On the codebook design for NOMA schemes from bent functions

Chunlei Li, Constanza Riera, Pantelimon Stănică, Palash Sarkar

The 9th BFA workshop dedicated to the 75th anniversary of Claude Carlet

September, 2024

Massive Machine-Type Communication (mMTC)

L. Liu, E. G. Larsson, W. Yu, P. Popovski, C. Stefanovic, and E. de Carvalho, "Sparse signal processing for grant-free massive connectivity - A future paradigm for random access protocols in the internet of things," IEEE Signal Process. Mag., pp. 88-99, Sep. 2018.

- Everything, benefiting from being connected, will be connected
	- massive IoT devices, small data, sporadic transmission, etc

- **Grant-free random access**
	- user-specific sequences assigned to devices
	- each active device attempts to access a base station using its assigned sequence
	- low signaling overhead \longrightarrow low latency in uplink access

Problem Formulation

Grant-free random access can be formulated by a compressed sensing problem

$$
\bm{Y} = \bm{\Phi} \cdot \bm{X} + \bm{W}
$$

- \bullet X: row-wise sparse matrix due to sparse device activity
- Φ: a collection of user-specific, non-orthogonal sequences
- \bullet **W**: additive white noise
- The coherence of matrix $\mathbf{\Phi} \in \mathbb{C}^{N \times M}$ given by

$$
\mu(\mathbf{\Phi}) := \max_{1 \leq i < j \leq N} \frac{|\langle \mathbf{\Phi}_i, \mathbf{\Phi}_j \rangle|}{\parallel \mathbf{\Phi}_i \parallel \cdot \parallel \mathbf{\Phi}_j \parallel}
$$

where $\langle \cdot \rangle$ denotes the inner product

 \bullet low coherence \longrightarrow more reliable data recovery at base station

Golay spreading sequences

• a binary Golay sequence $\mathbf{a} = [a_0, a_1, \ldots, a_{N-1}]$ has

$$
\mathrm{PAPR}(\mathbf{a}) := \max_{t \in [0,1)} \frac{|\sum_{j=0}^{N-1} (-1)^{a_j} e^{2\pi i \cdot jt}|^2}{N} \leq 2
$$

- low PAPR is desired for low power consumption
- a binary sequence of length $2ⁿ$ can be seen as the truth table of the following Boolean function

$$
f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n-1} x_{\pi(i)} x_{\pi(i+1)} + \sum_{i=1}^{n} c_i x_i
$$

where π is a permutation of $\{1, 2, ..., n\}$ and $c_i \in \mathbb{F}_2$

An interesting construction of Φ (II)

Assume $\mathbf{\Phi} \in \mathbb{C}^{N \times M}$ with $N=2^n$ has its columns given by some $(-1)^{f(x)}$ with ¹

$$
f(x_1, x_2, \ldots, x_n) = \sum_{i=1}^{n-1} x_{\pi(i)} x_{\pi(i+1)} + \sum_{i=1}^n c_i x_i,
$$

where $(c_1,\ldots,c_n)\in\mathbb{F}_2^n$, and different permutations π will be chosen when $M > N$.

- each column of Φ will be used as a device sequence
- each sequence has PAPR \leq 2
- \bullet larger M indicates more devices can be accommodated
- loading factor $L = M/N$ is desirable to be large

¹N. Yu, Binary Golay Spreading Sequences and Reed-Muller Codes for Uplink Grant-Free NOMA. IEEE Trans. Commun. 69(1): 276-290 (2021)

\n- $$
\|\Phi_i\|^2 = 2^n
$$
 for $0 \le i \le M - 1$
\n- for $0 \le i < j < M$,
\n

$$
\langle \mathbf{\Phi}_i, \mathbf{\Phi}_j \rangle = \sum_{\mathsf{x} \in \mathbb{F}_2^n} (-1)^{f_i(\mathsf{x}) + f_j(\mathsf{x})}
$$

