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Algebraic normal form

F function with n inputs and n outputs over Fp

Univariate representation

or

Multivariate ANF (algebraic normal form)

F : Fn
p → Fn

p

F = (f1, . . . , fn)
fi are polynomial functions of degree at most p − 1 in each variable

Example over F3
3

F (x1, x2, x3) = (x1x2x3 + x1x2 + x3,2x1x2, x3 + 2)
= (1,0,0)x1x2x3 + (1,2,0)x1x2 + (1,0,1)x3 + (0,0,2)
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Differentiation

Definition
The discrete derivative of F in direction a ̸= 0 is

∆aF (x) = F (x + a)− F (x)− F (a) + F (0)

Higher order differentiation (higher order derivative)

∆
(k)
a1,...,ak

F = ∆a1∆a2 . . .∆ak F

We denote ∆
(k)
a F = ∆

(k)
a,...,aF .

deg(∆aF ) ≤ deg(F )− 1 [Lai,1994]
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APN functions

Definition
F : F2n → F2n is APN (almost perfect nonlinear) if for all a,b ∈ F2n with
a ̸= 0 the equation

∆aF (x) = b

has at most 2 solutions.

F is EA-equivalent to G if

G = A1 ◦ F ◦ A2 + H

for some invertible affine transformations A1,A2 and deg(H) ≤ 1.

The APN property is invariant to EA-equivalence.

Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification
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GAPN functions

Definition [Kuroda,Tsujie,2017]
F : Fpn → Fpn is GAPN (generalized almost perfect nonlinear) if for all
a,b ∈ Fpn with a ̸= 0 the equation

∆
(p−1)
a F (x) = b

has at most p solutions.
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Affine equivalence for GAPN functions

Definition Generalized extended affine equivalence [O,S, 21]:

F ∼k G if
G = A1 ◦ F ◦ A2 + H

for some invertible affine transformations A1,A2 and deg(H) ≤ k .

The GAPN property is invariant to ∼p−1.

Constructions of GAPN functions were given by [Kuroda,Tsujie,2017],
[Kuroda,2017], [Zha,Hu,Zhang,2018], [O,S,2021], [Wang,
Wang,Zhang,2022],[Bartoli et al,2022],[Beierle,2022],[S,O,2023] etc.
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Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification



Background Invariants Canonical form Classifying GAPN functions Conclusion

Affine equivalence for GAPN functions

Definition Generalized extended affine equivalence [O,S, 21]:

F ∼k G if
G = A1 ◦ F ◦ A2 + H

for some invertible affine transformations A1,A2 and deg(H) ≤ k .

The GAPN property is invariant to ∼p−1.

Constructions of GAPN functions were given by [Kuroda,Tsujie,2017],
[Kuroda,2017], [Zha,Hu,Zhang,2018], [O,S,2021], [Wang,
Wang,Zhang,2022],[Bartoli et al,2022],[Beierle,2022],[S,O,2023] etc.
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Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification



Background Invariants Canonical form Classifying GAPN functions Conclusion

Affine equivalence for GAPN functions

Definition Generalized extended affine equivalence [O,S, 21]:

F ∼k G if
G = A1 ◦ F ◦ A2 + H

for some invertible affine transformations A1,A2 and deg(H) ≤ k .

The GAPN property is invariant to ∼p−1.

Constructions of GAPN functions were given by [Kuroda,Tsujie,2017],
[Kuroda,2017], [Zha,Hu,Zhang,2018], [O,S,2021], [Wang,
Wang,Zhang,2022],[Bartoli et al,2022],[Beierle,2022],[S,O,2023] etc.
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GAPN construction using the multivariate ANF

[S,O,23] constructed GAPN functions of degree p by using a technique
similar to the construction of [Yu,Wang,Li,2014] for APN quadratic
functions using matrices with certain properties.

We consider F in multivariate ANF.

If F has algebraic degree p, then ∆
(p−1)
a F is linear.

