
“Self-Orthogonal Minimal Codes From
(Vectorial) Plateaued p-Ary Functions”

René Rodŕıguez1 Enes Pasalic1,2 Fengrong Zhang3 Yongzhuang Wei2

The 9th International Workshop on Boolean Functions and
their Applications (BFA), Dubrovnik, Croatia

1University of Primorska & Institute Andrej Marušič, Slovenia
2Guilin University of Electronic Technology, China

3Xidian University, China

Sep 12, 2024

René Rodŕıguez (UP-Famnit) Sep 12, 2024 1 / 18

Happy (belated) birthday!

René Rodŕıguez (UP-Famnit) Sep 12, 2024 2 / 18

Happy (belated) birthday!

René Rodŕıguez (UP-Famnit) Sep 12, 2024 2 / 18

Definitions

Plateaued Functions

For a prime power pn, Fpn is the finite field with pn elements.

f : Fpn → Fp, F : Fpn → Fpm .

Recall Wf (ω) =
∑

x∈Fpn
ξ
f (x)+Tr(ωx)
p and

WF (a, ω) = WTr(aF)(ω) =
∑

x∈Fpn
ξ
Tr(aF (x))+Tr(ωx)
p .

A function f : Fpn → Fp is s-plateaued if |Wf (ω)|2 ∈ {0, pn+s} for each
ω ∈ Fpn . Similarly, F : Fpn → Fpm is vectorial plateaued if its
components are plateaued with possibly different amplitudes. F is
vectorial s-plateaued if all components are s-plateaued.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 3 / 18

Definitions

Plateaued Functions

For a prime power pn, Fpn is the finite field with pn elements.

f : Fpn → Fp, F : Fpn → Fpm .

Recall Wf (ω) =
∑

x∈Fpn
ξ
f (x)+Tr(ωx)
p and

WF (a, ω) = WTr(aF)(ω) =
∑

x∈Fpn
ξ
Tr(aF (x))+Tr(ωx)
p .

A function f : Fpn → Fp is s-plateaued if |Wf (ω)|2 ∈ {0, pn+s} for each
ω ∈ Fpn . Similarly, F : Fpn → Fpm is vectorial plateaued if its
components are plateaued with possibly different amplitudes. F is
vectorial s-plateaued if all components are s-plateaued.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 3 / 18

Definitions

Plateaued Functions

For a prime power pn, Fpn is the finite field with pn elements.

f : Fpn → Fp, F : Fpn → Fpm .

Recall Wf (ω) =
∑

x∈Fpn
ξ
f (x)+Tr(ωx)
p and

WF (a, ω) = WTr(aF)(ω) =
∑

x∈Fpn
ξ
Tr(aF (x))+Tr(ωx)
p .

A function f : Fpn → Fp is s-plateaued if |Wf (ω)|2 ∈ {0, pn+s} for each
ω ∈ Fpn . Similarly, F : Fpn → Fpm is vectorial plateaued if its
components are plateaued with possibly different amplitudes. F is
vectorial s-plateaued if all components are s-plateaued.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 3 / 18

Definitions

Plateaued Functions

For a prime power pn, Fpn is the finite field with pn elements.

f : Fpn → Fp, F : Fpn → Fpm .

Recall Wf (ω) =
∑

x∈Fpn
ξ
f (x)+Tr(ωx)
p and

WF (a, ω) = WTr(aF)(ω) =
∑

x∈Fpn
ξ
Tr(aF (x))+Tr(ωx)
p .

A function f : Fpn → Fp is s-plateaued if |Wf (ω)|2 ∈ {0, pn+s} for each
ω ∈ Fpn . Similarly, F : Fpn → Fpm is vectorial plateaued if its
components are plateaued with possibly different amplitudes. F is
vectorial s-plateaued if all components are s-plateaued.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 3 / 18

Definitions

Plateaued Functions

For a prime power pn, Fpn is the finite field with pn elements.

f : Fpn → Fp, F : Fpn → Fpm .

Recall Wf (ω) =
∑

x∈Fpn
ξ
f (x)+Tr(ωx)
p and

WF (a, ω) = WTr(aF)(ω) =
∑

x∈Fpn
ξ
Tr(aF (x))+Tr(ωx)
p .

A function f : Fpn → Fp is s-plateaued if |Wf (ω)|2 ∈ {0, pn+s} for each
ω ∈ Fpn .

Similarly, F : Fpn → Fpm is vectorial plateaued if its
components are plateaued with possibly different amplitudes. F is
vectorial s-plateaued if all components are s-plateaued.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 3 / 18

Definitions

Plateaued Functions

For a prime power pn, Fpn is the finite field with pn elements.

f : Fpn → Fp, F : Fpn → Fpm .

Recall Wf (ω) =
∑

x∈Fpn
ξ
f (x)+Tr(ωx)
p and

WF (a, ω) = WTr(aF)(ω) =
∑

x∈Fpn
ξ
Tr(aF (x))+Tr(ωx)
p .

A function f : Fpn → Fp is s-plateaued if |Wf (ω)|2 ∈ {0, pn+s} for each
ω ∈ Fpn . Similarly, F : Fpn → Fpm is vectorial plateaued if its
components are plateaued with possibly different amplitudes. F is
vectorial s-plateaued if all components are s-plateaued.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 3 / 18

Definitions

Linear Codes

A p-ary [n, k , d]p linear code C is a k-dimensional subspace of Fn
p with

minimum Hamming distance d .