- equals 0 if f_i,f_j have the same π
- otherwise, reduces to

$$
W_Q(\lambda) = \sum_{x \in \mathbb{F}_2^n} (-1)^{Q(x) + \lambda \cdot x}
$$

where

$$
Q = \sum_{i=1}^{n-1} x_{\pi(i)} x_{\pi(i+1)} + \sum_{i=1}^{n-1} x_{\pi'(i)} x_{\pi'(i+1)}
$$

and $\lambda = c + c'$

Coherence of Φ

The coherence of previously defined Φ satisfies

$$
|\mu(\mathbf{\Phi})| = \max_{1 \leq i < j \leq N} \frac{|\langle \mathbf{\Phi}_i, \mathbf{\Phi}_j \rangle|}{2^n} \geq \begin{cases} 2^{\frac{n}{2}}, & \text{for even } n, \\ 2^{\frac{n+1}{2}}, & \text{for odd } n. \end{cases}
$$

where the equalities are achieved when

- \bullet Q is bent for even *n*;
- \bullet Q is semibent for odd n

Design Goal

We need the matrix **Φ** with

• low PAPR, low coherence, and large loading factor $L = M/N$

Essential Problem

Construct a large set of permutations π_1, \ldots, π_L of $\{1, \ldots, n\}$ such that for any $1 \leq l_1 < l_2 \leq L$, the quadratic function

$$
Q_{l_1,l_2}(x) = Q_{\pi_{l_1}}(x) + Q_{\pi_{l_2}}(x)
$$

=
$$
\sum_{k=1}^{n-1} x_{\pi_{l_1}(k)} x_{\pi_{l_1}(k+1)} + \sum_{k=1}^{n-1} x_{\pi_{l_2}(k)} x_{\pi_{l_2}(k+1)},
$$

are bent for even *n* and semibent for odd *n* (we call then π_1 and π_2 compatible).

Note that $Q_{\pi}(x)$ for any π is bent or semibent

- \bullet A subset of the permutation group S_n is said to be compatible if any two permutations in the set are compatible.
- As customary, we write a permutation $\pi = [i_1, i_2, \ldots]$, or (when there is no danger of confusion) as the concatenation $\pi = i_1 i_2 ...$ to mean $\pi(1) = i_1, \pi(2) = i_2$, etc and I_n the identity permutation

Goal: obtain as large as possible a compatible subset of S_n

Lemma

For any two permutations $\pi, \sigma \in S_n$, we have

- \bullet I_n and π are compatible iff I_n and the reverse π^R of π are compatible;
- \bullet I_n and π are compatible iff I_n and the inverse π^{-1} of π are compatible;
- \bullet π and σ are compatible iff I_n is compatible with the permutations $\pi \circ \sigma^{-1}, \sigma^{-1} \circ \pi, \, \pi^{-1} \circ \sigma, \, \sigma \circ \pi^{-1}$, where \circ denotes the mapping composition.

Small example $n = 4$

Computationally, we found that all the permutations compatible with I_4 are:

$$
\rho_1 = [3, 2, 4, 1] \quad \rho_2 = [2, 4, 1, 3] \quad \rho_3 = [3, 4, 1, 2] \quad \rho_4 = [2, 4, 3, 1] \n\rho_5 = [3, 1, 4, 2] \quad \rho_6 = [1, 3, 4, 2] \quad \rho_7 = [4, 2, 1, 3] \quad \rho_8 = [2, 1, 4, 3] \n\rho_9 = [4, 1, 3, 2] \quad \rho_{10} = [2, 3, 1, 4] \quad \rho_{11} = [1, 4, 2, 3] \quad \rho_{12} = [3, 1, 2, 4]
$$

It is easily seen that

•
$$
\rho_5 = \rho_2^R
$$
, $\rho_6 = \rho_4^R$, $\rho_8 = \rho_3^R$, $\rho_{10} = \rho_9^R$, $\rho_{11} = \rho_1^R$, $\rho_{12} = \rho_7^R$,
\n• $\rho_7 = \rho_1^{-1} = \rho_1^2$, $\rho_5 = \rho_2^{-1}$, $\rho_3^{-1} = \rho_3$, $\rho_9 = \rho_4^{-1} = \rho_4^2$,
\n $\rho_{11} = \rho_6^{-1} = \rho_6^2$, $\rho_8 = \rho_8^{-1}$ and $\rho_{12} = \rho_{10}^{-1} = \rho_{10}^2$.

Checking mutual compatibility among these permutations give in total 32 compatible sets of maximal size, e.g.,

$$
\Pi = \{I_4, \rho_1, \rho_4, \rho_5, \rho_8, \rho_{10}\}
$$

- When we take the permutations in S_n as vertices and draw edges between any two vertices if the corresponding permutations are compatible, the main problem is essentially to find the **maximum clique of a graph** composed of $n!$ vertices, which is known to be an NP-complete problem.
- By an exhaustive search on $n = 4, 5, 6, 7$, the maximum sizes of compatible sets in *n* variables are $6, 13, 9, 13$, respectively.
- Exhaustive search for compatible sets becomes infeasible quickly as *n* increases.
- In this work we extend compatible sets by recursion.

