Background

Invariants 000000 Canonical form

Classifying GAPN functions

イロト イヨト イヨト イヨト

Conclusion

Testing generalized affine equivalence and applications to the classification of GAPN functions

Ana Sălăgean Nikolay Stoyanov Kaleyski Ferruh Özbudak

Loughborough University, UK

University of Bergen, Norway

Sabancı University, Istanbul, Türkiye

Sălăgean, Kaleyski, Özbudak

Background ●0000000000	Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion
Outline				

Background: GAPN functions, generalized affine equivalence

Invariants

- Canonical form w.r.t. left linear transformations
- Classification of GAPN functions of degree 3 over \mathbb{F}_3^3

Sălăgean, Kaleyski, Özbudak

Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion

Background: GAPN functions, generalized affine equivalenceInvariants

Canonical form w.r.t. left linear transformations

Classification of GAPN functions of degree 3 over \mathbb{F}_3^3

Sălăgean, Kaleyski, Özbudak

Background ●0000000000	Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion
Outline				

- Background: GAPN functions, generalized affine equivalence
 Invariants
- Canonical form w.r.t. left linear transformations

Classification of GAPN functions of degree 3 over \mathbb{F}_3^3

Sălăgean, Kaleyski, Özbudak

Background ●0000000000	Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion
Outline				

- Background: GAPN functions, generalized affine equivalence
- Invariants
- Canonical form w.r.t. left linear transformations
- Classification of GAPN functions of degree 3 over F³₃

Classifying GAPN functions

Algebraic normal form

F function with *n* inputs and *n* outputs over \mathbb{F}_p

```
Univariate representation
```

or

Multivariate ANF (algebraic normal form)

 $F:\mathbb{F}_p^n\to\mathbb{F}_p^n$

 $F = (f_1, \dots, f_n)$ f_i are polynomial functions of degree at most p - 1 in each variable

 $F(x_1, x_2, x_3) = (x_1 x_2 x_3 + x_1 x_2 + x_3, 2x_1 x_2, x_3 + 2)$ $= (1, 0, 0) x_1 x_2 x_3 + (1, 2, 0) x_1 x_2 + (1, 0, 1) x_3 + (0, 0, 2)$

Sălăgean, Kaleyski, Özbudak

Classifying GAPN functions

Algebraic normal form

F function with *n* inputs and *n* outputs over \mathbb{F}_p

Univariate representation

or

Multivariate ANF (algebraic normal form)

 $F:\mathbb{F}_p^n\to\mathbb{F}_p^n$

 $F = (f_1, \dots, f_n)$ f_i are polynomial functions of degree at most p - 1 in each variable

Example over \mathbb{F}_3°

 $= (x_1 x_2 x_3 + x_1 x_2 + x_3, 2x_1 x_2, x_3 + 2)$ $= (1, 0, 0) x_1 x_2 x_3 + (1, 2, 0) x_1 x_2 + (1, 2, 0) x_1 + (1$

Sălăgean, Kaleyski, Özbudak

Classifying GAPN functions

Algebraic normal form

F function with *n* inputs and *n* outputs over \mathbb{F}_p

Univariate representation

or

Multivariate ANF (algebraic normal form)

 $F:\mathbb{F}_p^n\to\mathbb{F}_p^n$

 $F = (f_1, \dots, f_n)$ $f_i \text{ are polynomial functions of degree at most } p - 1 \text{ in each variable}$ Example over \mathbb{F}_3^3 $F(x_1, x_2, x_3) = (x_1 x_2 x_3 + x_1 x_2 + x_3, 2x_1 x_2, x_3 + 2)$

 $= (1,0,0)x_1x_2x_3 + (1,2,0)x_1x_2 + (1,0,1)x_3 + (0,0,2)$

Sălăgean, Kaleyski, Özbudak

Algebraic normal form

F function with *n* inputs and *n* outputs over \mathbb{F}_p

Univariate representation

or

Multivariate ANF (algebraic normal form)

 $F:\mathbb{F}_p^n\to\mathbb{F}_p^n$

 $F = (f_1, \dots, f_n)$ f_i are polynomial functions of degree at most p - 1 in each variable

Example over \mathbb{F}_3^3

 $F(x_1, x_2, x_3) = (x_1 x_2 x_3 + x_1 x_2 + x_3, 2x_1 x_2, x_3 + 2)$ = (1,0,0)x_1 x_2 x_3 + (1,2,0)x_1 x_2 + (1,0,1)x_3 + (0,0,2)

Sălăgean, Kaleyski, Özbudak

Classifying GAPN functions

Algebraic normal form

F function with *n* inputs and *n* outputs over \mathbb{F}_p

```
Univariate representation
```

or

Multivariate ANF (algebraic normal form)

 $F: \mathbb{F}_p^n \to \mathbb{F}_p^n$

 $F = (f_1, ..., f_n)$ f_i are polynomial functions of degree at most p - 1 in each variable

Example over \mathbb{F}_3^3

 $F(x_1, x_2, x_3) = (x_1 x_2 x_3 + x_1 x_2 + x_3, 2x_1 x_2, x_3 + 2)$ = (1,0,0)x_1 x_2 x_3 + (1,2,0)x_1 x_2 + (1,0,1)x_3 + (0,0,2),

Sălăgean, Kaleyski, Özbudak

Classifying GAPN functions

Algebraic normal form

F function with *n* inputs and *n* outputs over \mathbb{F}_p

```
Univariate representation
```

or

Multivariate ANF (algebraic normal form)

 $F:\mathbb{F}_{\rho}^{n}\rightarrow\mathbb{F}_{\rho}^{n}$

 $F = (f_1, \dots, f_n)$ f_i are polynomial functions of degree at most p - 1 in each variable

Example over \mathbb{F}_3^3

$$F(x_1, x_2, x_3) = (x_1 x_2 x_3 + x_1 x_2 + x_3, 2x_1 x_2, x_3 + 2)$$

 $= (1,0,0)x_1x_2x_3 + (1,2,0)x_1x_2 + (1,0,1)x_3 + (0,0,2)$

Sălăgean, Kaleyski, Özbudak

Classifying GAPN functions

Algebraic normal form

F function with *n* inputs and *n* outputs over \mathbb{F}_p

```
Univariate representation
```

or

Multivariate ANF (algebraic normal form)

 $F: \mathbb{F}_p^n \to \mathbb{F}_p^n$

 $F = (f_1, \dots, f_n)$ f_i are polynomial functions of degree at most p - 1 in each variable

Example over \mathbb{F}_3^3

$$F(x_1, x_2, x_3) = (x_1 x_2 x_3 + x_1 x_2 + x_3, 2x_1 x_2, x_3 + 2) = (1, 0, 0) x_1 x_2 x_3 + (1, 2, 0) x_1 x_2 + (1, 0, 1) x_3 + (0, 0, 2)$$

Sălăgean, Kaleyski, Özbudak

Classifying GAPN functions

Algebraic normal form

F function with *n* inputs and *n* outputs over \mathbb{F}_p

```
Univariate representation
```

or

Multivariate ANF (algebraic normal form)

 $F: \mathbb{F}_p^n \to \mathbb{F}_p^n$

 $F = (f_1, \dots, f_n)$ f_i are polynomial functions of degree at most p - 1 in each variable

Example over \mathbb{F}_3^3

$$F(x_1, x_2, x_3) = (x_1 x_2 x_3 + x_1 x_2 + x_3, 2x_1 x_2, x_3 + 2) = (1, 0, 0) x_1 x_2 x_3 + (1, 2, 0) x_1 x_2 + (1, 0, 1) x_3 + (0, 0, 2)$$

Sălăgean, Kaleyski, Özbudak

Background oo●ooooooo	Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion

Definition The discrete derivative of *F* in direction $a \neq 0$ is

$$\Delta_a F(x) = F(x+a) - F(x) - F(a) + F(0)$$

Higher order differentiation (higher order derivative)

$$\Delta_{a_1,\ldots,a_k}^{(k)}F=\Delta_{a_1}\Delta_{a_2}\ldots\Delta_{a_k}F$$

イロン イヨン イヨン ・ ヨン・

We denote $\Delta_a^{(k)}F = \Delta_{a,...,a}^{(k)}F$.

 $\deg(\Delta_a F) \le \deg(F) - 1 \text{ [Lai, 1994]}$

Sălăgean, Kaleyski, Özbudak

Background ○○●○○○○○○○○	Invariants	Canonical form	Classifying GAPN functions	Conclusion

Definition

The discrete derivative of *F* in direction $a \neq 0$ is

$$\Delta_a F(x) = F(x+a) - F(x) - F(a) + F(0)$$

Higher order differentiation (higher order derivative)

$$\Delta_{a_1,\ldots,a_k}^{(k)} F = \Delta_{a_1} \Delta_{a_2} \ldots \Delta_{a_k} F$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ● ●

We denote $\Delta_a^{(k)}F = \Delta_{a,...,a}^{(k)}F$.