A code is minimal if there are no linearly independent codewords that
cover each other (i.e. supp(c) ⊈ supp(c ′) for any lin. indep. c, c ′ ∈ Fn

p).

A code is self-dual if C = C⊥ and it is self-orthogonal if C ⊂ C⊥, where
C⊥ is the (Euclidean) dual C⊥ := {x ∈ Fn

p : ∀y ∈ C ⟨x , y⟩ = 0}.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 4 / 18

Definitions

Linear Codes

A p-ary [n, k , d]p linear code C is a k-dimensional subspace of Fn
p with

minimum Hamming distance d .

A code is minimal if there are no linearly independent codewords that
cover each other (i.e. supp(c) ⊈ supp(c ′) for any lin. indep. c, c ′ ∈ Fn

p).

A code is self-dual if C = C⊥ and it is self-orthogonal if C ⊂ C⊥, where
C⊥ is the (Euclidean) dual C⊥ := {x ∈ Fn

p : ∀y ∈ C ⟨x , y⟩ = 0}.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 4 / 18

Definitions

Linear Codes

A p-ary [n, k , d]p linear code C is a k-dimensional subspace of Fn
p with

minimum Hamming distance d .

A code is minimal if there are no linearly independent codewords that
cover each other (i.e. supp(c) ⊈ supp(c ′) for any lin. indep. c, c ′ ∈ Fn

p).

A code is self-dual if C = C⊥ and it is self-orthogonal if C ⊂ C⊥, where
C⊥ is the (Euclidean) dual C⊥ := {x ∈ Fn

p : ∀y ∈ C ⟨x , y⟩ = 0}.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 4 / 18

Definitions

Linear Codes

A p-ary [n, k , d]p linear code C is a k-dimensional subspace of Fn
p with

minimum Hamming distance d .

A code is minimal if there are no linearly independent codewords that
cover each other (i.e. supp(c) ⊈ supp(c ′) for any lin. indep. c, c ′ ∈ Fn

p).

A code is self-dual if C = C⊥ and it is self-orthogonal if C ⊂ C⊥, where
C⊥ is the (Euclidean) dual C⊥ := {x ∈ Fn

p : ∀y ∈ C ⟨x , y⟩ = 0}.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 4 / 18

Definitions

Codes from (vectorial) p-ary functions

f : Fpn → Fp.

Fixing an order (usually lexicoraphic), the truth table of f uniquely
determines a vector in (Fp)

pn . For every v ∈ Fpn , consider the linear
functions lv : Fpn → Fp given by lv (x) = Tr(vx).

Theorem

For a non-affine function f : Fpn → Fpn such that f (0) = 0, the set

Cf = {(f (x) + lv (x))x∈F⋆
pn

: v ∈ Fpn}

is a linear code with parameters [pn − 1, n + 1].

For vectorial F : Fpn → Fpm with F (0) = 0, CF = ∪a∈Fpm
CTr(aF).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 5 / 18

Definitions

Codes from (vectorial) p-ary functions

f : Fpn → Fp.

Fixing an order (usually lexicoraphic), the truth table of f uniquely
determines a vector in (Fp)

pn . For every v ∈ Fpn , consider the linear
functions lv : Fpn → Fp given by lv (x) = Tr(vx).

Theorem

For a non-affine function f : Fpn → Fpn such that f (0) = 0, the set

Cf = {(f (x) + lv (x))x∈F⋆
pn

: v ∈ Fpn}

is a linear code with parameters [pn − 1, n + 1].

For vectorial F : Fpn → Fpm with F (0) = 0, CF = ∪a∈Fpm
CTr(aF).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 5 / 18

Definitions

Codes from (vectorial) p-ary functions

f : Fpn → Fp.

Fixing an order (usually lexicoraphic), the truth table of f uniquely
determines a vector in (Fp)

pn .

For every v ∈ Fpn , consider the linear
functions lv : Fpn → Fp given by lv (x) = Tr(vx).

Theorem

For a non-affine function f : Fpn → Fpn such that f (0) = 0, the set

Cf = {(f (x) + lv (x))x∈F⋆
pn

: v ∈ Fpn}

is a linear code with parameters [pn − 1, n + 1].

For vectorial F : Fpn → Fpm with F (0) = 0, CF = ∪a∈Fpm
CTr(aF).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 5 / 18

Definitions

Codes from (vectorial) p-ary functions

f : Fpn → Fp.

Fixing an order (usually lexicoraphic), the truth table of f uniquely
determines a vector in (Fp)

pn . For every v ∈ Fpn , consider the linear
functions lv : Fpn → Fp given by lv (x) = Tr(vx).

Theorem

For a non-affine function f : Fpn → Fpn such that f (0) = 0, the set

Cf = {(f (x) + lv (x))x∈F⋆
pn

: v ∈ Fpn}

is a linear code with parameters [pn − 1, n + 1].

For vectorial F : Fpn → Fpm with F (0) = 0, CF = ∪a∈Fpm
CTr(aF).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 5 / 18

Definitions

Codes from (vectorial) p-ary functions

f : Fpn → Fp.