The equation ∆
(p−1)
a F (x) = b has at most p solutions iff its coefficients

span a space of dimension at least n − 1.

Sălăgean, Kaleyski, Özbudak
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Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification



Background Invariants Canonical form Classifying GAPN functions Conclusion

GAPN construction using the multivariate ANF

Theorem (S,O,23)

F (x1, . . . , xn) =
n∑

i=1

n∑
j=1

cijx
p−1
i xj ,

where cij ∈ Fn
p and cii = 0.

F is GAPN iff for any a = (a1, . . . ,an) ∈ Fn
p \{0}, the set

n∑
j=1

aj

(
ap−2

i cij − ap−2
j cji

)
: i = 1, . . . ,n


spans a subspace of dimension n − 1.
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GAPN construction using the multivariate ANF

Example: n = 3,p = 3.

F (x1, x2, x3) =
3∑

i=1

3∑
j=1

cijx2
i xj ,

where cij ∈ F3
3 and cii = 0. Note x1x2x3 does not appear in F . 0 c12 c13

c21 0 c23
c31 c32 0



Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification
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GAPN construction using the multivariate ANF

F is GAPN iff for any a2,a3 ∈ F∗
3 each of the following sets of vectors

spans a space of dimension 2:

{c12,c13}
{c21,c23}
{c31,c32}
{a2c12 − c21, c13 + c23}
{a3c13 − c31, c12 + c32}
{a3c23 − c32, c21 + c31}
{a2c12 − c21 + a3c13 − c31, c21 − a2c12 + a3c23 − a2c32,
c31 − a3c13 + a2c32 − a3c23}

We can assume that c12 = e1 and c13 = e2.
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Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification



Background Invariants Canonical form Classifying GAPN functions Conclusion

GAPN construction using the multivariate ANF

F is GAPN iff for any a2,a3 ∈ F∗
3 each of the following sets of vectors

spans a space of dimension 2:

{c12,c13}
{c21,c23}
{c31,c32}
{a2c12 − c21, c13 + c23}
{a3c13 − c31, c12 + c32}
{a3c23 − c32, c21 + c31}
{a2c12 − c21 + a3c13 − c31, c21 − a2c12 + a3c23 − a2c32,
c31 − a3c13 + a2c32 − a3c23}

We can assume that c12 = e1 and c13 = e2.
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GAPN construction using the multivariate ANF

By computer search we found 83 484 GAPN functions of this type.

How many of these functions are inequivalent under ∼2 ?

More generally, could we test efficiently (in)equivalence under ∼d−1 for
functions of degree d?
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Testing affine equivalence and GAPN classification
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Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification



Background Invariants Canonical form Classifying GAPN functions Conclusion

GAPN construction using the multivariate ANF

By computer search we found 83 484 GAPN functions of this type.

How many of these functions are inequivalent under ∼2 ?

More generally, could we test efficiently (in)equivalence under ∼d−1 for
functions of degree d?
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Invariants: dimension of the image of the derivative

deg(F ) = d

deg(∆(d−1)
a1,...,ad−1

F ) ≤ 1

The multiset {dim(Im(∆
(d−1)
a1,...,ad−1

F )) : a1, . . . ,ad−1 ∈ Fn
p} is invariant

under ∼d−1.

DerImF (i) number of derivatives of F which have image of dimension i

A refinement of this invariant:
DerImProjF (i , j , k): the number of (a1, . . . ,ak ) for which there are
exactly j values of (ak+1, . . . ,ad−1) such that dim(Im(∆

(d−1)
a1,...,ad−1

F )) = i
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Invariants: orthoderivatives

F : Fpn → Fpn

An orthoderivative of F is a function πF : Fpn → Fpn

with πF (0) = 0 and πF (a) orthogonal to Im(∆aF );
moreover, if a ̸= 0 then πF (0) ̸= 0.

If F quadratic APN function, πF exists and is unique.

