

A Note on Vectorial Boolean Functions as Embeddings

Augustine Musukwa 1 and Massimiliano Sala 2

¹,2University of Trento, Italy ¹Mzuzu University, Malawi

September 13, 2024

(ロ) (個) (星) (星)

隱

 $2Q$

• Motivation

Ε

 299

검사 K 검사

 $\left(1\right)$

K ロ ▶ K 倒 ▶

- **•** Motivation
- **•** Preliminaries and Notations

← ロ ▶ → イ 同

D ٠ D. \rightarrow 重

- **•** Motivation
- **•** Preliminaries and Notations
- **•** Preliminary results

K ロ ▶ K 何

É

- **•** Motivation
- **•** Preliminaries and Notations
- **•** Preliminary results
- Main results

4 ロ ▶ 4 何

重

Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with $m > n$, have gained attention.

4 ロ ▶ 4 冊

造

- Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with $m > n$, have gained attention.
- Abbondati et al in 2024 and Taniguchi in 2023 studied APN functions F that satisfy Dillon's property

4 D F

 Ω

- Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with $m > n$, have gained attention.
- Abbondati et al in 2024 and Taniguchi in 2023 studied APN functions F that satisfy Dillon's property :

- Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with $m > n$, have gained attention.
- Abbondati et al in 2024 and Taniguchi in 2023 studied APN functions F that satisfy Dillon's property :

Aragona et al in 2019, injective APN functions were used in a cipher.

- Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with $m > n$, have gained attention.
- Abbondati et al in 2024 and Taniguchi in 2023 studied APN functions F that satisfy Dillon's property :

- Aragona et al in 2019, injective APN functions were used in a cipher.
- In this work, we are interested in injective functions from \mathbb{F}_2^n to \mathbb{F}_2^m , with $m > n$.

- Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with $m > n$, have gained attention.
- Abbondati et al in 2024 and Taniguchi in 2023 studied APN functions F that satisfy Dillon's property :

- Aragona et al in 2019, injective APN functions were used in a cipher.
- In this work, we are interested in injective functions from \mathbb{F}_2^n to \mathbb{F}_2^m , with $m > n$.
- We want to understand whether these functions have balanced components.

 \bullet We denote the field of two elements, 0 and 1, by $\mathbb{F}.$

イロト

э

- \bullet We denote the field of two elements, 0 and 1, by $\mathbb{F}.$
- \mathbb{F}^n is an *n*-dimensional vector space over $\mathbb{F}.$

4 0 8

- We denote the field of two elements, 0 and 1, by \mathbb{F} .
- \mathbb{F}^n is an *n*-dimensional vector space over $\mathbb{F}.$
- A zero in \mathbb{F}^n is denoted by 0_n .

- We denote the field of two elements, 0 and 1, by \mathbb{F} .
- \mathbb{F}^n is an *n*-dimensional vector space over $\mathbb{F}.$
- A zero in \mathbb{F}^n is denoted by 0_n .
- A Vectorial Boolean function (vBf) is any function F from \mathbb{F}^n to \mathbb{F}^m .

- We denote the field of two elements, 0 and 1, by \mathbb{F} .
- \mathbb{F}^n is an *n*-dimensional vector space over $\mathbb{F}.$
- A zero in \mathbb{F}^n is denoted by 0_n .
- A Vectorial Boolean function (vBf) is any function F from \mathbb{F}^n to \mathbb{F}^m .
- If $m = 1$, we simply say a *Boolean function (Bf)* and denote it by f.

- We denote the field of two elements, 0 and 1, by \mathbb{F} .
- \mathbb{F}^n is an *n*-dimensional vector space over $\mathbb{F}.$
- A zero in \mathbb{F}^n is denoted by 0_n .
- A Vectorial Boolean function (vBf) is any function F from \mathbb{F}^n to \mathbb{F}^m .
- If $m = 1$, we simply say a *Boolean function (Bf)* and denote it by f.
- Algebraic Normal Form:

$$
f(x_1,\dots,x_n)=\sum_{l\subseteq P}a_l\prod_{i\in I}x_i
$$

where $P = \{1, \ldots, n\}$ and $a_1 \in \mathbb{F}$.

• Degree of
$$
f
$$
: deg (f) = max $_{I \subseteq P}$ { $|I| | a_I \neq 0$ }.

K ロ ▶ K 何

重

• Degree of
$$
f
$$
: $\deg(f) = \max_{I \subseteq P} \{|I| \mid a_I \neq 0\}$.

• If
$$
\deg(f) \leq 1
$$
, *f* is called *affine*.

