

A Note on Vectorial Boolean Functions as Embeddings

Augustine Musukwa¹ and Massimiliano Sala²

^{1,2}University of Trento, Italy ¹Mzuzu University, Malawi

September 13, 2024

(中) (종) (종) (종) (종) (종)

Motivation

D	E۸	5	n	2	1
ъ	1 1	2۱	υ	4	•

3

글 🕨 🔺 글 🕨

- Motivation
- Preliminaries and Notations

æ

- Motivation
- Preliminaries and Notations
- Preliminary results

æ

- Motivation
- Preliminaries and Notations
- Preliminary results
- Main results

э

• Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with m > n, have gained attention.

э

- Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with m > n, have gained attention.
- Abbondati et al in 2024 and Taniguchi in 2023 studied APN functions *F* that satisfy Dillon's property

- Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with m > n, have gained attention.
- Abbondati et al in 2024 and Taniguchi in 2023 studied APN functions *F* that satisfy Dillon's property :

- Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with m > n, have gained attention.
- Abbondati et al in 2024 and Taniguchi in 2023 studied APN functions *F* that satisfy Dillon's property :

• Aragona et al in 2019, injective APN functions were used in a cipher.

- Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with m > n, have gained attention.
- Abbondati et al in 2024 and Taniguchi in 2023 studied APN functions *F* that satisfy Dillon's property :

- Aragona et al in 2019, injective APN functions were used in a cipher.
- In this work, we are interested in injective functions from \mathbb{F}_2^n to \mathbb{F}_2^m , with m > n.

- Recently functions F from \mathbb{F}_2^n to \mathbb{F}_2^m , with m > n, have gained attention.
- Abbondati et al in 2024 and Taniguchi in 2023 studied APN functions *F* that satisfy Dillon's property :

- Aragona et al in 2019, injective APN functions were used in a cipher.
- In this work, we are interested in injective functions from \mathbb{F}_2^n to \mathbb{F}_2^m , with m > n.
- We want to understand whether these functions have balanced components.

 \bullet We denote the field of two elements, 0 and 1, by $\mathbb{F}.$

- \bullet We denote the field of two elements, 0 and 1, by $\mathbb{F}.$
- \mathbb{F}^n is an *n*-dimensional vector space over \mathbb{F} .

- We denote the field of two elements, 0 and 1, by \mathbb{F} .
- \mathbb{F}^n is an *n*-dimensional vector space over \mathbb{F} .
- A zero in \mathbb{F}^n is denoted by 0_n .

- We denote the field of two elements, 0 and 1, by \mathbb{F} .
- \mathbb{F}^n is an *n*-dimensional vector space over \mathbb{F} .
- A zero in \mathbb{F}^n is denoted by 0_n .
- A Vectorial Boolean function (vBf) is any function F from \mathbb{F}^n to \mathbb{F}^m .

- We denote the field of two elements, 0 and 1, by \mathbb{F} .
- \mathbb{F}^n is an *n*-dimensional vector space over \mathbb{F} .
- A zero in \mathbb{F}^n is denoted by 0_n .
- A Vectorial Boolean function (vBf) is any function F from \mathbb{F}^n to \mathbb{F}^m .
- If m = 1, we simply say a *Boolean function (Bf)* and denote it by f.

- \bullet We denote the field of two elements, 0 and 1, by $\mathbb{F}.$
- \mathbb{F}^n is an *n*-dimensional vector space over \mathbb{F} .
- A zero in \mathbb{F}^n is denoted by 0_n .
- A Vectorial Boolean function (vBf) is any function F from \mathbb{F}^n to \mathbb{F}^m .
- If m = 1, we simply say a *Boolean function* (*Bf*) and denote it by f.
- Algebraic Normal Form:

$$f(x_1,\cdots,x_n)=\sum_{I\subseteq P}a_I\prod_{i\in I}x_i$$

where $P = \{1, \ldots, n\}$ and $a_I \in \mathbb{F}$.

• Degree of
$$f: \deg(f) = \max_{I \subseteq P} \{ |I| \mid a_I \neq 0 \}.$$

æ

• Degree of
$$f: \deg(f) = \max_{I \subseteq P} \{ |I| \mid a_I \neq 0 \}.$$

• If
$$deg(f) \leq 1$$
, f is called *affine*.

æ

• Degree of
$$f: \deg(f) = \max_{I \subseteq P} \{ |I| \mid a_I \neq 0 \}.$$

• If
$$deg(f) \leq 1$$
, f is called *affine*.

