent functions and their complete characterization. IEEE Trans. Inform. Theory 64 (2018), 5441–5452,