Fixing an order (usually lexicoraphic), the truth table of f uniquely
determines a vector in (Fp)

pn . For every v ∈ Fpn , consider the linear
functions lv : Fpn → Fp given by lv (x) = Tr(vx).

Theorem

For a non-affine function f : Fpn → Fpn such that f (0) = 0, the set

Cf = {(f (x) + lv (x))x∈F⋆
pn

: v ∈ Fpn}

is a linear code with parameters [pn − 1, n + 1].

For vectorial F : Fpn → Fpm with F (0) = 0, CF = ∪a∈Fpm
CTr(aF).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 5 / 18

Definitions

Codes from (vectorial) p-ary functions

f : Fpn → Fp.

Fixing an order (usually lexicoraphic), the truth table of f uniquely
determines a vector in (Fp)

pn . For every v ∈ Fpn , consider the linear
functions lv : Fpn → Fp given by lv (x) = Tr(vx).

Theorem

For a non-affine function f : Fpn → Fpn such that f (0) = 0, the set

Cf = {(f (x) + lv (x))x∈F⋆
pn

: v ∈ Fpn}

is a linear code with parameters [pn − 1, n + 1].

For vectorial F : Fpn → Fpm with F (0) = 0, CF = ∪a∈Fpm
CTr(aF).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 5 / 18

Definitions

Regularity of plateaued functions

It can be proved that for a plateaued function f : Fpn → Fp,

Wf (ω) = ±νξ
f ∗(ω)
p p

n+s
2 , where ν ∈ {1,

√
−1}.

We call f weakly regular if the sign of Wf (ω) doesn’t depend on ω,
otherwise f is non-weakly regular.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 6 / 18

Definitions

Regularity of plateaued functions

It can be proved that for a plateaued function f : Fpn → Fp,

Wf (ω) = ±νξ
f ∗(ω)
p p

n+s
2 , where ν ∈ {1,

√
−1}.

We call f weakly regular if the sign of Wf (ω) doesn’t depend on ω,
otherwise f is non-weakly regular.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 6 / 18

Definitions

Regularity of plateaued functions

It can be proved that for a plateaued function f : Fpn → Fp,

Wf (ω) = ±νξ
f ∗(ω)
p p

n+s
2 , where ν ∈ {1,

√
−1}.

We call f weakly regular if the sign of Wf (ω) doesn’t depend on ω,
otherwise f is non-weakly regular.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 6 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

State of the art

What has been done?

Carlet, Ding, Yuan (2004): Introduced the method for planar
functions;

Li, Qu, Ling (2008): Extended to all known planar functions;

Mesnager (2017): Weakly regular bent functions;

Mesnager, Özbudak, Sınak (2018): Weakly regular plateaued
functions;

Pelen (2020): Non-weakly regular bent;

Rodriguez, Pasalic, Zhang, Wei (2023): Non-weakly regular plateaued
functions;

Wu, Yang, Feng (2023): Planar case in general (arxiv);

Wei, Wang, Wei-Fu (2023): Non-weakly regular plateaued functions
II (arxiv);

Li, Kan, Liu, Peng, Zheng, Zhuo (2024): Minimal ternary linear codes
from regular vectorial functions (arxiv).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 7 / 18

Plateaued Functions: Revisited

Let’s have a look

The “standard” approach focuses on computing the preimages of the dual.

Define Aj = |{ω ∈ Fpn : Wf (ω) = νξjpp
n+s
2 }| and

Bj = |{ω ∈ Fpn : Wf (ω) = −νξjpp
n+s
2 |}.

Parseval’s identity:
pn =

∑
ω∈Fpn

Wf (ω) = νp
n+s
2
∑

j∈F⋆
p
(Aj − Bj − (A0 − B0))ξ

j
p.

Use known solutions for equations in Q(ξp) to express Aj − Bj in
terms of A0 − B0.

This is possible since {ξp, . . . , ξp−1
p } is an integral basis for Q(ξp).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 8 / 18

Plateaued Functions: Revisited

Let’s have a look

The “standard” approach focuses on computing the preimages of the dual.

Define Aj = |{ω ∈ Fpn : Wf (ω) = νξjpp
n+s
2 }| and

Bj = |{ω ∈ Fpn : Wf (ω) = −νξjpp
n+s
2 |}.

Parseval’s identity:
pn =

∑
ω∈Fpn

Wf (ω) = νp
n+s
2
∑

j∈F⋆
p
(Aj − Bj − (A0 − B0))ξ

j
p.

Use known solutions for equations in Q(ξp) to express Aj − Bj in
terms of A0 − B0.

This is possible since {ξp, . . . , ξp−1
p } is an integral basis for Q(ξp).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 8 / 18

Plateaued Functions: Revisited

Let’s have a look

The “standard” approach focuses on computing the preimages of the dual.

Define Aj = |{ω ∈ Fpn : Wf (ω) = νξjpp
n+s
2 }| and

Bj = |{ω ∈ Fpn : Wf (ω) = −νξjpp
n+s
2 |}.

Parseval’s identity:
pn =

∑
ω∈Fpn

Wf (ω) = νp
n+s
2
∑

j∈F⋆
p
(Aj − Bj − (A0 − B0))ξ

j
p.