• If deg $(f) \leq 1$ and $f(0_n) = 0$, f is called *linear*.

э

• Degree of
$$f$$
: deg $(f) = \max_{I \subseteq P} \{ |I| \mid a_I \neq 0 \}$.

• If
$$deg(f) \leq 1$$
, f is called *affine*.

- If deg $(f) \leq 1$ and $f(0_n) = 0$, f is called *linear*.
- If deg(f) = 2, f is called *quadratic*.

• Degree of
$$f$$
: deg $(f) = \max_{I \subseteq P} \{ |I| \mid a_I \neq 0 \}$.

- If $deg(f) \leq 1$, f is called *affine*.
- If deg $(f) \leq 1$ and $f(0_n) = 0$, f is called *linear*.
- If deg(f) = 2, f is called *quadratic*.
- The weight of a Boolean function $f: wt(f) = |\{x \in \mathbb{F}^n \mid f(x) = 1\}|.$

• Degree of
$$f$$
: deg $(f) = \max_{I \subseteq P} \{ |I| \mid a_I \neq 0 \}$.

- If $deg(f) \leq 1$, f is called *affine*.
- If deg $(f) \leq 1$ and $f(0_n) = 0$, f is called *linear*.
- If deg(f) = 2, f is called *quadratic*.
- The weight of a Boolean function $f: wt(f) = |\{x \in \mathbb{F}^n \mid f(x) = 1\}|.$
- f is balanced if $wt(f) = 2^{n-1}$.

• We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called *coordinate functions* of F.

- We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called *coordinate functions* of F.
- For any nonzero $\lambda \in \mathbb{F}^m$, we call $F_{\lambda} = \lambda \cdot F$ a component of F.

- We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called *coordinate functions* of F.
- For any nonzero $\lambda \in \mathbb{F}^m$, we call $F_{\lambda} = \lambda \cdot F$ a component of F.
- F is balanced if and only if all its components are balanced.

- We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called *coordinate functions* of F.
- For any nonzero $\lambda \in \mathbb{F}^m$, we call $F_{\lambda} = \lambda \cdot F$ a component of F.
- F is balanced if and only if all its components are balanced.
- An *image* of F is defined by $Im(F) = \{F(x) : x \in \mathbb{F}^n\}$.

- We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called *coordinate functions* of F.
- For any nonzero $\lambda \in \mathbb{F}^m$, we call $F_{\lambda} = \lambda \cdot F$ a component of F.
- F is balanced if and only if all its components are balanced.
- An *image* of F is defined by $Im(F) = \{F(x) : x \in \mathbb{F}^n\}$.
- We say that F is *injective* if $|Im(F)| = 2^n$.

- We can write $F = (f_1, \ldots, f_m)$, where f_1, \ldots, f_m are Boolean functions called *coordinate functions* of F.
- For any nonzero $\lambda \in \mathbb{F}^m$, we call $F_{\lambda} = \lambda \cdot F$ a component of F.
- F is balanced if and only if all its components are balanced.
- An *image* of F is defined by $Im(F) = \{F(x) : x \in \mathbb{F}^n\}$.
- We say that F is *injective* if $|Im(F)| = 2^n$.
- We call injective functions from \mathbb{F}^n into \mathbb{F}^m embeddings.

• The Walsh transform of a Bf f:

$$\mathcal{W}_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x) + a \cdot x},$$

for all $a \in \mathbb{F}^n$.

• The Walsh transform of a Bf f:

$$\mathcal{W}_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x) + a \cdot x},$$

for all $a \in \mathbb{F}^n$.

• We define $\mathcal{F}(f)$ as

$$\mathcal{F}(f)=\mathcal{W}_f(\mathsf{0}_n)=\sum_{x\in\mathbb{F}^n}(-1)^{f(x)}=2^n-2\mathrm{wt}(f).$$

• The Walsh transform of a Bf f:

$$\mathcal{W}_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x) + a \cdot x},$$

for all $a \in \mathbb{F}^n$.

• We define $\mathcal{F}(f)$ as

$$\mathcal{F}(f) = \mathcal{W}_f(\mathfrak{0}_n) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x)} = 2^n - 2\mathrm{wt}(f).$$

• Observe that f is balanced if and only if $\mathcal{F}(f) = 0$.