K ロ ▶ K 何

重

• Degree of
$$
f
$$
: deg (f) = max _{$l \subseteq P$} { $|l| | a_l \neq 0$ }.

• If
$$
\deg(f) \leq 1
$$
, *f* is called *affine*.

• If deg(f) \leq 1 and $f(0_n) = 0$, f is called linear.

4 0 8

э

• Degree of
$$
f
$$
: $\deg(f) = \max_{I \subseteq P} \{|I| \mid a_I \neq 0\}$.

• If
$$
\deg(f) \leq 1
$$
, *f* is called *affine*.

- If deg(f) ≤ 1 and $f(0_n) = 0$, f is called linear.
- If deg(f) = 2, f is called *quadratic*.

э

• Degree of
$$
f
$$
: $\deg(f) = \max_{I \subseteq P} \{|I| \mid a_I \neq 0\}$.

- If deg(f) \leq 1, f is called *affine*.
- If deg(f) ≤ 1 and $f(0_n) = 0$, f is called linear.
- If deg(f) = 2, f is called quadratic.
- The weight of a Boolean function $f: wt(f) = |\{x \in \mathbb{F}^n \mid f(x) = 1\}|$.

 Ω

• Degree of
$$
f
$$
: $\deg(f) = \max_{I \subseteq P} \{|I| \mid a_I \neq 0\}$.

- If deg(f) ≤ 1 , f is called *affine*.
- If deg(f) ≤ 1 and $f(0_n) = 0$, f is called linear.
- If deg(f) = 2, f is called quadratic.
- The weight of a Boolean function $f: wt(f) = |\{x \in \mathbb{F}^n \mid f(x) = 1\}|$.
- f is balanced if $wt(f) = 2^{n-1}$.

 Ω

• We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called coordinate functions of F.

- We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called coordinate functions of F.
- For any nonzero $\lambda \in \mathbb{F}^m$, we call $F_{\lambda} = \lambda \cdot F$ a component of F.

- We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called coordinate functions of F.
- For any nonzero $\lambda \in \mathbb{F}^m$, we call $F_{\lambda} = \lambda \cdot F$ a component of F.
- \bullet F is balanced if and only if all its components are balanced.

- We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called coordinate functions of F.
- For any nonzero $\lambda \in \mathbb{F}^m$, we call $F_{\lambda} = \lambda \cdot F$ a component of F.
- \bullet F is balanced if and only if all its components are balanced.
- An *image* of F is defined by $\text{Im}(F) = \{F(x) : x \in \mathbb{F}^n\}.$

- We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called coordinate functions of F.
- For any nonzero $\lambda \in \mathbb{F}^m$, we call $F_{\lambda} = \lambda \cdot F$ a component of F.
- \bullet F is balanced if and only if all its components are balanced.
- An *image* of F is defined by $\text{Im}(F) = \{F(x) : x \in \mathbb{F}^n\}.$
- We say that F is *injective* if $|\text{Im}(F)| = 2^n$.

- We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called coordinate functions of F.
- For any nonzero $\lambda \in \mathbb{F}^m$, we call $F_{\lambda} = \lambda \cdot F$ a component of F.
- \bullet F is balanced if and only if all its components are balanced.
- An *image* of F is defined by $\text{Im}(F) = \{F(x) : x \in \mathbb{F}^n\}.$
- We say that F is *injective* if $|\text{Im}(F)| = 2^n$.
- We call injective functions from \mathbb{F}^n into \mathbb{F}^m embeddings.

 \bullet The *Walsh transform* of a Bf f :

$$
\mathcal{W}_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x) + a \cdot x},
$$

for all $a \in \mathbb{F}^n$.

4 D F

э

 \bullet The *Walsh transform* of a Bf f :

$$
\mathcal{W}_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x) + a \cdot x},
$$

for all $a \in \mathbb{F}^n$.

 \bullet We define $\mathcal{F}(f)$ as

$$
\mathcal{F}(f)=\mathcal{W}_f(0_n)=\sum_{x\in\mathbb{F}^n}(-1)^{f(x)}=2^n-2\mathrm{wt}(f).
$$

4 D F

 299

Þ

 \bullet The *Walsh transform* of a Bf f :

$$
\mathcal{W}_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x) + a \cdot x},
$$

for all $a \in \mathbb{F}^n$.

 \bullet We define $\mathcal{F}(f)$ as

$$
\mathcal{F}(f) = \mathcal{W}_f(0_n) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x)} = 2^n - 2\mathrm{wt}(f).
$$

• Observe that f is balanced if and only if $\mathcal{F}(f) = 0$.