 $\deg(\Delta_a F) \le \deg(F) - 1 \text{ [Lai, 1994]}$

Sălăgean, Kaleyski, Özbudak

Background oo●oooooooo	Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion

Definition

The discrete derivative of *F* in direction $a \neq 0$ is

$$\Delta_a F(x) = F(x+a) - F(x) - F(a) + F(0)$$

Higher order differentiation (higher order derivative)

$$\Delta_{a_1,\ldots,a_k}^{(k)}F=\Delta_{a_1}\Delta_{a_2}\ldots\Delta_{a_k}F$$

◆□ > ◆□ > ◆三 > ◆三 > ・三 の < ⊙

We denote $\Delta_a^{(k)}F = \Delta_{a,...,a}^{(k)}F$. deg $(\Delta_a F) \leq$ deg(F) - 1 [Lai.1994

Sălăgean, Kaleyski, Özbudak

Background ○○●○○○○○○○	Invariants	Canonical form	Classifying GAPN functions	Conclusion

Definition

The discrete derivative of *F* in direction $a \neq 0$ is

$$\Delta_a F(x) = F(x+a) - F(x) - F(a) + F(0)$$

Higher order differentiation (higher order derivative)

$$\Delta_{a_1,\ldots,a_k}^{(k)}F=\Delta_{a_1}\Delta_{a_2}\ldots\Delta_{a_k}F$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

We denote $\Delta_a^{(k)}F = \Delta_{a,...,a}^{(k)}F$.

 $\deg(\Delta_a F) \le \deg(F) - 1 \text{ [Lai, 1994]}$

Sălăgean, Kaleyski, Özbudak

Background oo●oooooooo	Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion

Definition

The discrete derivative of *F* in direction $a \neq 0$ is

$$\Delta_a F(x) = F(x+a) - F(x) - F(a) + F(0)$$

Higher order differentiation (higher order derivative)

$$\Delta_{a_1,\ldots,a_k}^{(k)}F=\Delta_{a_1}\Delta_{a_2}\ldots\Delta_{a_k}F$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

We denote $\Delta_a^{(k)}F = \Delta_{a,\dots,a}^{(k)}F$. $\deg(\Delta_a F) \leq \deg(F) - 1$ [Lai,1994]

Sălăgean, Kaleyski, Özbudak

Background ○○○●○○○○○○○	Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion

Definition

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is APN (almost perfect nonlinear) if for all $a, b \in \mathbb{F}_{2^n}$ with $a \neq 0$ the equation

 $\Delta_a F(x) = b$

has at most 2 solutions.

F is EA-equivalent to G if

 $G = A_1 \circ F \circ A_2 + H$

for some invertible affine transformations A_1, A_2 and $\deg(H) \leq 1$.

The APN property is invariant to EA-equivalence.

Sălăgean, Kaleyski, Özbudak

Background 000●0000000	Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion

Definition

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is APN (almost perfect nonlinear) if for all $a, b \in \mathbb{F}_{2^n}$ with $a \neq 0$ the equation

$$\Delta_a F(x) = b$$

has at most 2 solutions.

F is EA-equivalent to G if

 $G = A_1 \circ F \circ A_2 + H$

for some invertible affine transformations A_1, A_2 and $\deg(H) \leq 1$.

The APN property is invariant to EA-equivalence.

Sălăgean, Kaleyski, Özbudak

Background 000●0000000	Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion

Definition

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is APN (almost perfect nonlinear) if for all $a, b \in \mathbb{F}_{2^n}$ with $a \neq 0$ the equation

$$\Delta_a F(x) = b$$

has at most 2 solutions.

F is EA-equivalent to G if

$$G = A_1 \circ F \circ A_2 + H$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

for some invertible affine transformations A_1, A_2 and $deg(H) \leq 1$.

The APN property is invariant to EA-equivalence.

Sălăgean, Kaleyski, Özbudak

Background	Invariants 000000	Canonical form	Classifying GAPN functions	Conclusion

Definition

 $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is APN (almost perfect nonlinear) if for all $a, b \in \mathbb{F}_{2^n}$ with $a \neq 0$ the equation

$$\Delta_a F(x) = b$$

has at most 2 solutions.

F is EA-equivalent to G if

$$G = A_1 \circ F \circ A_2 + H$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

for some invertible affine transformations A_1, A_2 and $deg(H) \le 1$.

The APN property is invariant to EA-equivalence.

Testing affine equivalence and GAPN classification

Classifying GAPN functions

GAPN functions

Definition [Kuroda, Tsujie, 2017] $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is GAPN (generalized almost perfect nonlinear) if for all $a, b \in \mathbb{F}_{p^n}$ with $a \neq 0$ the equation

$$\Delta_a^{(p-1)}F(x)=b$$

has at most *p* solutions.

・ロ・・ 日・・ 田・・ 田・・ 日・ うらぐ

Sălăgean, Kaleyski, Özbudak

Classifying GAPN functions

GAPN functions

Definition [Kuroda, Tsujie, 2017]

 $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is GAPN (generalized almost perfect nonlinear) if for all $a, b \in \mathbb{F}_{p^n}$ with $a \neq 0$ the equation

$$\Delta_a^{(p-1)}F(x)=b$$

has at most *p* solutions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sălăgean, Kaleyski, Özbudak

Classifying GAPN functions

GAPN functions

Definition [Kuroda, Tsujie, 2017]

 $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is GAPN (generalized almost perfect nonlinear) if for all $a, b \in \mathbb{F}_{p^n}$ with $a \neq 0$ the equation

$$\Delta_a^{(p-1)}F(x)=b$$

has at most *p* solutions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sălăgean, Kaleyski, Özbudak

Definition Generalized extended affine equivalence [O,S, 21]: $F \sim_k G$ if

$$G = A_1 \circ F \circ A_2 + H$$

for some invertible affine transformations A_1, A_2 and $\deg(H) \le k$. The GAPN property is invariant to \sim_{p-1} .

Constructions of GAPN functions were given by [Kuroda,Tsujie,2017], [Kuroda,2017], [Zha,Hu,Zhang,2018], [O,S,2021], [Wang, Wang,Zhang,2022],[Bartoli et al,2022],[Beierle,2022],[S,O,2023] etc.

Sălăgean, Kaleyski, Özbudak

Definition Generalized extended affine equivalence [O,S, 21]:

 $G = A_1 \circ F \circ A_2 + H$

for some invertible affine transformations A_1, A_2 and $deg(H) \le k$.

The GAPN property is invariant to \sim_{p-1} .

Constructions of GAPN functions were given by [Kuroda,Tsujie,2017], [Kuroda,2017], [Zha,Hu,Zhang,2018], [O,S,2021], [Wang, Wang,Zhang,2022],[Bartoli et al,2022],[Beierle,2022],[S,O,2023] etc.

Sălăgean, Kaleyski, Özbudak

Definition Generalized extended affine equivalence [O,S, 21]:

 $F \sim_k G$ if

$$G = A_1 \circ F \circ A_2 + H$$

for some invertible affine transformations A_1, A_2 and $deg(H) \le k$.

The GAPN property is invariant to \sim_{p-1} .

Constructions of GAPN functions were given by [Kuroda,Tsujie,2017], [Kuroda,2017], [Zha,Hu,Zhang,2018], [O,S,2021], [Wang, Wang,Zhang,2022],[Bartoli et al,2022],[Beierle,2022],[S,O,2023] etc.

Definition Generalized extended affine equivalence [O,S, 21]:

 $F \sim_k G$ if

$$G = A_1 \circ F \circ A_2 + H$$

for some invertible affine transformations A_1, A_2 and $\deg(H) \le k$.

The GAPN property is invariant to \sim_{p-1} .

Constructions of GAPN functions were given by [Kuroda,Tsujie,2017], [Kuroda,2017], [Zha,Hu,Zhang,2018], [O,S,2021], [Wang, Wang,Zhang,2022],[Bartoli et al,2022],[Beierle,2022],[S,O,2023] etc.

Sălăgean, Kaleyski, Özbudak

Definition Generalized extended affine equivalence [O,S, 21]:

 $F \sim_k G$ if

$$G = A_1 \circ F \circ A_2 + H$$

for some invertible affine transformations A_1, A_2 and $deg(H) \le k$.

The GAPN property is invariant to \sim_{p-1} .

Constructions of GAPN functions were given by [Kuroda,Tsujie,2017], [Kuroda,2017], [Zha,Hu,Zhang,2018], [O,S,2021], [Wang, Wang,Zhang,2022],[Bartoli et al,2022],[Beierle,2022],[S,O,2023] etc.

Sălăgean, Kaleyski, Özbudak

GAPN construction using the multivariate ANF

- [S,O,23] constructed GAPN functions of degree p by using a technique similar to the construction of [Yu,Wang,Li,2014] for APN quadratic functions using matrices with certain properties.
- We consider F in multivariate ANF.
- If F has algebraic degree p, then $\Delta_a^{(p-1)}F$ is linear.
- The equation $\Delta_a^{(p-1)}F(x) = b$ has at most *p* solutions iff its coefficients span a space of dimension at least n 1.