D	- A	0	n	2	4
ъ	Γŀ	12	υ	2	4

• Nonlinearity of a Bf f:

$$N(f) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}^n} |\mathcal{W}_f(a)| \le 2^{n-1} - 2^{\frac{n}{2}-1}.$$

э

• Nonlinearity of a Bf f:

$$N(f) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}^n} |W_f(a)| \le 2^{n-1} - 2^{\frac{n}{2}-1}.$$

• f is called *bent* if $N(f) = 2^{n-1} - 2^{\frac{n}{2}-1}$ and this happens only when n is even.

• Nonlinearity of a Bf f:

$$N(f) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}^n} |W_f(a)| \le 2^{n-1} - 2^{\frac{n}{2}-1}.$$

- f is called *bent* if $N(f) = 2^{n-1} 2^{\frac{n}{2}-1}$ and this happens only when n is even.
- f is called *semi-bent* if $N(f) = 2^{n-1} 2^{\frac{n-1}{2}}$ and this happens only when n is odd.

• The first-order derivative of f at $a \in \mathbb{F}^n$: $D_a f(x) = f(x + a) + f(x)$.

D	F /	5	n'	γ'
ъ	F/-	12	υ.	24

- The first-order derivative of f at $a \in \mathbb{F}^n$: $D_a f(x) = f(x + a) + f(x)$.
- The first-order derivative of F at $a \in \mathbb{F}^n$: $D_aF(x) = F(x+a) + F(x)$.

- The first-order derivative of f at $a \in \mathbb{F}^n$: $D_a f(x) = f(x + a) + f(x)$.
- The first-order derivative of F at $a \in \mathbb{F}^n$: $D_aF(x) = F(x+a) + F(x)$.
- An element $a \in \mathbb{F}^n$ is called a *linear structure* of f if $D_a f$ is constant.

- The first-order derivative of f at $a \in \mathbb{F}^n$: $D_a f(x) = f(x + a) + f(x)$.
- The first-order derivative of F at $a \in \mathbb{F}^n$: $D_aF(x) = F(x+a) + F(x)$.
- An element $a \in \mathbb{F}^n$ is called a *linear structure* of f if $D_a f$ is constant.
- The set of all linear structures of f is denoted by V(f).

- The first-order derivative of f at $a \in \mathbb{F}^n$: $D_a f(x) = f(x + a) + f(x)$.
- The first-order derivative of F at $a \in \mathbb{F}^n$: $D_aF(x) = F(x+a) + F(x)$.
- An element $a \in \mathbb{F}^n$ is called a *linear structure* of f if $D_a f$ is constant.
- The set of all linear structures of f is denoted by V(f).
- It is well-known that V(f) is a subspace of \mathbb{F}^n .

• It is well-known that f is called *bent* if and only if $D_a f$ is balanced, for all nonzero $a \in \mathbb{F}^n$.

- It is well-known that f is called *bent* if and only if $D_a f$ is balanced, for all nonzero $a \in \mathbb{F}^n$.
- It follows that if f is bent, then dim V(f) = 0.

- It is well-known that f is called *bent* if and only if $D_a f$ is balanced, for all nonzero $a \in \mathbb{F}^n$.
- It follows that if f is bent, then dim V(f) = 0.
- It is well-known that for a quadratic semi-bent f we have dim V(f) = 1.

- It is well-known that f is called *bent* if and only if $D_a f$ is balanced, for all nonzero $a \in \mathbb{F}^n$.
- It follows that if f is bent, then dim V(f) = 0.
- It is well-known that for a quadratic semi-bent f we have dim V(f) = 1.
- For any unbalanced quadratic Boolean function f, it is known that $\mathcal{F}(f) = \pm 2^{\frac{n+k}{2}}$, where $k = \dim V(f)$.

Remark 2

For any given Bf f, it can be easily shown that

$$\mathcal{F}^2(f) = \sum_{a \in \mathbb{F}^n} \mathcal{F}(D_a f).$$

Remark 2

For any given Bf f, it can be easily shown that

$$\mathcal{F}^2(f) = \sum_{a \in \mathbb{F}^n} \mathcal{F}(D_a f).$$

Remark 3

Let f be a Bf on n variables. Then

$$\sum_{a\in\mathbb{R}^n} \operatorname{wt}(D_a f) = 2^{2n-1} - \frac{1}{2} \mathcal{F}^2(f).$$

F	۲F	Δ	2	n	2	Δ
	л.		~	v	~	

Preliminary Results

Lemma 4

Let f be a Bf on n variables. Then

$$\sum_{a\in\mathbb{F}^n}\mathrm{wt}(D_af)\leq 2^{2n-1}.$$

Furthermore, equality holds if and only if f is balanced.