 \bullet Nonlinearity of a Bf f :

$$
N(f) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}^n} |\mathcal{W}_f(a)| \leq 2^{n-1} - 2^{\frac{n}{2}-1}.
$$

イロト

É

 \bullet Nonlinearity of a Bf f :

$$
N(f) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}^n} |\mathcal{W}_f(a)| \leq 2^{n-1} - 2^{\frac{n}{2}-1}.
$$

f is called *bent* if $N(f) = 2^{n-1} - 2^{\frac{n}{2}-1}$ and this happens only when n is even.

 Ω

• Nonlinearity of a Bf f :

$$
N(f) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}^n} |\mathcal{W}_f(a)| \leq 2^{n-1} - 2^{\frac{n}{2}-1}.
$$

- f is called *bent* if $N(f) = 2^{n-1} 2^{\frac{n}{2}-1}$ and this happens only when n is even.
- f is called *semi-bent* if $\mathcal{N}(f) = 2^{n-1} 2^{\frac{n-1}{2}}$ and this happens only when n is odd.

The first-order derivative of f at $a \in \mathbb{F}^n$: $D_a f(x) = f(x + a) + f(x)$.

The first-order derivative of f at $a \in \mathbb{F}^n$: $D_a f(x) = f(x + a) + f(x)$.

The first-order derivative of F at $a \in \mathbb{F}^n$: $D_a F(x) = F(x + a) + F(x)$.

- The first-order derivative of f at $a \in \mathbb{F}^n$: $D_a f(x) = f(x + a) + f(x)$.
- The first-order derivative of F at $a \in \mathbb{F}^n$: $D_a F(x) = F(x + a) + F(x)$.
- An element $a \in \mathbb{F}^n$ is called a *linear structure* of f if $D_a f$ is constant.

- The first-order derivative of f at $a \in \mathbb{F}^n$: $D_a f(x) = f(x + a) + f(x)$.
- The first-order derivative of F at $a \in \mathbb{F}^n$: $D_a F(x) = F(x + a) + F(x)$.
- An element $a \in \mathbb{F}^n$ is called a *linear structure* of f if $D_a f$ is constant.
- The set of all linear structures of f is denoted by $V(f)$.

- The first-order derivative of f at $a \in \mathbb{F}^n$: $D_a f(x) = f(x + a) + f(x)$.
- The first-order derivative of F at $a \in \mathbb{F}^n$: $D_a F(x) = F(x + a) + F(x)$.
- An element $a \in \mathbb{F}^n$ is called a *linear structure* of f if $D_a f$ is constant.
- The set of all linear structures of f is denoted by $V(f)$.
- It is well-known that $V(f)$ is a subspace of \mathbb{F}^n .

• It is well-known that f is called *bent* if and only if $D_a f$ is balanced, for all nonzero $a \in \mathbb{F}^n$.

4 0 8

- It is well-known that f is called bent if and only if $D_a f$ is balanced, for all nonzero $a \in \mathbb{F}^n$.
- It follows that if f is bent, then dim $V(f) = 0$.

- It is well-known that f is called *bent* if and only if $D_a f$ is balanced, for all nonzero $a \in \mathbb{F}^n$.
- It follows that if f is bent, then dim $V(f) = 0$.
- \bullet It is well-known that for a quadratic semi-bent f we have dim $V(f) = 1$.

- It is well-known that f is called *bent* if and only if $D_a f$ is balanced, for all nonzero $a \in \mathbb{F}^n$.
- It follows that if f is bent, then dim $V(f) = 0$.
- \bullet It is well-known that for a quadratic semi-bent f we have dim $V(f) = 1$.
- \bullet For any unbalanced quadratic Boolean function f, it is known that $\mathcal{F}(f)=\pm 2^{\frac{n+k}{2}}$, where $k=\mathsf{dim}\ \mathcal{V}(f).$

Remark 2

For any given Bf f , it can be easily shown that

$$
\mathcal{F}^2(f)=\sum_{a\in\mathbb{F}^n}\mathcal{F}(D_af).
$$

4 D F

э

Remark 2

For any given Bf f , it can be easily shown that

$$
\mathcal{F}^2(f)=\sum_{a\in\mathbb{F}^n}\mathcal{F}(D_af).
$$

Remark 3

Let f be a Bf on *n* variables. Then

$$
\sum_{a\in\mathbb{F}^n} \mathrm{wt}(D_a f) = 2^{2n-1} - \frac{1}{2} \mathcal{F}^2(f).
$$

4 0 8

э

Preliminary Results

Lemma 4

Let f be a Bf on n variables. Then

$$
\sum_{a\in\mathbb{F}^n}\mathrm{wt}(D_af)\leq 2^{2n-1}.
$$

Furthermore, equality holds if and only if f is balanced.