Sălăgean, Kaleyski, Özbudak

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

GAPN construction using the multivariate ANF

[S,O,23] constructed GAPN functions of degree *p* by using a technique similar to the construction of [Yu,Wang,Li,2014] for APN quadratic functions using matrices with certain properties.

We consider *F* in multivariate ANF.

If F has algebraic degree p, then $\Delta_a^{(p-1)}F$ is linear.

The equation $\Delta_a^{(p-1)}F(x) = b$ has at most p solutions iff its coefficients span a space of dimension at least n - 1.

Sălăgean, Kaleyski, Özbudak

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

GAPN construction using the multivariate ANF

[S,O,23] constructed GAPN functions of degree *p* by using a technique similar to the construction of [Yu,Wang,Li,2014] for APN quadratic functions using matrices with certain properties.

We consider F in multivariate ANF.

If F has algebraic degree p, then $\Delta_a^{(p-1)}F$ is linear.

The equation $\Delta_a^{(p-1)}F(x) = b$ has at most p solutions iff its coefficients span a space of dimension at least n - 1.

Sălăgean, Kaleyski, Özbudak

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

GAPN construction using the multivariate ANF

[S,O,23] constructed GAPN functions of degree *p* by using a technique similar to the construction of [Yu,Wang,Li,2014] for APN quadratic functions using matrices with certain properties.

We consider F in multivariate ANF.

If *F* has algebraic degree *p*, then $\Delta_a^{(p-1)}F$ is linear.

The equation $\Delta_a^{(p-1)}F(x) = b$ has at most p solutions iff its coefficients span a space of dimension at least n - 1.

Sălăgean, Kaleyski, Özbudak

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

GAPN construction using the multivariate ANF

[S,O,23] constructed GAPN functions of degree p by using a technique similar to the construction of [Yu,Wang,Li,2014] for APN quadratic functions using matrices with certain properties.

We consider F in multivariate ANF.

If *F* has algebraic degree *p*, then $\Delta_a^{(p-1)}F$ is linear.

The equation $\Delta_a^{(p-1)}F(x) = b$ has at most *p* solutions iff its coefficients span a space of dimension at least n - 1.

Sălăgean, Kaleyski, Özbudak

GAPN construction using the multivariate ANF

Theorem (S,O,23)

$$F(x_1,...,x_n) = \sum_{i=1}^n \sum_{j=1}^n \mathbf{c}_{ij} x_i^{p-1} x_j,$$

where $\mathbf{c}_{ij} \in \mathbb{F}_p^n$ and $\mathbf{c}_{ii} = \mathbf{0}$. *F* is GAPN iff for any $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{F}_p^n \setminus \{\mathbf{0}\}$, the set

$$\left\{\sum_{j=1}^n a_j \left(a_i^{p-2} \mathbf{c}_{ij} - a_j^{p-2} \mathbf{c}_{ji}\right) : i = 1, \dots, n\right\}$$

spans a subspace of dimension n - 1.

・ロ・・ 日・・ 田・・ 田・・ 日・ うらぐ

Sălăgean, Kaleyski, Özbudak

Example: n = 3, p = 3.

$$F(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{c}_{ij} x_i^2 x_j,$$

where $\mathbf{c}_{ij} \in \mathbb{F}_3^3$ and $\mathbf{c}_{ii} = \mathbf{0}$. Note $x_1 x_2 x_3$ does not appear in *F*.

$$\begin{pmatrix} 0 & c_{12} & c_{13} \\ c_{21} & 0 & c_{23} \\ c_{31} & c_{32} & 0 \end{pmatrix}$$

(日)

Sălăgean, Kaleyski, Özbudak

Example: n = 3, p = 3.

$$F(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{c}_{ij} x_i^2 x_j,$$

where $\mathbf{c}_{ii} \in \mathbb{F}_3^3$ and $\mathbf{c}_{ii} = \mathbf{0}$. Note $x_1 x_2 x_3$ does not appear in F.

$$\begin{pmatrix} 0 & c_{12} & c_{13} \\ c_{21} & 0 & c_{23} \\ c_{31} & c_{32} & 0 \end{pmatrix}$$

・ロト・日本・日本・日本・日本・日本

Sălăgean, Kaleyski, Özbudak

Example: n = 3, p = 3.

$$F(x_1, x_2, x_3) = \sum_{i=1}^{3} \sum_{j=1}^{3} \mathbf{c}_{ij} x_i^2 x_j,$$

where $\mathbf{c}_{ij} \in \mathbb{F}_3^3$ and $\mathbf{c}_{ii} = \mathbf{0}$. Note $x_1 x_2 x_3$ does not appear in F.

$$\begin{pmatrix} \mathbf{0} & \mathbf{c}_{12} & \mathbf{c}_{13} \\ \mathbf{c}_{21} & \mathbf{0} & \mathbf{c}_{23} \\ \mathbf{c}_{31} & \mathbf{c}_{32} & \mathbf{0} \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 →

Sălăgean, Kaleyski, Özbudak

F is GAPN iff for any $a_2, a_3 \in \mathbb{F}_3^*$ each of the following sets of vectors spans a space of dimension 2:

$$\{ C_{12}, C_{13} \} \\ \{ C_{21}, C_{23} \} \\ \{ C_{31}, C_{32} \} \\ \{ a_2 C_{12} - C_{21}, C_{13} + C_{23} \} \\ \{ a_3 C_{13} - C_{31}, C_{12} + C_{32} \} \\ \{ a_3 C_{23} - C_{32}, C_{21} + C_{31} \} \\ \{ a_2 C_{12} - C_{21} + a_3 C_{13} - C_{31}, C_{21} - a_2 C_{12} + a_3 C_{23} - a_2 C_{32}, \\ C_{31} - a_3 C_{13} + a_2 C_{32} - a_3 C_{23} \}$$

We can assume that $\mathbf{c}_{12} = \mathbf{e}_1$ and $\mathbf{c}_{13} = \mathbf{e}_2$.

Sălăgean, Kaleyski, Özbudak

F is GAPN iff for any $a_2, a_3 \in \mathbb{F}_3^*$ each of the following sets of vectors spans a space of dimension 2:

$$\{ \mathbf{C}_{12}, \mathbf{C}_{13} \} \\ \{ \mathbf{C}_{21}, \mathbf{C}_{23} \} \\ \{ \mathbf{C}_{31}, \mathbf{C}_{32} \} \\ \{ \mathbf{a}_2 \mathbf{C}_{12} - \mathbf{C}_{21}, \mathbf{C}_{13} + \mathbf{C}_{23} \} \\ \{ \mathbf{a}_3 \mathbf{C}_{13} - \mathbf{C}_{31}, \mathbf{C}_{12} + \mathbf{C}_{32} \} \\ \{ \mathbf{a}_3 \mathbf{C}_{23} - \mathbf{C}_{32}, \mathbf{C}_{21} + \mathbf{C}_{31} \} \\ \{ \mathbf{a}_2 \mathbf{C}_{12} - \mathbf{C}_{21} + \mathbf{a}_3 \mathbf{C}_{13} - \mathbf{C}_{31}, \mathbf{C}_{21} - \mathbf{a}_2 \mathbf{C}_{12} + \mathbf{a}_3 \mathbf{C}_{23} - \mathbf{a}_2 \mathbf{C}_{32}, \\ \mathbf{C}_{31} - \mathbf{a}_3 \mathbf{C}_{13} + \mathbf{a}_2 \mathbf{C}_{32} - \mathbf{a}_3 \mathbf{C}_{23} \}$$

We can assume that $\mathbf{c}_{12} = \mathbf{e}_1$ and $\mathbf{c}_{13} = \mathbf{e}_2$.

▲ロト▲聞ト▲臣ト▲臣ト 臣 のへぐ

Sălăgean, Kaleyski, Özbudak

イロン イヨン イヨン ・ ヨン

GAPN construction using the multivariate ANF

F is GAPN iff for any $a_2, a_3 \in \mathbb{F}_3^*$ each of the following sets of vectors spans a space of dimension 2:

$$\{ \mathbf{c}_{12}, \mathbf{c}_{13} \} \\ \{ \mathbf{c}_{21}, \mathbf{c}_{23} \} \\ \{ \mathbf{c}_{31}, \mathbf{c}_{32} \} \\ \{ a_2 \mathbf{c}_{12} - \mathbf{c}_{21}, \mathbf{c}_{13} + \mathbf{c}_{23} \} \\ \{ a_3 \mathbf{c}_{13} - \mathbf{c}_{31}, \mathbf{c}_{12} + \mathbf{c}_{32} \} \\ \{ a_3 \mathbf{c}_{23} - \mathbf{c}_{32}, \mathbf{c}_{21} + \mathbf{c}_{31} \} \\ \{ a_2 \mathbf{c}_{12} - \mathbf{c}_{21} + a_3 \mathbf{c}_{13} - \mathbf{c}_{31}, \mathbf{c}_{21} - a_2 \mathbf{c}_{12} + a_3 \mathbf{c}_{23} - a_2 \mathbf{c}_{32}, \\ \mathbf{c}_{31} - a_3 \mathbf{c}_{13} + a_2 \mathbf{c}_{32} - a_3 \mathbf{c}_{23} \}$$

We can assume that $\mathbf{c}_{12} = \mathbf{e}_1$ and $\mathbf{c}_{13} = \mathbf{e}_2$.