Use known solutions for equations in Q(ξp) to express Aj − Bj in
terms of A0 − B0.

This is possible since {ξp, . . . , ξp−1
p } is an integral basis for Q(ξp).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 8 / 18

Plateaued Functions: Revisited

Let’s have a look

The “standard” approach focuses on computing the preimages of the dual.

Define Aj = |{ω ∈ Fpn : Wf (ω) = νξjpp
n+s
2 }| and

Bj = |{ω ∈ Fpn : Wf (ω) = −νξjpp
n+s
2 |}.

Parseval’s identity:
pn =

∑
ω∈Fpn

Wf (ω) = νp
n+s
2
∑

j∈F⋆
p
(Aj − Bj − (A0 − B0))ξ

j
p.

Use known solutions for equations in Q(ξp) to express Aj − Bj in
terms of A0 − B0.

This is possible since {ξp, . . . , ξp−1
p } is an integral basis for Q(ξp).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 8 / 18

Plateaued Functions: Revisited

Let’s have a look

The “standard” approach focuses on computing the preimages of the dual.

Define Aj = |{ω ∈ Fpn : Wf (ω) = νξjpp
n+s
2 }| and

Bj = |{ω ∈ Fpn : Wf (ω) = −νξjpp
n+s
2 |}.

Parseval’s identity:
pn =

∑
ω∈Fpn

Wf (ω) = νp
n+s
2
∑

j∈F⋆
p
(Aj − Bj − (A0 − B0))ξ

j
p.

Use known solutions for equations in Q(ξp) to express Aj − Bj in
terms of A0 − B0.

This is possible since {ξp, . . . , ξp−1
p } is an integral basis for Q(ξp).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 8 / 18

Plateaued Functions: Revisited

Let’s have a look

The “standard” approach focuses on computing the preimages of the dual.

Define Aj = |{ω ∈ Fpn : Wf (ω) = νξjpp
n+s
2 }| and

Bj = |{ω ∈ Fpn : Wf (ω) = −νξjpp
n+s
2 |}.

Parseval’s identity:
pn =

∑
ω∈Fpn

Wf (ω) = νp
n+s
2
∑

j∈F⋆
p
(Aj − Bj − (A0 − B0))ξ

j
p.

Use known solutions for equations in Q(ξp) to express Aj − Bj in
terms of A0 − B0.

This is possible since {ξp, . . . , ξp−1
p } is an integral basis for Q(ξp).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 8 / 18

Plateaued Functions: Revisited

Aha!

There’s a minor detail...

The values of Aj − Bj of the integral polynomial in ξp could be zero.
These cases must be considered separately.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 9 / 18

Plateaued Functions: Revisited

Aha!

There’s a minor detail...

The values of Aj − Bj of the integral polynomial in ξp could be zero.
These cases must be considered separately.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 9 / 18

Plateaued Functions: Revisited

Aha!

There’s a minor detail...

The values of Aj − Bj of the integral polynomial in ξp could be zero.

These cases must be considered separately.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 9 / 18

Plateaued Functions: Revisited

Aha!

There’s a minor detail...

The values of Aj − Bj of the integral polynomial in ξp could be zero.
These cases must be considered separately.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 9 / 18

Plateaued Functions: Revisited

Adapting the previous approach to these possibilities, we get the following.

Lemma

Let f : Fpn → Fp be any s-plateaued function. Let f (0) = 0. Then
A0 ̸= B0. The distribution values Aj ,Bj associated to f satisfy exactly one
of the following.

i) Aj ̸= Bj for every j ;

ii) The number n − s is even and Aj = Bj for each j ̸= 0.

iii) The number n − s is odd and Aj = Bj for j ∈ I and

Aj − Bj = 2σ
(

j
p

)
p

n−s−1
2 for j ̸∈ I, where

σ =

{
1, p ≡ 1 (mod 4);

−1, p ≡ 3 (mod 4);

and

I =

{
QR∗, A0−B0

|A0−B0| = −σ;

NQR, otherwise.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 10 / 18

Plateaued Functions: Revisited

Adapting the previous approach to these possibilities, we get the following.

Lemma

Let f : Fpn → Fp be any s-plateaued function. Let f (0) = 0. Then
A0 ̸= B0. The distribution values Aj ,Bj associated to f satisfy exactly one
of the following.

i) Aj ̸= Bj for every j ;

ii) The number n − s is even and Aj = Bj for each j ̸= 0.

iii) The number n − s is odd and Aj = Bj for j ∈ I and

Aj − Bj = 2σ
(

j
p

)
p

n−s−1
2 for j ̸∈ I, where

σ =

{
1, p ≡ 1 (mod 4);

−1, p ≡ 3 (mod 4);

and

I =

{
QR∗, A0−B0

|A0−B0| = −σ;

NQR, otherwise.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 10 / 18

Plateaued Functions: Revisited

Adapting the previous approach to these possibilities, we get the following.

Lemma

Let f : Fpn → Fp be any s-plateaued function. Let f (0) = 0. Then
A0 ̸= B0.