Preliminary Results

Lemma 4

Let f be a Bf on n variables. Then

$$\sum_{a\in\mathbb{F}^n}\mathrm{wt}(D_af)\leq 2^{2n-1}.$$

Furthermore, equality holds if and only if f is balanced.

Proposition 5

Let f be any quadratic Bf on n variables. Then

$$\sum_{a \in \mathbb{F}^n} \operatorname{wt}(D_a f) = \begin{cases} 2^{2n-1} & \text{if } f \text{ is balanced} \\ 2^{2n-1} - 2^{n+k-1} & \text{otherwise,} \end{cases}$$

where $k = \dim V(f)$.

BFA2024

(日) (四) (日) (日) (日)

э

Remark 6

Let $F : \mathbb{F}^n \longrightarrow \mathbb{F}^m$ be any vBf. For any $a, x \in \mathbb{F}^n$, we have

$$\sum_{\lambda \in \mathbb{F}^m} (-1)^{\lambda \cdot [F(x) + F(x+a)]} = \begin{cases} 2^m & \text{if } F(x) = F(x+a) \\ 0 & \text{otherwise.} \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

3

Remark 6

Let $F : \mathbb{F}^n \longrightarrow \mathbb{F}^m$ be any vBf. For any $a, x \in \mathbb{F}^n$, we have

$$\sum_{\lambda \in \mathbb{F}^m} (-1)^{\lambda \cdot [F(x) + F(x+a)]} = \begin{cases} 2^m & \text{if } F(x) = F(x+a) \\ 0 & \text{otherwise.} \end{cases}$$

Theorem 7

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \ge n$. Then

$$\sum_{\lambda \in \mathbb{F}^m} \mathcal{F}^2(F_{\lambda}) \geq 2^{n+m}.$$

Moreover, equality holds if and only if F is an embedding.

D	-	٨	2	h	5	a,
Þ	Б	н	2	υ	2	-

Corollary 8

Let $F : \mathbb{F}^n \longrightarrow \mathbb{F}^m$, with $m \ge n$, be any vBf. Then

$$\sum_{a,a\in\mathbb{F}^m}\mathcal{F}(D_aF_\lambda)\geq 2^{n+m}.$$

Moreover, equality holds if and only if F is an embedding.

э

Corollary 8

Let $F : \mathbb{F}^n \longrightarrow \mathbb{F}^m$, with $m \ge n$, be any vBf. Then

$$\sum_{\Delta, a \in \mathbb{F}^m} \mathcal{F}(D_a F_{\lambda}) \geq 2^{n+m}.$$

Moreover, equality holds if and only if F is an embedding.

Theorem 9

Let *F* be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \ge n$. Then

$$\sum_{e\in\mathbb{F}^m\setminus\{0_m\}}\sum_{a\in\mathbb{F}^n}\operatorname{wt}(D_aF_\lambda)\leq 2^{2n-1}(2^m-2^{m-n}).$$

Moreover, equality holds if and only if F is an embedding.

- 12	$-\Lambda$. "Di	n	77
ப	IР	2	υ	<u>۲</u>

Definition

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \ge n$. Define the set of balanced components of F by $B(F) = \{\lambda \in \mathbb{F}^m \mid \operatorname{wt}(F_\lambda) = 2^{n-1}\}.$

3 1 4 3 1

э

Definition

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \ge n$. Define the set of balanced components of F by $B(F) = \{\lambda \in \mathbb{F}^m \mid \operatorname{wt}(F_\lambda) = 2^{n-1}\}.$

Corollary 10

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \ge n$. Then $|B(F)| \le 2^m - 2^{m-n}$. Furthermore, equality holds if and only if 2^{m-n} are constant components and F is an embedding.

- A B A A B A -

Definition

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \ge n$. Define the set of balanced components of F by $B(F) = \{\lambda \in \mathbb{F}^m \mid \operatorname{wt}(F_\lambda) = 2^{n-1}\}.$

Corollary 10

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^m , with $m \ge n$. Then $|B(F)| \le 2^m - 2^{m-n}$. Furthermore, equality holds if and only if 2^{m-n} are constant components and F is an embedding.

Remark 11

Observe from Corollary 10 that no vBf from \mathbb{F}^n into \mathbb{F}^m , with m > n, can have all its components balanced.

э

Theorem 12

Let F be a quadratic embedding from \mathbb{F}^n into \mathbb{F}^m , with m > n.