4 D F

э

Preliminary Results

Lemma 4

Let f be a Bf on n variables. Then

$$
\sum_{a\in\mathbb{F}^n}\mathrm{wt}(D_af)\leq 2^{2n-1}.
$$

Furthermore, equality holds if and only if f is balanced.

Proposition 5

Let f be any quadratic Bf on n variables. Then

$$
\sum_{a \in \mathbb{F}^n} \text{wt}(D_a f) = \begin{cases} 2^{2n-1} & \text{if } f \text{ is balanced} \\ 2^{2n-1} - 2^{n+k-1} & \text{otherwise,} \end{cases}
$$

where $k = \dim V(f)$.

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

← ロ → → ← 何 →

D.

 QQQ

Remark 6

Let $F: \mathbb{F}^n \longrightarrow \mathbb{F}^m$ be any vBf. For any $a, x \in \mathbb{F}^n$, we have

$$
\sum_{\lambda \in \mathbb{F}^m} (-1)^{\lambda \cdot [F(x) + F(x+a)]} = \begin{cases} 2^m & \text{if } F(x) = F(x+a) \\ 0 & \text{otherwise.} \end{cases}
$$

K 何 ▶ 【 ヨ ▶ 【 ヨ ▶

4 0 F

Ε ORO

Remark 6

Let $F: \mathbb{F}^n \longrightarrow \mathbb{F}^m$ be any vBf. For any $a, x \in \mathbb{F}^n$, we have

$$
\sum_{\lambda \in \mathbb{F}^m} (-1)^{\lambda \cdot [F(x) + F(x+a)]} = \begin{cases} 2^m & \text{if } F(x) = F(x+a) \\ 0 & \text{otherwise.} \end{cases}
$$

Theorem 7

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \geq n$. Then

$$
\sum_{\lambda\in\mathbb{F}^m}\mathcal{F}^2(F_{\lambda})\geq 2^{n+m}.
$$

Moreover, equality holds if and only if F is an embedding.

Corollary 8

Let $F: \mathbb{F}^n \longrightarrow \mathbb{F}^m$, with $m \geq n$, be any vBf. Then

$$
\sum_{\lambda,a\in\mathbb{F}^m}\mathcal{F}(D_aF_\lambda)\geq 2^{n+m}.
$$

Moreover, equality holds if and only if F is an embedding.

4 D F

э

Corollary 8

Let $F: \mathbb{F}^n \longrightarrow \mathbb{F}^m$, with $m \geq n$, be any vBf. Then

$$
\sum_{\lambda,a\in\mathbb{F}^m}\mathcal{F}(D_aF_\lambda)\geq 2^{n+m}.
$$

Moreover, equality holds if and only if F is an embedding.

Theorem 9

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \geq n$. Then

$$
\sum_{\lambda\in{\mathbb F}^m\setminus\{0_m\}}\sum_{\mathsf{a}\in{\mathbb F}^n}\mathrm{wt}(D_\mathsf{a} F_\lambda)\le 2^{2n-1}(2^m-2^{m-n}).
$$

Moreover, equality holds if and only if F is an embedding.

÷,

Definition

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m\geq n$. Define the set of balanced components of F by $B(F) = \{ \lambda \in \mathbb{F}^m \mid \text{wt}(F_\lambda) = 2^{n-1} \}.$

4 D F

э

Definition

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m\geq n$. Define the set of balanced components of F by $B(F) = \{ \lambda \in \mathbb{F}^m \mid \text{wt}(F_\lambda) = 2^{n-1} \}.$

Corollary 10

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \geq n$. Then $|B(F)| \leq 2^m - 2^{m-n}$. Furthermore, equality holds if and only if 2^{m−n} are constant components and F is an embedding.

Definition

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m\geq n$. Define the set of balanced components of F by $B(F) = \{ \lambda \in \mathbb{F}^m \mid \text{wt}(F_\lambda) = 2^{n-1} \}.$

Corollary 10

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \geq n$. Then $|B(F)| \leq 2^m - 2^{m-n}$. Furthermore, equality holds if and only if 2^{m−n} are constant components and F is an embedding.

Remark 11

Observe from Corollary 10 that no vBf from \mathbb{F}^n into \mathbb{F}^m , with $m > n$, can have all its components balanced.

 QQ

イロト イ何 トイヨト イヨト ニヨー

イロト

э

 QQQ

Theorem 12

Let F be a quadratic embedding from \mathbb{F}^n into \mathbb{F}^m , with $m > n$.