If F ,G are EA-equivalent and have unique orthoderivatives, then
πF , πG are affine equivalent [Canteaut et al, ’22].
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Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification



Background Invariants Canonical form Classifying GAPN functions Conclusion

Invariants: orthoderivatives

Proposed generalization:

An order r orthoderivative of F is any function π
(r)
F : Fr

pn → Fpn

π
(r)
F (a1, . . . ,ar ) = vp−1 with v orthogonal to Im(∆

(r)
a1,a2,...,ar F );

moreover, v is non-zero if a non-zero orthogonal element exists.

Note if v is orthogonal to a particular vectorspace, then so is αv for any
scalar α ∈ F∗

p; we have (αv)p−1 = vp−1.
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Invariants: orthoderivatives

Proposition

Let F ∼d−1 G, i.e. F = A1 ◦ G ◦ A2 + H for A1,A2 affine and bijective
and deg(H) ≤ d − 1. Then for any order d − 1 orthoderivative π

(d−1)
F of

F , there exists π
(d−1)
G of G such that for all a1, . . .ad−1 ∈ F∗

pn we have

π
(d−1)
F (A2(a1), . . . ,A2(ad−1)) = L∗

1(π
(d−1)
G (a1, . . . ,ad−1)), (1)

where L∗
1 is the adjoint operator of the linear part L1 of A1.

If π(d−1)
F is unique, the number of elements in Im(π

(d−1)
F ) and their

multiplicities are invariant under ∼d−1.
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Invariants: orthoderivatives

“Diagonalised” version of π(d−1)
F :

π̃
(d−1)
F : Fpn → Fpn

π̃
(d−1)
F (a) = π

(d−1)
F (a,a, . . . ,a).

If F is GAPN of degree p, then π̃
(p−1)
F is uniquely defined;

If F ∼p−1 G, then π̃
(p−1)
F and π̃

(p−1)
G are affine equivalent.
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Canonical form w.r.t. left linear transformations

If deg(F ) = d
F ∼d−1 G iff F = L1 ◦ G ◦ L2 + H

for some invertible linear transformations L1,L2 and deg(H) ≤ d − 1.

We now concentrate on L1.

Write F =
∑

bi ti , with
t1, . . . , tpn the monomials in decreasing degree lexicographic order.

L1 ◦ F =
∑

L1(bi)ti

bi ̸= 0 iff L1(bi) ̸= 0

For any fixed i1, . . . , ik , the coefficients of ti1 , . . . , tik in F are linearly
independent if and only if the coefficients of ti1 , . . . , tik in L1 ◦ F are
linearly independent.
Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification
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Canonical form w.r.t. left linear transformations
F =

∑
bi ti

0

.

.

.

0

bi1

.

.

. ∈ ⟨bi1
⟩

bi2
̸∈ ⟨bi1

⟩

.

.

. ∈ ⟨bi1
, bi2

⟩

bi3
̸∈ ⟨bi1

, bi2
⟩

.

.

.

We say that F is in canonical form w.r.t. left linear transformations if
bi1 = e1,bi2 = e2, . . .

Sălăgean, Kaleyski, Özbudak
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Canonical form w.r.t. left linear transformations

For any F , the canonical form of F is the unique function G in canonical
form in the set of functions {L ◦ F : L linear and invertible};

G can be computed efficiently as L1 ◦ F
with L1 any bijective linear transformation with L1(cij ) = ej for

j = 1, . . . , k .

Remark The canonical form has the lexicographically smallest list of
coefficients.

[Kalgin, Idrisova, ’20] used the lexicographically smallest list of
coefficients for the matrix associated to APN functions.
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Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification



Background Invariants Canonical form Classifying GAPN functions Conclusion

Canonical form w.r.t. left linear transformations

For any F , the canonical form of F is the unique function G in canonical
form in the set of functions {L ◦ F : L linear and invertible};

G can be computed efficiently as L1 ◦ F
with L1 any bijective linear transformation with L1(cij ) = ej for

j = 1, . . . , k .

Remark The canonical form has the lexicographically smallest list of
coefficients.