Theorem

Suppose $\pi \in S_n$ is compatible with I_n . The following permutations in S_{n+4} are all compatible with I_{n+4} :

- It might appear that one can easily extend a compatible permutation from dimension *n* to $n + 4$.
- But considering the total 120 possible combinations of π , $(n + 1)$, $(n + 2)$, $(n + 3)$, $(n + 4)$, the portion is relatively small.
- Moreover, when considering the mutual compatibility among them, the calculation of the Walsh transform of relevant functions becomes more challenging and the size of a compatible set drops quickly.
- Here we need to further investigate the properties of these permutations.

Walsh-Hadamard Condition (WHC)

- Given a permutation $\pi \in S_n$, it will be said to satisfy the Walsh-Hadamard Condition (WHC) if the quadratic function $f=Q_{I_n}(x)+Q_{\pi}(x)$ is bent and $W_{Q_{\pi}}(a)W_{Q_{\pi}}(a+e_{\pi(n-2)})=$ $W_{Q_{\pi}}(a + e_{n-2})W_{Q_{\pi}}(a + e_{n-2} + e_{\pi(n-2)})$ holds for all $a \in \mathbb{F}_2^n$.
- The WHC plays an important role in our investigation. Given $\pi \in S_n$ and $\rho \in S_4$, we denote $\pi \overline{\rho} = [\pi(1), \ldots, \pi(n), n + \rho(1), n + \rho(2), n + \rho(3), n + \rho(4)],$ i.e. the permutation π extended by ρ on the right. Then we get the following result.

Theorem

For a permutation $\pi \in S_n$ compatible with I_n , if π satisfies the WHC, then the permutation $\pi \overline{\rho}$ in S_{n+4} satisfies WHC for any $\rho \in {\rho_1, \rho_3, \rho_7, \rho_8, \rho_{10}, \rho_{12}}.$

Lemma

 $\rho \in {\rho_1, \rho_3, \rho_7, \rho_8, \rho_{10}, \rho_{12}}$ all satisfy the WHC condition.

Corollary

 $\rho \overline{\rho}$ is compatible with the identity for any $\rho \in {\rho_1, \rho_3, \rho_4, \rho_6, \rho_7, \rho_8, \rho_9, \rho_{10}, \rho_{11}, \rho_{12}}$. Recursively applying this fact gives permutations compatible with the identity in any dimension 4m for $m > 1$.

- We are interested in those compatible sets with as large size as possible (maximal set).
- Recall that, for $n = 4$, there are 12 permutations that are compatible with I_4 .
- Furthermore, there are in total 32 maximal sets of size 6, some of which are given below:

 $\{I_4, \rho_1, \rho_4, \rho_5, \rho_8, \rho_{10}\}, \{I_4, \rho_4, \rho_5, \rho_8, \rho_{10}, \rho_{11}\},$ $\{I_4, \rho_3, \rho_4, \rho_7, \rho_{10}, \rho_{11}\}, \{I_4, \rho_6, \rho_8, \rho_9, \rho_{11}, \rho_{12}\},$ $\{I_4, \rho_1, \rho_3, \rho_6, \rho_{10}, \rho_{12}\}, \{I_4, \rho_1, \rho_6, \rho_8, \rho_{10}, \rho_{12}\},$ $\{I_4, \rho_3, \rho_4, \rho_{10}, \rho_{11}, \rho_{12}\}, \{I_4, \rho_1, \rho_3, \rho_6, \rho_7, \rho_{10}\},$

Theorem

Given any maximal set Π in dimension 4, the set $\{\pi\overline{\pi} \mid \pi \in \Pi\}$ is a compatible set in S_8 . Recursively applying this fact gives a compatible set of size 6 in any dimension 4m for $m > 1$.

- This is not the only possible way to extend a maximal set, by our methods.
- \bullet However, the conditions are more restrictive, since even if π and σ satisfy WHC, we do not necessarily have that $\sigma \pi^{-1}$ satisfies WHC.

Conclusion and future work

- \bullet Our method extends compatible pairs in any dimension n (odd or even), to a dimension $n + 4m$, $m \ge 1$.
- By repetition, we can also find compatible sets of size 6 (current record size) in any dimension 4m for $m > 1$.
- We want to create algorithms that can extend any sets of size $\ell > 2$ in dimension 4 by other than repetition.
- For $n > 4$, 6 is not the maximal size (by inspection on small dimensions): it is our objective to extend the size of the sets in dimensions $4m$, $m > 1$.
- We also want to also investigate the properties of the permutations compatible with the identity for small dimensions $n \neq 4$ and find similar extension results.