The distribution values Aj ,Bj associated to f satisfy exactly one
of the following.

i) Aj ̸= Bj for every j ;

ii) The number n − s is even and Aj = Bj for each j ̸= 0.

iii) The number n − s is odd and Aj = Bj for j ∈ I and

Aj − Bj = 2σ
(

j
p

)
p

n−s−1
2 for j ̸∈ I, where

σ =

{
1, p ≡ 1 (mod 4);

−1, p ≡ 3 (mod 4);

and

I =

{
QR∗, A0−B0

|A0−B0| = −σ;

NQR, otherwise.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 10 / 18

Plateaued Functions: Revisited

Adapting the previous approach to these possibilities, we get the following.

Lemma

Let f : Fpn → Fp be any s-plateaued function. Let f (0) = 0. Then
A0 ̸= B0. The distribution values Aj ,Bj associated to f satisfy exactly one
of the following.

i) Aj ̸= Bj for every j ;

ii) The number n − s is even and Aj = Bj for each j ̸= 0.

iii) The number n − s is odd and Aj = Bj for j ∈ I and

Aj − Bj = 2σ
(

j
p

)
p

n−s−1
2 for j ̸∈ I, where

σ =

{
1, p ≡ 1 (mod 4);

−1, p ≡ 3 (mod 4);

and

I =

{
QR∗, A0−B0

|A0−B0| = −σ;

NQR, otherwise.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 10 / 18

Plateaued Functions: Revisited

Adapting the previous approach to these possibilities, we get the following.

Lemma

Let f : Fpn → Fp be any s-plateaued function. Let f (0) = 0. Then
A0 ̸= B0. The distribution values Aj ,Bj associated to f satisfy exactly one
of the following.

i) Aj ̸= Bj for every j ;

ii) The number n − s is even and Aj = Bj for each j ̸= 0.

iii) The number n − s is odd and Aj = Bj for j ∈ I and

Aj − Bj = 2σ
(

j
p

)
p

n−s−1
2 for j ̸∈ I, where

σ =

{
1, p ≡ 1 (mod 4);

−1, p ≡ 3 (mod 4);

and

I =

{
QR∗, A0−B0

|A0−B0| = −σ;

NQR, otherwise.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 10 / 18

Plateaued Functions: Revisited

Adapting the previous approach to these possibilities, we get the following.

Lemma

Let f : Fpn → Fp be any s-plateaued function. Let f (0) = 0. Then
A0 ̸= B0. The distribution values Aj ,Bj associated to f satisfy exactly one
of the following.

i) Aj ̸= Bj for every j ;

ii) The number n − s is even and Aj = Bj for each j ̸= 0.

iii) The number n − s is odd and Aj = Bj for j ∈ I and

Aj − Bj = 2σ
(

j
p

)
p

n−s−1
2 for j ̸∈ I, where

σ =

{
1, p ≡ 1 (mod 4);

−1, p ≡ 3 (mod 4);

and

I =

{
QR∗, A0−B0

|A0−B0| = −σ;

NQR, otherwise.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 10 / 18

Plateaued Functions: Revisited

Adapting the previous approach to these possibilities, we get the following.

Lemma

Let f : Fpn → Fp be any s-plateaued function. Let f (0) = 0. Then
A0 ̸= B0. The distribution values Aj ,Bj associated to f satisfy exactly one
of the following.

i) Aj ̸= Bj for every j ;

ii) The number n − s is even and Aj = Bj for each j ̸= 0.

iii) The number n − s is odd and Aj = Bj for j ∈ I and

Aj − Bj = 2σ
(

j
p

)
p

n−s−1
2 for j ̸∈ I, where

σ =

{
1, p ≡ 1 (mod 4);

−1, p ≡ 3 (mod 4);

and

I =

{
QR∗, A0−B0

|A0−B0| = −σ;

NQR, otherwise.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 10 / 18

Plateaued Functions: Revisited

Thus we can partition the set of plateaued functions into three classes that
we call C1, C2 and C3.

Example (see the whiteboard).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 11 / 18

Plateaued Functions: Revisited

Thus we can partition the set of plateaued functions into three classes that
we call C1, C2 and C3.

Example (see the whiteboard).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 11 / 18

Plateaued Functions: Revisited

Thus we can partition the set of plateaued functions into three classes that
we call C1, C2 and C3.

Example (see the whiteboard).

René Rodŕıguez (UP-Famnit) Sep 12, 2024 11 / 18

Plateaued Functions: Revisited

The codes

Considering this partition, the WD of all codes Cf from plateaued
functions for n + s odd is obtained (in terms of wt(f ∗)).

Theorem

Suppose that n + s is odd. Let f be any s-plateaued function defined over
Fpn with f (0) = 0 such that f ̸∈ P2

a. The code Cf is a three-valued code

with parameters [pn − 1, n + 1, (p − 1)pn−1 − p
n+s−1

2].

aThis class contains the degenerate cases which yield 2-weight codes

René Rodŕıguez (UP-Famnit) Sep 12, 2024 12 / 18

Plateaued Functions: Revisited

The codes

Considering this partition, the WD of all codes Cf from plateaued
functions for n + s odd is obtained (in terms of wt(f ∗)).