Sălăgean, Kaleyski, Özbudak

F is GAPN iff for any $a_2, a_3 \in \mathbb{F}_3^*$ each of the following sets of vectors spans a space of dimension 2:

$$\{ \mathbf{C}_{12}, \mathbf{C}_{13} \} \\ \{ \mathbf{C}_{21}, \mathbf{C}_{23} \} \\ \{ \mathbf{C}_{31}, \mathbf{C}_{32} \} \\ \{ a_2 \mathbf{C}_{12} - \mathbf{C}_{21}, \mathbf{C}_{13} + \mathbf{C}_{23} \} \\ \{ a_3 \mathbf{C}_{13} - \mathbf{C}_{31}, \mathbf{C}_{12} + \mathbf{C}_{32} \} \\ \{ a_3 \mathbf{C}_{23} - \mathbf{C}_{32}, \mathbf{C}_{21} + \mathbf{C}_{31} \} \\ \{ a_2 \mathbf{C}_{12} - \mathbf{C}_{21} + a_3 \mathbf{C}_{13} - \mathbf{C}_{31}, \mathbf{C}_{21} - a_2 \mathbf{C}_{12} + a_3 \mathbf{C}_{23} - a_2 \mathbf{C}_{32}, \mathbf{C}_{31} - a_3 \mathbf{C}_{13} + a_2 \mathbf{C}_{32} - a_3 \mathbf{C}_{23} \}$$

We can assume that $\mathbf{c}_{12} = \mathbf{e}_1$ and $\mathbf{c}_{13} = \mathbf{e}_2$.

Sălăgean, Kaleyski, Özbudak

By computer search we found 83 484 GAPN functions of this type.

How many of these functions are inequivalent under \sim_2 ?

More generally, could we test efficiently (in)equivalence under \sim_{d-1} for functions of degree d?

▲□▶▲□▶▲□▶▲□▶ ▲□▼ ろん⊙

Sălăgean, Kaleyski, Özbudak

By computer search we found 83 484 GAPN functions of this type.

How many of these functions are inequivalent under \sim_2 ?

More generally, could we test efficiently (in)equivalence under \sim_{d-1} for functions of degree d?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

Sălăgean, Kaleyski, Özbudak

- By computer search we found 83 484 GAPN functions of this type.
- How many of these functions are inequivalent under \sim_2 ?
- More generally, could we test efficiently (in)equivalence under \sim_{d-1} for functions of degree d?

Sălăgean, Kaleyski, Özbudak

Background	Invariants ●00000	Canonical form	Classifying GAPN functions	Conclusion
Inveriente				

Related use of invariants in previous work:

- Classification of APN functions under EA-equivalence: orthoderivatives [Canteaut, Couvreur, Perrin '22], etc.
- Classification of Boolean functions of degree *d* under \sim_{d-1} : [Hou '96], [Langevin, Leander '07] etc.

Background 00000000000	Invariants ●00000	Canonical form	Classifying GAPN functions	Conclusion 00
Invariants				

Related use of invariants in previous work:

 Classification of APN functions under EA-equivalence: orthoderivatives [Canteaut, Couvreur, Perrin '22], etc.

Classification of Boolean functions of degree *d* under \sim_{d-1} : [Hou '96], [Langevin, Leander '07] etc.

Sălăgean, Kaleyski, Özbudak

Background 00000000000	Invariants ●00000	Canonical form	Classifying GAPN functions	Conclusion oo
Invariants				

Related use of invariants in previous work:

- Classification of APN functions under EA-equivalence: orthoderivatives [Canteaut, Couvreur, Perrin '22], etc.
- Classification of Boolean functions of degree *d* under \sim_{d-1} : [Hou '96], [Langevin, Leander '07] etc.

Background 00000000000	Invariants ●00000	Canonical form	Classifying GAPN functions	Conclusion oo
Invariants				

Related use of invariants in previous work:

- Classification of APN functions under EA-equivalence: orthoderivatives [Canteaut, Couvreur, Perrin '22], etc.
- Classification of Boolean functions of degree *d* under \sim_{d-1} : [Hou '96], [Langevin, Leander '07] etc.

$\deg(F)=d$

 $\deg(\Delta_{a_1,\ldots,a_{d-1}}^{(d-1)}F)\leq 1$

- The multiset $\{\dim(\operatorname{Im}(\Delta_{a_1,\ldots,a_{d-1}}^{(d-1)}F)): a_1,\ldots,a_{d-1} \in \mathbb{F}_p^n\}$ is invariant under \sim_{d-1} .
- $DerIm_F(i)$ number of derivatives of F which have image of dimension i

A refinement of this invariant: DerImProj_{*F*}(*i*, *j*, *k*): the number of (a_1, \ldots, a_k) for which there are exactly *j* values of $(a_{k+1}, \ldots, a_{d-1})$ such that dim $(\text{Im}(\Delta_{a_1, \ldots, a_{d-1}}^{(d-1)}F)) = i$

Sălăgean, Kaleyski, Özbudak

$$\deg(F) = d$$

 $\deg(\Delta^{(d-1)}_{a_1,...,a_{d-1}}F) \leq 1$

- The multiset $\{\dim(\operatorname{Im}(\Delta_{a_1,\ldots,a_{d-1}}^{(d-1)}F)) : a_1,\ldots,a_{d-1} \in \mathbb{F}_p^n\}$ is invariant under \sim_{d-1} .
- $DerIm_F(i)$ number of derivatives of F which have image of dimension i

A refinement of this invariant: DerImProj_{*F*}(*i*, *j*, *k*): the number of (a_1, \ldots, a_k) for which there are exactly *j* values of $(a_{k+1}, \ldots, a_{d-1})$ such that dim $(\text{Im}(\Delta_{a_1, \ldots, a_{d-1}}^{(d-1)}F)) = i$

Sălăgean, Kaleyski, Özbudak

$$\begin{split} & \deg(F) = d \\ & \deg(\Delta^{(d-1)}_{a_1,\dots,a_{d-1}}F) \leq 1 \end{split}$$

The multiset $\{\dim(\operatorname{Im}(\Delta_{a_1,\ldots,a_{d-1}}^{(d-1)}F)): a_1,\ldots,a_{d-1}\in\mathbb{F}_p^n\}$ is invariant under \sim_{d-1} .

 $DerIm_F(i)$ number of derivatives of F which have image of dimension i

A refinement of this invariant: DerImProj_F(i, j, k): the number of $(a_1, ..., a_k)$ for which there are exactly *j* values of $(a_{k+1}, ..., a_{d-1})$ such that dim $(\text{Im}(\Delta_{a_1,...,a_{d-1}}^{(d-1)}F)) = b$

Sălăgean, Kaleyski, Özbudak

$$\deg(F) = d$$

 $\deg(\Delta^{(d-1)}_{a_1,...,a_{d-1}}F) \leq 1$

The multiset $\{\dim(\operatorname{Im}(\Delta_{a_1,\dots,a_{d-1}}^{(d-1)}F)): a_1,\dots,a_{d-1}\in\mathbb{F}_p^n\}$ is invariant under \sim_{d-1} .

 $DerIm_F(i)$ number of derivatives of F which have image of dimension i

A refinement of this invariant: DerImProj_F(i, j, k): the number of $(a_1, ..., a_k)$ for which there are exactly *j* values of $(a_{k+1}, ..., a_{d-1})$ such that dim $(\text{Im}(\Delta_{a_1,...,a_{d-1}}^{(d-1)}F)) = i$

Sălăgean, Kaleyski, Özbudak

$$\deg(F) = d$$

 $\deg(\Delta^{(d-1)}_{a_1,...,a_{d-1}}F) \leq 1$

The multiset $\{\dim(\operatorname{Im}(\Delta_{a_1,\ldots,a_{d-1}}^{(d-1)}F)): a_1,\ldots,a_{d-1}\in\mathbb{F}_p^n\}$ is invariant under \sim_{d-1} .

 $DerIm_F(i)$ number of derivatives of F which have image of dimension i

A refinement of this invariant:

DerImProj_{*F*}(*i*, *j*, *k*): the number of (a_1, \ldots, a_k) for which there are exactly *j* values of $(a_{k+1}, \ldots, a_{d-1})$ such that dim $(\text{Im}(\Delta_{a_1, \ldots, a_{d-1}}^{(d-1)}F)) = i$

Sălăgean, Kaleyski, Özbudak

Invariants: dimension of the image of the derivative

$$\deg(F) = d$$

 $\deg(\Delta^{(d-1)}_{a_1,...,a_{d-1}}F) \leq 1$

The multiset $\{\dim(\operatorname{Im}(\Delta_{a_1,\ldots,a_{d-1}}^{(d-1)}F)): a_1,\ldots,a_{d-1}\in\mathbb{F}_p^n\}$ is invariant under \sim_{d-1} .