[Kalgin, Idrisova, ’20] used the lexicographically smallest list of
coefficients for the matrix associated to APN functions.
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Classifying GAPN functions

GAPN functions over F3
3

We only compute GAPN functions in canonical form w.r.t. left linear
transformations.

83 484 functions → 4 638 functions in canonical form

Invariants based on dimension of the image of the derivative
distinguish 10 sets of inequivalent functions.

Invariants based on orthoderivatives distinguish the same 10 sets.

Size of sets: 56, 420, 912, 1188, 720, 270, 264, 480, 312, 16.
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Classifying GAPN functions

Within each set C1, . . . C10, determine representatives for each class
under ∼2.

while Ci ̸= ∅
choose F ∈ Ci and declare F a representative
for all the possible L2

compute the canonical form of F ◦ L2 and remove it from Ci
end while

Note that there are 11 232 possible L1.
If we had tested L1 ◦ F ◦ L2 for all pairs (L1,L2), there would be
(11 232)2 combinations, so the savings are significant.

Result: 31 classes!
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Classifying GAPN functions

List of (c12,c13,c21,c23,c31,c32)
ξ primitive in F33 satisfying ξ3 + 2ξ + 1 = 0

(1, ξ, ξ2, ξ, ξ2, ξ3) (1, ξ, ξ2, ξ, ξ2, ξ6) (1, ξ, ξ2, ξ, ξ2, ξ9) (1, ξ, ξ2, ξ, ξ3, ξ2)

(1, ξ, ξ2, ξ, ξ3, ξ8) (1, ξ, ξ2, ξ, ξ3, ξ15) (1, ξ, ξ2, ξ, ξ3, ξ18) (1, ξ, ξ2, ξ, ξ3, ξ21)

(1, ξ, ξ2, ξ, ξ4, ξ6) (1, ξ, ξ2, ξ, ξ6, ξ22) (1, ξ, ξ2, ξ, ξ8, ξ12) (1, ξ, ξ2, ξ, ξ8, ξ25)

(1, ξ, ξ2, ξ, 2, ξ2) (1, ξ, ξ2, ξ3, ξ3, ξ7) (1, ξ, ξ2, ξ3, ξ3, ξ12) (1, ξ, ξ2, ξ3, ξ3, ξ19)

(1, ξ, ξ2, ξ3, ξ3, ξ22) (1, ξ, ξ2, ξ3, ξ3, ξ25) (1, ξ, ξ2, ξ3, ξ4, ξ5) (1, ξ, ξ2, ξ3, ξ4, ξ9)

(1, ξ, ξ2, ξ3, ξ4, ξ10) (1, ξ, ξ2, ξ3, ξ4, ξ18) (1, ξ, ξ2, ξ3, ξ4, ξ25) (1, ξ, ξ2, ξ3, ξ6, ξ5)

(1, ξ, ξ2, ξ3, ξ8, ξ2) (1, ξ, ξ2, ξ3, ξ8, ξ19) (1, ξ, ξ2, ξ3, ξ9, ξ) (1, ξ, ξ2, ξ3, ξ11, ξ5)

(1, ξ, ξ2, ξ4, ξ8, ξ2) (1, ξ, ξ2, ξ8, ξ3, ξ10) (1, ξ, ξ2, ξ8, ξ9, ξ17)
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Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification



Background Invariants Canonical form Classifying GAPN functions Conclusion

Summary

Invariants for testing inequivalence under ∼d−1 for vectorial
Boolean functions of degree d
Canonical form w.r.t. left linear transformations
Classification of certain GAPN functions over F3

3.
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Sălăgean, Kaleyski, Özbudak

Testing affine equivalence and GAPN classification



Background Invariants Canonical form Classifying GAPN functions Conclusion

Further work

Further study of invariants for ∼d−1 and the relationship between
different invariants
Classification of all GAPN functions over F3

3, including the ones
that contain x1x2x3

Classification of GAPN functions over F5
5
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