Theorem

Suppose that n + s is odd. Let f be any s-plateaued function defined over
Fpn with f (0) = 0 such that f ̸∈ P2

a. The code Cf is a three-valued code

with parameters [pn − 1, n + 1, (p − 1)pn−1 − p
n+s−1

2].

aThis class contains the degenerate cases which yield 2-weight codes

René Rodŕıguez (UP-Famnit) Sep 12, 2024 12 / 18

Plateaued Functions: Revisited

The codes

Considering this partition, the WD of all codes Cf from plateaued
functions for n + s odd is obtained (in terms of wt(f ∗)).

Theorem

Suppose that n + s is odd. Let f be any s-plateaued function defined over
Fpn with f (0) = 0 such that f ̸∈ P2

a. The code Cf is a three-valued code

with parameters [pn − 1, n + 1, (p − 1)pn−1 − p
n+s−1

2].

aThis class contains the degenerate cases which yield 2-weight codes

René Rodŕıguez (UP-Famnit) Sep 12, 2024 12 / 18

Plateaued Functions: Revisited

We can also establish the weight distribution of codes Cf for n + s even in
terms of the dual weight and A0 − B0.

Theorem

Suppose that n + s is even. Let f ∈ C1 be an s-plateaued function defined
over Fpn with f (0) = f ∗(0) = 0. The code Cf is a five-valued code with
parameters [pn − 1, n + 1, pn − pn−1 − p(n+s−2)/2(p − 1)].

Similar results for f ∈ C2.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 13 / 18

Plateaued Functions: Revisited

We can also establish the weight distribution of codes Cf for n + s even in
terms of the dual weight and A0 − B0.

Theorem

Suppose that n + s is even. Let f ∈ C1 be an s-plateaued function defined
over Fpn with f (0) = f ∗(0) = 0. The code Cf is a five-valued code with
parameters [pn − 1, n + 1, pn − pn−1 − p(n+s−2)/2(p − 1)].

Similar results for f ∈ C2.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 13 / 18

Plateaued Functions: Revisited

We can also establish the weight distribution of codes Cf for n + s even in
terms of the dual weight and A0 − B0.

Theorem

Suppose that n + s is even. Let f ∈ C1 be an s-plateaued function defined
over Fpn with f (0) = f ∗(0) = 0. The code Cf is a five-valued code with
parameters [pn − 1, n + 1, pn − pn−1 − p(n+s−2)/2(p − 1)].

Similar results for f ∈ C2.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 13 / 18

Plateaued Functions: Revisited

We can also establish the weight distribution of codes Cf for n + s even in
terms of the dual weight and A0 − B0.

Theorem

Suppose that n + s is even. Let f ∈ C1 be an s-plateaued function defined
over Fpn with f (0) = f ∗(0) = 0. The code Cf is a five-valued code with
parameters [pn − 1, n + 1, pn − pn−1 − p(n+s−2)/2(p − 1)].

Similar results for f ∈ C2.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 13 / 18

Plateaued Functions: Revisited

Some results...

Imposing some conditions on the dual (e.g. Wf ∗(0) = ±ν ′p
θ
2) we can

derive more precise values for the weight distributions...

It’s also not too hard to show that the codes are minimal and
self-orthogonal!

René Rodŕıguez (UP-Famnit) Sep 12, 2024 14 / 18

Plateaued Functions: Revisited

Some results...

Imposing some conditions on the dual (e.g. Wf ∗(0) = ±ν ′p
θ
2) we can

derive more precise values for the weight distributions...

It’s also not too hard to show that the codes are minimal and
self-orthogonal!

René Rodŕıguez (UP-Famnit) Sep 12, 2024 14 / 18

Plateaued Functions: Revisited

Some results...

Imposing some conditions on the dual (e.g. Wf ∗(0) = ±ν ′p
θ
2) we can

derive more precise values for the weight distributions...

It’s also not too hard to show that the codes are minimal and
self-orthogonal!

René Rodŕıguez (UP-Famnit) Sep 12, 2024 14 / 18

The vectorial case

A similar approach

Unfortunately, not too much is known about vectorial plateaued functions
(non-planar nor quadratic?) :(

Two interesting examples:

Example

For an integer k with n/ gcd(n, k) odd,

F : Fpn → Fpn given by F (x) = x (p
2k+1)/2.

F ′ : Fpn → Fpn given by F ′(x) = xp
2k−pk+1.

All components of F and F ′ have zero duals... The WD of codes CF are
easily derived. Another infinite family: G (x , y) = x2 + y7 for x , y ∈ F33 .
Its components have different amplitudes but WD can be easily
computed.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 15 / 18

The vectorial case

A similar approach

Unfortunately, not too much is known about vectorial plateaued functions
(non-planar nor quadratic?) :(

Two interesting examples:

Example

For an integer k with n/ gcd(n, k) odd,

F : Fpn → Fpn given by F (x) = x (p
2k+1)/2.

F ′ : Fpn → Fpn given by F ′(x) = xp
2k−pk+1.

All components of F and F ′ have zero duals... The WD of codes CF are
easily derived. Another infinite family: G (x , y) = x2 + y7 for x , y ∈ F33 .
Its components have different amplitudes but WD can be easily
computed.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 15 / 18

The vectorial case

A similar approach

Unfortunately, not too much is known about vectorial plateaued functions
(non-planar nor quadratic?) :(

Two interesting examples:

Example

For an integer k with n/ gcd(n, k) odd,

F : Fpn → Fpn given by F (x) = x (p
2k+1)/2.