Theorem 12

Let F be a quadratic embedding from \mathbb{F}^n into \mathbb{F}^m , with $m > n$. Then

(i) $|B(F)| \ge 2^n - 1$, for *n* even and equality holds if and only if all the other components are bent,

Theorem 12

Let F be a quadratic embedding from \mathbb{F}^n into \mathbb{F}^m , with $m > n$. Then

- (i) $|B(F)| \ge 2^n 1$, for *n* even and equality holds if and only if all the other components are bent,
- (ii) $|B(F)| \ge 2^{m-1} + 2^{n-1} 1$, for *n* odd and equality holds if and only if all the other components are unbalanced semi-bent.

The coordinate functions of a quadratic embedding F from \mathbb{F}^3 into \mathbb{F}^4 :

$$
f_1 = x_1x_2 + x_1 + x_2 + x_3,
$$

\n
$$
f_2 = x_1x_3 + x_1 + x_2 + x_3,
$$

\n
$$
f_3 = x_2x_3 + x_1 + x_2,
$$

\n
$$
f_4 = x_1 + x_3
$$

4 0 8

重

The coordinate functions of a quadratic embedding F from \mathbb{F}^3 into \mathbb{F}^4 :

$$
f_1 = x_1x_2 + x_1 + x_2 + x_3,
$$

\n
$$
f_2 = x_1x_3 + x_1 + x_2 + x_3,
$$

\n
$$
f_3 = x_2x_3 + x_1 + x_2,
$$

\n
$$
f_4 = x_1 + x_3
$$

F has 11 balanced components and 4 unbalanced semi-bent components.

 Ω

The coordinate functions of a quadratic embedding F from \mathbb{F}^3 into \mathbb{F}^4 :

$$
f_1 = x_1x_2 + x_1 + x_2 + x_3,
$$

\n
$$
f_2 = x_1x_3 + x_1 + x_2 + x_3,
$$

\n
$$
f_3 = x_2x_3 + x_1 + x_2,
$$

\n
$$
f_4 = x_1 + x_3
$$

F has 11 balanced components and 4 unbalanced semi-bent components. 14 components are quadratic, while only one component is linear.

The coordinate functions of a quadratic embedding F from \mathbb{F}^4 into \mathbb{F}^5 :

$$
f_1 = x_1x_2 + x_4,
$$

\n
$$
f_2 = x_1x_3 + x_3 + x_4,
$$

\n
$$
f_3 = x_1x_4 + x_3x_4 + x_2,
$$

\n
$$
f_4 = x_2x_3 + x_3x_4 + x_1 + x_4,
$$

\n
$$
f_5 = x_1x_3 + x_2x_4.
$$

4 **D**

э

The coordinate functions of a quadratic embedding F from \mathbb{F}^4 into \mathbb{F}^5 :

$$
f_1 = x_1x_2 + x_4,
$$

\n
$$
f_2 = x_1x_3 + x_3 + x_4,
$$

\n
$$
f_3 = x_1x_4 + x_3x_4 + x_2,
$$

\n
$$
f_4 = x_2x_3 + x_3x_4 + x_1 + x_4,
$$

\n
$$
f_5 = x_1x_3 + x_2x_4.
$$

F has 15 balanced components and 16 bent components.

 \leftarrow

Next we consider a special case where the image of F is subspace of \mathbb{F}^m .

イロト

重

Next we consider a special case where the image of F is subspace of \mathbb{F}^m .

Theorem 13

Let $F: \mathbb{F}^n \longrightarrow \mathbb{F}^m$, with $m \geq n$, be an embedding and $\text{Im}(F)$ be a subspace of \mathbb{F}^m . Then, for all $\lambda\in\mathbb{F}^m$, there are only two cases: either F_λ is constant or balanced. Precisely, $|B(F)| = 2^m - 2^{m-n}$ and 2^{m-n} constant components of F.

- 1 Abbondati, M., Calderini, M. and Villa, I.: On Dillon's property of (n, m)-functions. Cryptogr. Commun. (2024). https://doi.org/10.1007/s12095-024-00730-1
- 2 Aragona, R., Calderini, M., Civino, R., Sala, M., Zappatore, I.: Wave shaped round functions and primitive groups. Adv. Math. Commun. 13(1), (2019), 67-88.
- 3 Taniguchi, H.: D-property for APN functions from \mathbb{F}_2^n to $\mathbb{F}_2^{n+1}.$ Cryptography and Communications, 15 (2023), 627–647.

THANK YOU FOR YOUR ATTENTION

ヨメ イヨメ

 \mathcal{A} .

K ロ ▶ K 何 ▶

重