 $DerIm_F(i)$ number of derivatives of F which have image of dimension i

A refinement of this invariant: DerImProj_{*F*}(*i*, *j*, *k*): the number of (a_1, \ldots, a_k) for which there are exactly *j* values of $(a_{k+1}, \ldots, a_{d-1})$ such that dim $(\text{Im}(\Delta_{a_1, \ldots, a_{d-1}}^{(d-1)} F)) = i$

Sălăgean, Kaleyski, Özbudak

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

 $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ An orthoderivative of F is a function $\pi_F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ with $\pi_F(0) = 0$ and $\pi_F(a)$ orthogonal to $\operatorname{Im}(\Delta_a F)$; moreover, if $a \neq 0$ then $\pi_F(0) \neq 0$.

If *F* quadratic APN function, π_F exists and is unique.

If F, G are EA-equivalent and have unique orthoderivatives, then π_F , π_G are affine equivalent [Canteaut et al, '22].

Sălăgean, Kaleyski, Özbudak

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

 $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ An orthoderivative of F is a function $\pi_F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ with $\pi_F(0) = 0$ and $\pi_F(a)$ orthogonal to $\operatorname{Im}(\Delta_a F)$; moreover, if $a \neq 0$ then $\pi_F(0) \neq 0$.

If F quadratic APN function, π_F exists and is unique.

If F, G are EA-equivalent and have unique orthoderivatives, then π_F , π_G are affine equivalent [Canteaut et al, '22].

Sălăgean, Kaleyski, Özbudak

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

 $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ An orthoderivative of F is a function $\pi_F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ with $\pi_F(0) = 0$ and $\pi_F(a)$ orthogonal to $\operatorname{Im}(\Delta_a F)$; moreover, if $a \neq 0$ then $\pi_F(0) \neq 0$.

If *F* quadratic APN function, π_F exists and is unique.

If *F*, *G* are EA-equivalent and have unique orthoderivatives, then π_F , π_G are affine equivalent [Canteaut et al, '22].

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Sălăgean, Kaleyski, Özbudak

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

 $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ An orthoderivative of F is a function $\pi_F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ with $\pi_F(0) = 0$ and $\pi_F(a)$ orthogonal to $\operatorname{Im}(\Delta_a F)$; moreover, if $a \neq 0$ then $\pi_F(0) \neq 0$.

If *F* quadratic APN function, π_F exists and is unique.

If *F*, *G* are EA-equivalent and have unique orthoderivatives, then π_F , π_G are affine equivalent [Canteaut et al, '22].

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

Proposed generalization:

An order *r* orthoderivative of *F* is any function $\pi_F^{(r)} : \mathbb{F}_{p^n}^r \to \mathbb{F}_{p^n}$ $\pi_F^{(r)}(a_1, \ldots, a_r) = v^{p-1}$ with *v* orthogonal to $\operatorname{Im}(\Delta_{a_1, a_2, \ldots, a_r}^{(r)} F)$; moreover, *v* is non-zero if a non-zero orthogonal element exists.

Note if v is orthogonal to a particular vectorspace, then so is αv for any scalar $\alpha \in \mathbb{F}_p^*$; we have $(\alpha v)^{p-1} = v^{p-1}$.

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

Proposed generalization:

An order *r* orthoderivative of *F* is any function $\pi_F^{(r)} : \mathbb{F}_{p^n}^r \to \mathbb{F}_{p^n}$ $\pi_F^{(r)}(a_1, \ldots, a_r) = v^{p-1}$ with *v* orthogonal to $\operatorname{Im}(\Delta_{a_1, a_2, \ldots, a_r}^{(r)} F)$; moreover, *v* is non-zero if a non-zero orthogonal element exists.

Note if v is orthogonal to a particular vectorspace, then so is αv for any scalar $\alpha \in \mathbb{F}_p^*$; we have $(\alpha v)^{p-1} = v^{p-1}$.

Sălăgean, Kaleyski, Özbudak

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

Proposed generalization:

An order *r* orthoderivative of *F* is any function $\pi_F^{(r)} : \mathbb{F}_{p^n}^r \to \mathbb{F}_{p^n}$ $\pi_F^{(r)}(a_1, \ldots, a_r) = v^{p-1}$ with *v* orthogonal to $\operatorname{Im}(\Delta_{a_1, a_2, \ldots, a_r}^{(r)} F)$; moreover, *v* is non-zero if a non-zero orthogonal element exists.

Note if v is orthogonal to a particular vectorspace, then so is αv for any scalar $\alpha \in \mathbb{F}_p^*$; we have $(\alpha v)^{p-1} = v^{p-1}$.

Sălăgean, Kaleyski, Özbudak

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

Proposition

Let $F \sim_{d-1} G$, i.e. $F = A_1 \circ G \circ A_2 + H$ for A_1, A_2 affine and bijective and deg(H) $\leq d - 1$. Then for any order d - 1 orthoderivative $\pi_F^{(d-1)}$ of F, there exists $\pi_G^{(d-1)}$ of G such that for all $a_1, \ldots a_{d-1} \in \mathbb{F}_{p^n}^*$ we have

$$\pi_F^{(d-1)}(A_2(a_1),\ldots,A_2(a_{d-1})) = L_1^*(\pi_G^{(d-1)}(a_1,\ldots,a_{d-1})), \qquad (1)$$

where L_1^* is the adjoint operator of the linear part L_1 of A_1 .

If $\pi_F^{(d-1)}$ is unique, the number of elements in $\text{Im}(\pi_F^{(d-1)})$ and their multiplicities are invariant under \sim_{d-1} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Invariants: orthoderivatives

Proposition

Let $F \sim_{d-1} G$, i.e. $F = A_1 \circ G \circ A_2 + H$ for A_1, A_2 affine and bijective and deg $(H) \leq d-1$. Then for any order d-1 orthoderivative $\pi_F^{(d-1)}$ of F, there exists $\pi_G^{(d-1)}$ of G such that for all $a_1, \ldots a_{d-1} \in \mathbb{F}_{p^n}^*$ we have

$$\pi_F^{(d-1)}(A_2(a_1),\ldots,A_2(a_{d-1})) = L_1^*(\pi_G^{(d-1)}(a_1,\ldots,a_{d-1})), \qquad (1)$$

where L_1^* is the adjoint operator of the linear part L_1 of A_1 .

If $\pi_F^{(d-1)}$ is unique, the number of elements in $\text{Im}(\pi_F^{(d-1)})$ and their multiplicities are invariant under \sim_{d-1} .

Sălăgean, Kaleyski, Özbudak

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

"Diagonalised" version of $\pi_{\scriptscriptstyle F}^{(d-1)}$:

$$\widetilde{\pi}_F^{(d-1)}: \mathbb{F}_{p^n} o \mathbb{F}_{p^n} \ \widetilde{\pi}_F^{(d-1)}(a) = \pi_F^{(d-1)}(a, a, \dots, a).$$

If F is GAPN of degree p, then $\tilde{\pi}_{F}^{(p-1)}$ is uniquely defined;

If $F \sim_{p-1} G$, then $\tilde{\pi}_F^{(p-1)}$ and $\tilde{\pi}_G^{(p-1)}$ are affine equivalent.

Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification

▲□▶▲圖▶▲필▶▲필▶ - 亘 - ∽��?

Canonical form

Classifying GAPN functions

・ロ・・ (日・・ (日・・ 日・・)

Invariants: orthoderivatives

"Diagonalised" version of $\pi_F^{(d-1)}$:

$$\widetilde{\pi}_F^{(d-1)}:\mathbb{F}_{\mathcal{P}^n} o\mathbb{F}_{\mathcal{P}^n}\ \widetilde{\pi}_F^{(d-1)}(a)=\pi_F^{(d-1)}(a,a,\ldots,a).$$

If *F* is GAPN of degree *p*, then $\tilde{\pi}_{F}^{(p-1)}$ is uniquely defined;

If $F \sim_{p-1} G$, then $\tilde{\pi}_F^{(p-1)}$ and $\tilde{\pi}_G^{(p-1)}$ are affine equivalent.

Sălăgean, Kaleyski, Özbudak

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

"Diagonalised" version of $\pi_F^{(d-1)}$:

$$\widetilde{\pi}_F^{(d-1)}:\mathbb{F}_{p^n} o\mathbb{F}_{p^n}\ \widetilde{\pi}_F^{(d-1)}(a)=\pi_F^{(d-1)}(a,a,\ldots,a).$$

If *F* is GAPN of degree *p*, then $\tilde{\pi}_{F}^{(p-1)}$ is uniquely defined;

If $F \sim_{p-1} G$, then $\tilde{\pi}_F^{(p-1)}$ and $\tilde{\pi}_G^{(p-1)}$ are affine equivalent.

Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Canonical form

Classifying GAPN functions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆

Invariants: orthoderivatives

"Diagonalised" version of $\pi_F^{(d-1)}$:

$$\widetilde{\pi}_F^{(d-1)}:\mathbb{F}_{\mathcal{P}^n} o\mathbb{F}_{\mathcal{P}^n}\ \widetilde{\pi}_F^{(d-1)}(a)=\pi_F^{(d-1)}(a,a,\ldots,a).$$

If *F* is GAPN of degree *p*, then $\tilde{\pi}_{F}^{(p-1)}$ is uniquely defined;

If $F \sim_{p-1} G$, then $\tilde{\pi}_F^{(p-1)}$ and $\tilde{\pi}_G^{(p-1)}$ are affine equivalent.

Sălăgean, Kaleyski, Özbudak

Canonical form

Classifying GAPN functions

Invariants: orthoderivatives

"Diagonalised" version of $\pi_F^{(d-1)}$:

$$\widetilde{\pi}_F^{(d-1)}:\mathbb{F}_{\mathcal{P}^n} o\mathbb{F}_{\mathcal{P}^n}\ \widetilde{\pi}_F^{(d-1)}(a)=\pi_F^{(d-1)}(a,a,\ldots,a).$$

If *F* is GAPN of degree *p*, then $\tilde{\pi}_{F}^{(p-1)}$ is uniquely defined;

If $F \sim_{p-1} G$, then $\tilde{\pi}_F^{(p-1)}$ and $\tilde{\pi}_G^{(p-1)}$ are affine equivalent.

Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification

Canonical form w.r.t. left linear transformations

If $\deg(F) = d$ $F \sim_{d-1} G$ iff $F = L_1 \circ G \circ L_2 + H$ for some invertible linear transformations L_1, L_2 and $\deg(H) \le d - 1$.

We now concentrate on L_1 .

Write $F = \sum \mathbf{b}_i t_i$, with t_1, \ldots, t_{p^n} the monomials in decreasing degree lexicographic order.

 $\mathbf{b}_i \neq \mathbf{0}$ iff $L_1(\mathbf{b}_i) \neq \mathbf{0}$

For any fixed i_1, \ldots, i_k , the coefficients of t_{i_1}, \ldots, t_{i_k} in *F* are linearly independent if and only if the coefficients of t_{i_1}, \ldots, t_{i_k} in $L_1 \circ F$ are linearly independent.

Sălăgean, Kaleyski, Özbudak

Canonical form w.r.t. left linear transformations

If $\deg(F) = d$ $F \sim_{d-1} G$ iff $F = L_1 \circ G \circ L_2 + H$ for some invertible linear transformations L_1, L_2 and $\deg(H) \le d - 1$.

We now concentrate on L_1 .

Write $F = \sum \mathbf{b}_i t_i$, with t_1, \ldots, t_{p^n} the monomials in decreasing degree lexicographic order. $L_1 \circ F = \sum L_1(\mathbf{b}_i) t_i$ $\mathbf{b}_i \neq \mathbf{0}$ iff $L_1(\mathbf{b}_i) \neq \mathbf{0}$

For any fixed i_1, \ldots, i_k , the coefficients of t_{i_1}, \ldots, t_{i_k} in *F* are linearly independent if and only if the coefficients of t_{i_1}, \ldots, t_{i_k} in $L_1 \circ F$ are linearly independent.

Sălăgean, Kaleyski, Özbudak

If $\deg(F) = d$ $F \sim_{d-1} G$ iff $F = L_1 \circ G \circ L_2 + H$ for some invertible linear transformations L_1, L_2 and $\deg(H) \le d - 1$.

We now concentrate on L_1 .

Write $F = \sum \mathbf{b}_i t_i$, with t_1, \ldots, t_{p^n} the monomials in decreasing degree lexicographic order. $L_1 \circ F = \sum L_1(\mathbf{b}_i) t_i$ $\mathbf{b}_i \neq \mathbf{0}$ iff $L_1(\mathbf{b}_i) \neq \mathbf{0}$ For any fixed i_1, \ldots, i_k , the coefficients of t_{i_1}, \ldots, t_{i_k} in *F* are linearly independent if and only if the coefficients of t_{i_1}, \ldots, t_{i_k} in $L_1 \circ F$ are

linearly independent.

・ロト・「日・・日・・日・ うへの

Sălăgean, Kaleyski, Özbudak

If $\deg(F) = d$ $F \sim_{d-1} G$ iff $F = L_1 \circ G \circ L_2 + H$ for some invertible linear transformations L_1, L_2 and $\deg(H) \le d - 1$.

We now concentrate on L_1 .

Write $F = \sum \mathbf{b}_i t_i$, with

 t_1, \ldots, t_{p^n} the monomials in decreasing degree lexicographic order.

 $L_1 \circ F = \sum L_1(\mathbf{b}_i)t_i$

 $\mathbf{b}_i \neq \mathbf{0} ext{ iff } L_1(\mathbf{b}_i) \neq \mathbf{0}$

For any fixed i_1, \ldots, i_k , the coefficients of t_{i_1}, \ldots, t_{i_k} in *F* are linearly independent if and only if the coefficients of t_{i_1}, \ldots, t_{i_k} in $L_1 \circ F$ are linearly independent.

Sălăgean, Kaleyski, Özbudak

If $\deg(F) = d$ $F \sim_{d-1} G$ iff $F = L_1 \circ G \circ L_2 + H$ for some invertible linear transformations L_1, L_2 and $\deg(H) \le d - 1$.

We now concentrate on L_1 .

Write $F = \sum \mathbf{b}_i t_i$, with t_1, \ldots, t_{p^n} the monomials in decreasing degree lexicographic order.

 $L_1 \circ F = \sum L_1(\mathbf{b}_i)t_i$

 $\mathbf{b}_i \neq \mathbf{0} \text{ iff } L_1(\mathbf{b}_i) \neq \mathbf{0}$

For any fixed i_1, \ldots, i_k , the coefficients of t_{i_1}, \ldots, t_{i_k} in *F* are linearly independent if and only if the coefficients of t_{i_1}, \ldots, t_{i_k} in $L_1 \circ F$ are linearly independent.

Sălăgean, Kaleyski, Özbudak

If deg(F) = d $F \sim_{d-1} G$ iff $F = L_1 \circ G \circ L_2 + H$

for some invertible linear transformations L_1, L_2 and $deg(H) \le d - 1$.

We now concentrate on L_1 .

Write $F = \sum \mathbf{b}_i t_i$, with t_1, \ldots, t_{p^n} the monomials in decreasing degree lexicographic order.

 $L_1 \circ F = \sum L_1(\mathbf{b}_i)t_i$

 $\mathbf{b}_i \neq \mathbf{0} \text{ iff } L_1(\mathbf{b}_i) \neq \mathbf{0}$

For any fixed i_1, \ldots, i_k , the coefficients of t_{i_1}, \ldots, t_{i_k} in *F* are linearly independent if and only if the coefficients of t_{i_1}, \ldots, t_{i_k} in $L_1 \circ F$ are linearly independent.

Sălăgean, Kaleyski, Özbudak

If deg(F) = d $F \sim_{d-1} G$ iff $F = L_1 \circ G \circ L_2 + H$

for some invertible linear transformations L_1, L_2 and $deg(H) \le d - 1$.

We now concentrate on L_1 .

Write $F = \sum \mathbf{b}_i t_i$, with t_1, \ldots, t_{p^n} the monomials in decreasing degree lexicographic order. $L_1 \circ F = \sum L_1(\mathbf{b}_i) t_i$

 $\mathbf{b}_i \neq \mathbf{0} \text{ iff } L_1(\mathbf{b}_i) \neq \mathbf{0}$

For any fixed i_1, \ldots, i_k , the coefficients of t_{i_1}, \ldots, t_{i_k} in *F* are linearly independent if and only if the coefficients of t_{i_1}, \ldots, t_{i_k} in $L_1 \circ F$ are linearly independent.

Sălăgean, Kaleyski, Özbudak

If deg(F) = d $F \sim_{d-1} G$ iff $F = L_1 \circ G \circ L_2 + H$

for some invertible linear transformations L_1, L_2 and $deg(H) \le d - 1$.

We now concentrate on L_1 .

Write $F = \sum \mathbf{b}_i t_i$, with t_1, \ldots, t_{p^n} the monomials in decreasing degree lexicographic order. $L_1 \circ F = \sum L_1(\mathbf{b}_i) t_i$ $\mathbf{b}_i \neq \mathbf{0}$ iff $L_1(\mathbf{b}_i) \neq \mathbf{0}$

For any fixed i_1, \ldots, i_k , the coefficients of t_{i_1}, \ldots, t_{i_k} in *F* are linearly independent if and only if the coefficients of t_{i_1}, \ldots, t_{i_k} in $L_1 \circ F$ are linearly independent.