F ′ : Fpn → Fpn given by F ′(x) = xp
2k−pk+1.

All components of F and F ′ have zero duals... The WD of codes CF are
easily derived. Another infinite family: G (x , y) = x2 + y7 for x , y ∈ F33 .
Its components have different amplitudes but WD can be easily
computed.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 15 / 18

The vectorial case

A similar approach

Unfortunately, not too much is known about vectorial plateaued functions
(non-planar nor quadratic?) :(

Two interesting examples:

Example

For an integer k with n/ gcd(n, k) odd,

F : Fpn → Fpn given by F (x) = x (p
2k+1)/2.

F ′ : Fpn → Fpn given by F ′(x) = xp
2k−pk+1.

All components of F and F ′ have zero duals... The WD of codes CF are
easily derived. Another infinite family: G (x , y) = x2 + y7 for x , y ∈ F33 .
Its components have different amplitudes but WD can be easily
computed.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 15 / 18

The vectorial case

A similar approach

Unfortunately, not too much is known about vectorial plateaued functions
(non-planar nor quadratic?) :(

Two interesting examples:

Example

For an integer k with n/ gcd(n, k) odd,

F : Fpn → Fpn given by F (x) = x (p
2k+1)/2.

F ′ : Fpn → Fpn given by F ′(x) = xp
2k−pk+1.

All components of F and F ′ have zero duals... The WD of codes CF are
easily derived. Another infinite family: G (x , y) = x2 + y7 for x , y ∈ F33 .
Its components have different amplitudes but WD can be easily
computed.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 15 / 18

The vectorial case

A similar approach

Unfortunately, not too much is known about vectorial plateaued functions
(non-planar nor quadratic?) :(

Two interesting examples:

Example

For an integer k with n/ gcd(n, k) odd,

F : Fpn → Fpn given by F (x) = x (p
2k+1)/2.

F ′ : Fpn → Fpn given by F ′(x) = xp
2k−pk+1.

All components of F and F ′ have zero duals... The WD of codes CF are
easily derived. Another infinite family: G (x , y) = x2 + y7 for x , y ∈ F33 .
Its components have different amplitudes but WD can be easily
computed.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 15 / 18

The vectorial case

A similar approach

Unfortunately, not too much is known about vectorial plateaued functions
(non-planar nor quadratic?) :(

Two interesting examples:

Example

For an integer k with n/ gcd(n, k) odd,

F : Fpn → Fpn given by F (x) = x (p
2k+1)/2.

F ′ : Fpn → Fpn given by F ′(x) = xp
2k−pk+1.

All components of F and F ′ have zero duals... The WD of codes CF are
easily derived.

Another infinite family: G (x , y) = x2 + y7 for x , y ∈ F33 .
Its components have different amplitudes but WD can be easily
computed.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 15 / 18

The vectorial case

A similar approach

Unfortunately, not too much is known about vectorial plateaued functions
(non-planar nor quadratic?) :(

Two interesting examples:

Example

For an integer k with n/ gcd(n, k) odd,

F : Fpn → Fpn given by F (x) = x (p
2k+1)/2.

F ′ : Fpn → Fpn given by F ′(x) = xp
2k−pk+1.

All components of F and F ′ have zero duals... The WD of codes CF are
easily derived. Another infinite family: G (x , y) = x2 + y7 for x , y ∈ F33 .

Its components have different amplitudes but WD can be easily
computed.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 15 / 18

The vectorial case

A similar approach

Unfortunately, not too much is known about vectorial plateaued functions
(non-planar nor quadratic?) :(

Two interesting examples:

Example

For an integer k with n/ gcd(n, k) odd,

F : Fpn → Fpn given by F (x) = x (p
2k+1)/2.

F ′ : Fpn → Fpn given by F ′(x) = xp
2k−pk+1.

All components of F and F ′ have zero duals... The WD of codes CF are
easily derived. Another infinite family: G (x , y) = x2 + y7 for x , y ∈ F33 .
Its components have different amplitudes but WD can be easily
computed.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 15 / 18

Last words on codes

A beautiful place

René Rodŕıguez (UP-Famnit) Sep 12, 2024 16 / 18

Last words on codes

A beautiful place

René Rodŕıguez (UP-Famnit) Sep 12, 2024 16 / 18

Last words on codes

Bonus result

All the presented codes are self-orthogonal and minimal.That’s
somewhat the best we can expect due to the following:

Proposition

There are no self-dual minimal linear codes for q > 3. The only self-dual
minimal ternary code is the tetracode [4, 2, 3]3, whereas the only self-dual
minimal binary code is the repetition code [2, 1, 2]2.

(Very short) sketch of proof:

For q > 3, n
2 + q − 2 ≤ dmin ≤ dmax ≤ n

2 + 1.

The cases q = 2, 3 require the known machinery developed for
self-dual codes, i.e.Type I, Type II, Type III arguments.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 17 / 18

Last words on codes

Bonus result

All the presented codes are self-orthogonal and minimal.