Theorem 12

Let F be a quadratic embedding from \mathbb{F}^n into \mathbb{F}^m , with m > n. Then

(i) $|B(F)| \ge 2^n - 1$, for *n* even and equality holds if and only if all the other components are bent,

Theorem 12

Let F be a quadratic embedding from \mathbb{F}^n into \mathbb{F}^m , with m > n. Then

- (i) $|B(F)| \ge 2^n 1$, for *n* even and equality holds if and only if all the other components are bent,
- (ii) $|B(F)| \ge 2^{m-1} + 2^{n-1} 1$, for *n* odd and equality holds if and only if all the other components are unbalanced semi-bent.

The coordinate functions of a quadratic embedding F from \mathbb{F}^3 into \mathbb{F}^4 :

$$f_1 = x_1 x_2 + x_1 + x_2 + x_3,$$

$$f_2 = x_1 x_3 + x_1 + x_2 + x_3,$$

$$f_3 = x_2 x_3 + x_1 + x_2,$$

$$f_4 = x_1 + x_3$$

BFA2024

The coordinate functions of a quadratic embedding F from \mathbb{F}^3 into \mathbb{F}^4 :

$$f_1 = x_1 x_2 + x_1 + x_2 + x_3,$$

$$f_2 = x_1 x_3 + x_1 + x_2 + x_3,$$

$$f_3 = x_2 x_3 + x_1 + x_2,$$

$$f_4 = x_1 + x_3$$

F has 11 balanced components and 4 unbalanced semi-bent components.

The coordinate functions of a quadratic embedding F from \mathbb{F}^3 into \mathbb{F}^4 :

$$f_1 = x_1 x_2 + x_1 + x_2 + x_3,$$

$$f_2 = x_1 x_3 + x_1 + x_2 + x_3,$$

$$f_3 = x_2 x_3 + x_1 + x_2,$$

$$f_4 = x_1 + x_3$$

F has 11 balanced components and 4 unbalanced semi-bent components.14 components are quadratic, while only one component is linear.

The coordinate functions of a quadratic embedding F from \mathbb{F}^4 into \mathbb{F}^5 :

$$f_{1} = x_{1}x_{2} + x_{4},$$

$$f_{2} = x_{1}x_{3} + x_{3} + x_{4},$$

$$f_{3} = x_{1}x_{4} + x_{3}x_{4} + x_{2},$$

$$f_{4} = x_{2}x_{3} + x_{3}x_{4} + x_{1} + x_{4},$$

$$f_{5} = x_{1}x_{3} + x_{2}x_{4}.$$

R	E.	۸	2	n	2	٨
	.,	~	4	v	4	1

э

The coordinate functions of a quadratic embedding F from \mathbb{F}^4 into \mathbb{F}^5 :

$$f_{1} = x_{1}x_{2} + x_{4},$$

$$f_{2} = x_{1}x_{3} + x_{3} + x_{4},$$

$$f_{3} = x_{1}x_{4} + x_{3}x_{4} + x_{2},$$

$$f_{4} = x_{2}x_{3} + x_{3}x_{4} + x_{1} + x_{4},$$

$$f_{5} = x_{1}x_{3} + x_{2}x_{4}.$$

F has 15 balanced components and 16 bent components.

Next we consider a special case where the image of F is subspace of \mathbb{F}^m .

э

Next we consider a special case where the image of F is subspace of \mathbb{F}^m .

Theorem 13

Let $F : \mathbb{F}^n \longrightarrow \mathbb{F}^m$, with $m \ge n$, be an embedding and $\operatorname{Im}(F)$ be a subspace of \mathbb{F}^m . Then, for all $\lambda \in \mathbb{F}^m$, there are only two cases: either F_{λ} is constant or balanced. Precisely, $|B(F)| = 2^m - 2^{m-n}$ and 2^{m-n} constant components of F.

- 1 Abbondati, M., Calderini, M. and Villa, I.: On Dillon's property of (*n*, *m*)-functions. Cryptogr. Commun. (2024). https://doi.org/10.1007/s12095-024-00730-1
- 2 Aragona, R., Calderini, M., Civino, R., Sala, M., Zappatore, I.: Wave shaped round functions and primitive groups. Adv. Math. Commun. 13(1), (2019), 67-88.
- 3 Taniguchi, H.: D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} . Cryptography and Communications, 15 (2023), 627–647.

THANK YOU FOR YOUR ATTENTION

Image: A matrix

æ