Sălăgean, Kaleyski, Özbudak

If deg(F) = d $F \sim_{d-1} G$ iff $F = L_1 \circ G \circ L_2 + H$

for some invertible linear transformations L_1, L_2 and $deg(H) \le d - 1$.

We now concentrate on L_1 .

Write $F = \sum \mathbf{b}_i t_i$, with t_1, \ldots, t_{p^n} the monomials in decreasing degree lexicographic order. $L_1 \circ F = \sum L_1(\mathbf{b}_i) t_i$ $\mathbf{b}_i \neq \mathbf{0}$ iff $L_1(\mathbf{b}_i) \neq \mathbf{0}$

For any fixed i_1, \ldots, i_k , the coefficients of t_{i_1}, \ldots, t_{i_k} in *F* are linearly independent if and only if the coefficients of t_{i_1}, \ldots, t_{i_k} in $L_1 \circ F$ are linearly independent.

Sălăgean, Kaleyski, Özbudak

 $F = \sum \mathbf{b}_i t_i$

We say that *F* is in canonical form w.r.t. left linear transformations if $\mathbf{b}_{i_1} = \mathbf{e}_1, \mathbf{b}_{i_2} = \mathbf{e}_2, \dots$

Sălăgean, Kaleyski, Özbudak

 $F = \sum \mathbf{b}_i t_i$

We say that *F* is in canonical form w.r.t. left linear transformations if $\mathbf{b}_{i_1} = \mathbf{e}_1, \mathbf{b}_{i_2} = \mathbf{e}_2, \dots$

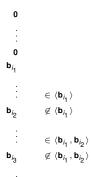
Sălăgean, Kaleyski, Özbudak

 $F = \sum \mathbf{b}_i t_i$

We say that *F* is in canonical form w.r.t. left linear transformations if $\mathbf{b}_{i_1} = \mathbf{e}_1, \mathbf{b}_{i_2} = \mathbf{e}_2, \dots$

Sălăgean, Kaleyski, Özbudak

 $F = \sum \mathbf{b}_i t_i$



We say that *F* is in canonical form w.r.t. left linear transformations if $\mathbf{b}_{i_1} = \mathbf{e}_1, \mathbf{b}_{i_2} = \mathbf{e}_2, \dots$

Sălăgean, Kaleyski, Özbudak

- For any *F*, the canonical form of *F* is the unique function *G* in canonical form in the set of functions $\{L \circ F : L \text{ linear and invertible}\}$;
- *G* can be computed efficiently as $L_1 \circ F$ with L_1 any bijective linear transformation with $L_1(\mathbf{c}_{i_j}) = \mathbf{e}_j$ for j = 1, ..., k.
- **Remark** The canonical form has the lexicographically smallest list of coefficients.
- [Kalgin, Idrisova, '20] used the lexicographically smallest list of coefficients for the matrix associated to APN functions.

Sălăgean, Kaleyski, Özbudak

For any *F*, the canonical form of *F* is the unique function *G* in canonical form in the set of functions $\{L \circ F : L \text{ linear and invertible}\}$;

G can be computed efficiently as $L_1 \circ F$ with L_1 any bijective linear transformation with $L_1(\mathbf{c}_{i_j}) = \mathbf{e}_j$ for j = 1, ..., k.

Remark The canonical form has the lexicographically smallest list of coefficients.

[Kalgin, Idrisova, '20] used the lexicographically smallest list of coefficients for the matrix associated to APN functions.

Sălăgean, Kaleyski, Özbudak

- For any *F*, the canonical form of *F* is the unique function *G* in canonical form in the set of functions $\{L \circ F : L \text{ linear and invertible}\}$;
- *G* can be computed efficiently as $L_1 \circ F$ with L_1 any bijective linear transformation with $L_1(\mathbf{c}_{i_j}) = \mathbf{e}_j$ for j = 1, ..., k.
- **Remark** The canonical form has the lexicographically smallest list of coefficients.
- [Kalgin, Idrisova, '20] used the lexicographically smallest list of coefficients for the matrix associated to APN functions.

- For any *F*, the canonical form of *F* is the unique function *G* in canonical form in the set of functions $\{L \circ F : L \text{ linear and invertible}\}$;
- *G* can be computed efficiently as $L_1 \circ F$ with L_1 any bijective linear transformation with $L_1(\mathbf{c}_{i_j}) = \mathbf{e}_j$ for j = 1, ..., k.
- **Remark** The canonical form has the lexicographically smallest list of coefficients.
- [Kalgin, Idrisova, '20] used the lexicographically smallest list of coefficients for the matrix associated to APN functions.

- For any *F*, the canonical form of *F* is the unique function *G* in canonical form in the set of functions $\{L \circ F : L \text{ linear and invertible}\}$;
- *G* can be computed efficiently as $L_1 \circ F$ with L_1 any bijective linear transformation with $L_1(\mathbf{c}_{i_j}) = \mathbf{e}_j$ for j = 1, ..., k.
- **Remark** The canonical form has the lexicographically smallest list of coefficients.
- [Kalgin, Idrisova, '20] used the lexicographically smallest list of coefficients for the matrix associated to APN functions.

Sălăgean, Kaleyski, Özbudak

GAPN functions over F

We only compute GAPN functions in canonical form w.r.t. left linear transformations.

83 484 functions \rightarrow 4 638 functions in canonical form

Invariants based on dimension of the image of the derivative distinguish 10 sets of inequivalent functions.

Invariants based on orthoderivatives distinguish the same 10 sets.

Size of sets: 56, 420, 912, 1188, 720, 270, 264, 480, 312, 16.

Sălăgean, Kaleyski, Özbudak

GAPN functions over \mathbb{F}_3^3

We only compute GAPN functions in canonical form w.r.t. left linear transformations.

83 484 functions \rightarrow 4 638 functions in canonical form

Invariants based on dimension of the image of the derivative distinguish 10 sets of inequivalent functions.

Invariants based on orthoderivatives distinguish the same 10 sets.

Size of sets: 56, 420, 912, 1188, 720, 270, 264, 480, 312, 16.

Sălăgean, Kaleyski, Özbudak

GAPN functions over \mathbb{F}_3^3

We only compute GAPN functions in canonical form w.r.t. left linear transformations.

83 484 functions \rightarrow 4 638 functions in canonical form

Invariants based on dimension of the image of the derivative distinguish 10 sets of inequivalent functions.

Invariants based on orthoderivatives distinguish the same 10 sets.

Size of sets: 56, 420, 912, 1188, 720, 270, 264, 480, 312, 16.

Sălăgean, Kaleyski, Özbudak

GAPN functions over \mathbb{F}_3^3

We only compute GAPN functions in canonical form w.r.t. left linear transformations.

83 484 functions \rightarrow 4 638 functions in canonical form

Invariants based on dimension of the image of the derivative distinguish 10 sets of inequivalent functions.

Invariants based on orthoderivatives distinguish the same 10 sets.

Size of sets: 56, 420, 912, 1188, 720, 270, 264, 480, 312, 16.

Sălăgean, Kaleyski, Özbudak

GAPN functions over \mathbb{F}_3^3

We only compute GAPN functions in canonical form w.r.t. left linear transformations.

83 484 functions \rightarrow 4 638 functions in canonical form

Invariants based on dimension of the image of the derivative distinguish 10 sets of inequivalent functions.

Invariants based on orthoderivatives distinguish the same 10 sets.

Size of sets: 56, 420, 912, 1188, 720, 270, 264, 480, 312, 16.

Sălăgean, Kaleyski, Özbudak

Canonical form

Classifying GAPN functions

Classifying GAPN functions

GAPN functions over \mathbb{F}_3^3

We only compute GAPN functions in canonical form w.r.t. left linear transformations.

83 484 functions \rightarrow 4 638 functions in canonical form

Invariants based on dimension of the image of the derivative distinguish 10 sets of inequivalent functions.

Invariants based on orthoderivatives distinguish the same 10 sets.

Size of sets: 56, 420, 912, 1188, 720, 270, 264, 480, 312, 16.

Sălăgean, Kaleyski, Özbudak

GAPN functions over \mathbb{F}_3^3

We only compute GAPN functions in canonical form w.r.t. left linear transformations.

83 484 functions \rightarrow 4 638 functions in canonical form

Invariants based on dimension of the image of the derivative distinguish 10 sets of inequivalent functions.

Invariants based on orthoderivatives distinguish the same 10 sets.

Size of sets: 56, 420, 912, 1188, 720, 270, 264, 480, 312, 16.

Within each set $C_1, \ldots C_{10}$, determine representatives for each class under \sim_2 .

while $C_i \neq \emptyset$ choose $F \in C_i$ and declare F a representative for all the possible L_2 compute the canonical form of $F \circ L_2$ and remove it from C_i end while

Note that there are 11 232 possible L_1 . If we had tested $L_1 \circ F \circ L_2$ for all pairs (L_1, L_2) , there would be $(11\ 232)^2$ combinations, so the savings are significant.