That’s
somewhat the best we can expect due to the following:

Proposition

There are no self-dual minimal linear codes for q > 3. The only self-dual
minimal ternary code is the tetracode [4, 2, 3]3, whereas the only self-dual
minimal binary code is the repetition code [2, 1, 2]2.

(Very short) sketch of proof:

For q > 3, n
2 + q − 2 ≤ dmin ≤ dmax ≤ n

2 + 1.

The cases q = 2, 3 require the known machinery developed for
self-dual codes, i.e.Type I, Type II, Type III arguments.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 17 / 18

Last words on codes

Bonus result

All the presented codes are self-orthogonal and minimal.That’s
somewhat the best we can expect due to the following:

Proposition

There are no self-dual minimal linear codes for q > 3. The only self-dual
minimal ternary code is the tetracode [4, 2, 3]3, whereas the only self-dual
minimal binary code is the repetition code [2, 1, 2]2.

(Very short) sketch of proof:

For q > 3, n
2 + q − 2 ≤ dmin ≤ dmax ≤ n

2 + 1.

The cases q = 2, 3 require the known machinery developed for
self-dual codes, i.e.Type I, Type II, Type III arguments.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 17 / 18

Last words on codes

Bonus result

All the presented codes are self-orthogonal and minimal.That’s
somewhat the best we can expect due to the following:

Proposition

There are no self-dual minimal linear codes for q > 3. The only self-dual
minimal ternary code is the tetracode [4, 2, 3]3, whereas the only self-dual
minimal binary code is the repetition code [2, 1, 2]2.

(Very short) sketch of proof:

For q > 3, n
2 + q − 2 ≤ dmin ≤ dmax ≤ n

2 + 1.

The cases q = 2, 3 require the known machinery developed for
self-dual codes, i.e.Type I, Type II, Type III arguments.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 17 / 18

Last words on codes

Bonus result

All the presented codes are self-orthogonal and minimal.That’s
somewhat the best we can expect due to the following:

Proposition

There are no self-dual minimal linear codes for q > 3. The only self-dual
minimal ternary code is the tetracode [4, 2, 3]3, whereas the only self-dual
minimal binary code is the repetition code [2, 1, 2]2.

(Very short) sketch of proof:

For q > 3, n
2 + q − 2 ≤ dmin ≤ dmax ≤ n

2 + 1.

The cases q = 2, 3 require the known machinery developed for
self-dual codes, i.e.Type I, Type II, Type III arguments.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 17 / 18

Last words on codes

Bonus result

All the presented codes are self-orthogonal and minimal.That’s
somewhat the best we can expect due to the following:

Proposition

There are no self-dual minimal linear codes for q > 3. The only self-dual
minimal ternary code is the tetracode [4, 2, 3]3, whereas the only self-dual
minimal binary code is the repetition code [2, 1, 2]2.

(Very short) sketch of proof:

For q > 3, n
2 + q − 2 ≤ dmin ≤ dmax ≤ n

2 + 1.

The cases q = 2, 3 require the known machinery developed for
self-dual codes, i.e.Type I, Type II, Type III arguments.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 17 / 18

Last words on codes

Bonus result

All the presented codes are self-orthogonal and minimal.That’s
somewhat the best we can expect due to the following:

Proposition

There are no self-dual minimal linear codes for q > 3. The only self-dual
minimal ternary code is the tetracode [4, 2, 3]3, whereas the only self-dual
minimal binary code is the repetition code [2, 1, 2]2.

(Very short) sketch of proof:

For q > 3, n
2 + q − 2 ≤ dmin ≤ dmax ≤ n

2 + 1.

The cases q = 2, 3 require the known machinery developed for
self-dual codes, i.e.Type I, Type II, Type III arguments.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 17 / 18

Conclusions

Open questions

Find infinite families in C2 and C3 for each p and n;

Explicitly compute the values of A0 and B0;

Find more families of vectorial plateaued functions;

And many more...

Thank you for your attention.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 18 / 18

Conclusions

Open questions

Find infinite families in C2 and C3 for each p and n;

Explicitly compute the values of A0 and B0;

Find more families of vectorial plateaued functions;

And many more...

Thank you for your attention.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 18 / 18

Conclusions

Open questions

Find infinite families in C2 and C3 for each p and n;

Explicitly compute the values of A0 and B0;

Find more families of vectorial plateaued functions;

And many more...

Thank you for your attention.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 18 / 18

Conclusions

Open questions

Find infinite families in C2 and C3 for each p and n;

Explicitly compute the values of A0 and B0;

Find more families of vectorial plateaued functions;

And many more...

Thank you for your attention.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 18 / 18

Conclusions

Open questions

Find infinite families in C2 and C3 for each p and n;

Explicitly compute the values of A0 and B0;

Find more families of vectorial plateaued functions;

And many more...

Thank you for your attention.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 18 / 18

Conclusions

Open questions

Find infinite families in C2 and C3 for each p and n;

Explicitly compute the values of A0 and B0;

Find more families of vectorial plateaued functions;

And many more...

Thank you for your attention.

René Rodŕıguez (UP-Famnit) Sep 12, 2024 18 / 18

	Definitions
	State of the art
	Plateaued Functions: Revisited
	The vectorial case
	Last words on codes
	Conclusions