Within each set $\mathcal{C}_1,\ldots \mathcal{C}_{10},$ determine representatives for each class under $\sim_2.$

while $C_i \neq \emptyset$ choose $F \in C_i$ and declare F a representative for all the possible L_2 compute the canonical form of $F \circ L_2$ and remove it from C_i end while

Note that there are 11 232 possible L_1 . If we had tested $L_1 \circ F \circ L_2$ for all pairs (L_1, L_2) , there would be $(11\ 232)^2$ combinations, so the savings are significant.

Within each set $C_1, \ldots C_{10}$, determine representatives for each class under \sim_2 .

while $C_i \neq \emptyset$ choose $F \in C_i$ and declare F a representative for all the possible L_2 compute the canonical form of $F \circ L_2$ and remove it from C_i end while

Note that there are 11 232 possible L_1 . If we had tested $L_1 \circ F \circ L_2$ for all pairs (L_1, L_2) , there would be $(11\ 232)^2$ combinations, so the savings are significant.

Within each set $C_1, \ldots C_{10}$, determine representatives for each class under \sim_2 .

while $C_i \neq \emptyset$ choose $F \in C_i$ and declare F a representative for all the possible L_2 compute the canonical form of $F \circ L_2$ and remove it from C_i end while

Note that there are 11 232 possible L_1 .

If we had tested $L_1 \circ F \circ L_2$ for all pairs (L_1, L_2) , there would be $(11\ 232)^2$ combinations, so the savings are significant.

Within each set $C_1, \ldots C_{10}$, determine representatives for each class under \sim_2 .

while $C_i \neq \emptyset$ choose $F \in C_i$ and declare F a representative for all the possible L_2 compute the canonical form of $F \circ L_2$ and remove it from C_i end while

Note that there are 11 232 possible L_1 . If we had tested $L_1 \circ F \circ L_2$ for all pairs (L_1, L_2) , there would be $(11\ 232)^2$ combinations, so the savings are significant.

Within each set $C_1, \ldots C_{10}$, determine representatives for each class under \sim_2 .

while $C_i \neq \emptyset$ choose $F \in C_i$ and declare F a representative for all the possible L_2 compute the canonical form of $F \circ L_2$ and remove it from C_i end while

Note that there are 11 232 possible L_1 . If we had tested $L_1 \circ F \circ L_2$ for all pairs (L_1, L_2) , there would be $(11\ 232)^2$ combinations, so the savings are significant.

Invariants 000000 Canonical form

Classifying GAPN functions

Conclusion

Classifying GAPN functions

List of $(\mathbf{c_{12}}, \mathbf{c_{13}}, \mathbf{c_{21}}, \mathbf{c_{23}}, \mathbf{c_{31}}, \mathbf{c_{32}})$ ξ primitive in \mathbb{F}_{3^3} satisfying $\xi^3 + 2\xi + 1 = 0$

Sălăgean, Kaleyski, Özbudak

Classifying GAPN functions

List of $(c_{12}, c_{13}, c_{21}, c_{23}, c_{31}, c_{32})$ ξ primitive in \mathbb{F}_{3^3} satisfying $\xi^3 + 2\xi + 1 = 0$

$(1, \xi, \xi^2, \xi, \xi^2, \xi^3)$	$(1, \xi, \xi^2, \xi, \xi^2, \xi^6)$	$(1, \xi, \xi^2, \xi, \xi^2, \xi^9)$	$(1, \xi, \xi^2, \xi, \xi^3, \xi^2)$
$(1, \xi, \xi^2, \xi, \xi^3, \xi^8)$	$(1, \xi, \xi^2, \xi, \xi^3, \xi^{15})$	$(1, \xi, \xi^2, \xi, \xi^3, \xi^{18})$	$(1, \xi, \xi^2, \xi, \xi^3, \xi^{21})$
$(1, \xi, \xi^2, \xi, \xi^4, \xi^6)$	$(1, \xi, \xi^2, \xi, \xi^6, \xi^{22})$	$(1, \xi, \xi^2, \xi, \xi^8, \xi^{12})$	$(1, \xi, \xi^2, \xi, \xi^8, \xi^{25})$
$(1, \xi, \xi^2, \xi, 2, \xi^2)$	$(1, \xi, \xi^2, \xi^3, \xi^3, \xi^7)$	$(1, \xi, \xi^2, \xi^3, \xi^3, \xi^{12})$	$(1, \xi, \xi^2, \xi^3, \xi^3, \xi^{19})$
$(1, \xi, \xi^2, \xi^3, \xi^3, \xi^{22})$	$(1, \xi, \xi^2, \xi^3, \xi^3, \xi^{25})$	$(1, \xi, \xi^2, \xi^3, \xi^4, \xi^5)$	$(1, \xi, \xi^2, \xi^3, \xi^4, \xi^9)$
$(1, \xi, \xi^2, \xi^3, \xi^4, \xi^{10})$	$(1, \xi, \xi^2, \xi^3, \xi^4, \xi^{18})$	$(1, \xi, \xi^2, \xi^3, \xi^4, \xi^{25})$	$(1, \xi, \xi^2, \xi^3, \xi^6, \xi^5)$
$(1, \xi, \xi^2, \xi^3, \xi^8, \xi^2)$	$(1, \xi, \xi^2, \xi^3, \xi^8, \xi^{19})$	$(1, \xi, \xi^2, \xi^3, \xi^9, \xi)$	$(1, \xi, \xi^2, \xi^3, \xi^{11}, \xi^5)$
$(1, \xi, \xi^2, \xi^4, \xi^8, \xi^2)$	$(1, \xi, \xi^2, \xi^8, \xi^3, \xi^{10})$	$(1, \xi, \xi^2, \xi^8, \xi^9, \xi^{17})$	

Sălăgean, Kaleyski, Özbudak

Background	
00000000000	

- Invariants for testing inequivalence under ~_{d-1} for vectorial Boolean functions of degree d
- Canonical form w.r.t. left linear transformations
- Classification of certain GAPN functions over F³₃.

・ロ・・西・・ヨ・・日・ うらぐ

Sălăgean, Kaleyski, Özbudak

ackground	

Canonical forn

Summary

Invariants for testing inequivalence under ~_{d-1} for vectorial Boolean functions of degree d

- Canonical form w.r.t. left linear transformations
- Classification of certain GAPN functions over F₃³.

▲□▶▲□▶▲□▶▲□▶ ▲□▼ ろん⊙

Sălăgean, Kaleyski, Özbudak

Background	Invariants 000000	Canonical form	Classifying GAPN

- Invariants for testing inequivalence under ~_{d-1} for vectorial Boolean functions of degree d
- Canonical form w.r.t. left linear transformations

Classification of certain GAPN functions over
³/₃.

Sălăgean, Kaleyski, Özbudak

Background	Invariants	Canonical form	Classify
0000000000	000000	000	000

- Invariants for testing inequivalence under ~_{d-1} for vectorial Boolean functions of degree d
- Canonical form w.r.t. left linear transformations
- Classification of certain GAPN functions over F³₃.

Sălăgean, Kaleyski, Özbudak

Background	Invariants	Canonical form	Classify
0000000000	000000	000	000

- Invariants for testing inequivalence under ~_{d-1} for vectorial Boolean functions of degree d
- Canonical form w.r.t. left linear transformations
- Classification of certain GAPN functions over F³₃.

Sălăgean, Kaleyski, Özbudak

- Further study of invariants for \sim_{d-1} and the relationship between different invariants
- Classification of all GAPN functions over \mathbb{P}_3^3 , including the ones that contain $x_1 x_2 x_3$
- Classification of GAPN functions over \mathbb{F}_5^5

Sălăgean, Kaleyski, Özbudak

Canonical forr

Further work

Further study of invariants for ~_{d-1} and the relationship between different invariants

- Classification of all GAPN functions over \mathbb{P}_3^3 , including the ones that contain $x_1 x_2 x_3$
- Classification of GAPN functions over F⁵₅

▲□▶▲□▶▲□▶▲□▶ ▲□ シスペ

Sălăgean, Kaleyski, Özbudak

- Further study of invariants for ~_{d-1} and the relationship between different invariants
- Classification of all GAPN functions over \mathbb{F}_3^3 , including the ones that contain $x_1 x_2 x_3$

Classification of GAPN functions over F⁵₅

Sălăgean, Kaleyski, Özbudak

- Further study of invariants for ~_{d-1} and the relationship between different invariants
- Classification of all GAPN functions over 𝔽₃³, including the ones that contain x₁x₂x₃
- Classification of GAPN functions over F⁵₅

- Further study of invariants for ~_{d-1} and the relationship between different invariants
- Classification of all GAPN functions over 𝔽₃³, including the ones that contain x₁x₂x₃
- Classification of GAPN functions over F⁵₅