Further Existence Results of Decompositions of Permutation Polynomial

Samuele Andreoli, George Petrides

UNIVERSITY OF BERGEN

2 Our Contribution

3 Conclusions

Samuele Andreoli, George Petrides	Further Existence Results of Decompositio	ns of Per	September 12, 2024	1 / 16	
Preliminaries	Our Contribution	Conclusions		Reference	s

Why decompositions?

Permutation polynomials (PP) are at the base of many cryptographic primitives

- the inverse power function, notably, used for instance in AES
- generally, to achieve good cryptographic properties, have high degree

Much effort has gone into breaking down high degree PP into lower degree ones

- Reduce the area necessary for hardware implementations
- Enable area/latency tradeoffs

 Facilitate the usage of side-channel countermeasures, like masking or TIs

Samuele Andreoli, George Petrides	Further Existence Results of Decomposition	ns of Per	September 12, 2024	2/16	
Preliminaries	Our Contribution	Conclusions		F	eference

Why decompositions?

Permutation polynomials (PP) are at the base of many cryptographic primitives

- the inverse power function, notably, used for instance in AES
- generally, to achieve good cryptographic properties, have high degree

Much effort has gone into breaking down high degree PP into lower degree ones

- Reduce the area necessary for hardware implementations
- Enable area/latency tradeoffs
- Facilitate the usage of side-channel countermeasures, like masking or TIs

Samuele Andreoli, George Petrides	Further Existence Results of Decomposition	is of Per	September 12, 2024	2/16	
Preliminaries	Our Contribution	Conclusions		F	References

A function $F : \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{n}$ is called an (n, n)-function.

A (n, n)-function admits a representation as a univariate polynomial over \mathbb{F}_{p^n} , called *univariate representation*,

$$F(x) = \sum_{i=0}^{p^n-1} \alpha_i x^i.$$

The *algebraic degree* of *F* is $d^{\circ}(F) = \max_{\alpha_i \neq 0} w_p(i)$, where w_p is the *p*-weight.

Samuele Andreoli, George Petrides	Further Existence Results	of Decompositions of Per	September 12, 2024	3 / 16	
Preliminaries	Our Contribution	Conclusions		Refe	rences

A function $F : \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{n}$ is called an (n, n)-function.

A (n, n)-function admits a representation as a univariate polynomial over \mathbb{F}_{p^n} , called *univariate representation*,

$$F(x) = \sum_{i=0}^{p^n-1} \alpha_i x^i.$$

The algebraic degree of F is $d^{\circ}(F) = \max_{\alpha_i \neq 0} w_p(i)$, where w_p is the *p*-weight.

Samuele Andreoli, George Petrides	Further Existence Results	of Decompositions of Per September 12, 2024	3 / 16	
Preliminaries	Our Contribution	Conclusions	Refer	rences

A function $F : \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{n}$ is called an (n, n)-function.

A (n, n)-function admits a representation as a univariate polynomial over \mathbb{F}_{p^n} , called *univariate representation*,

$$F(x) = \sum_{i=0}^{p''-1} lpha_i x^i.$$

The algebraic degree of *F* is $d^{\circ}(F) = \max_{\alpha_i \neq 0} w_p(i)$, where w_p is the *p*-weight.

A function $F : \mathbb{F}_{p}^{n} \to \mathbb{F}_{p}^{n}$ is called an (n, n)-function.

A (n, n)-function admits a representation as a univariate polynomial over \mathbb{F}_{p^n} , called *univariate representation*,

$$F(x) = \sum_{i=0}^{p''-1} lpha_i x^i.$$

The algebraic degree of *F* is $d^{\circ}(F) = \max_{\alpha_i \neq 0} w_p(i)$, where w_p is the *p*-weight.

Decomposition

A *decomposition* of a (n, n)-function F is a sequence of (n, n)-functions such that

 $F = G_1 \circ \cdots \circ G_\ell.$

For applications in hardware implementations, especially masked implementations, goals are

- algebraic degree of G_i should be small (typically 2 or 3),
- ℓ should also be as small as possible.

Samuele Andreoli, George Petrides	Further Existence Results o	f Decompositions of Per	September 12, 2024	4 / 16	
Preliminaries	Our Contribution	Conclusions		Ref	erences

Decomposition

A *decomposition* of a (n, n)-function F is a sequence of (n, n)-functions such that

 $F = G_1 \circ \cdots \circ G_\ell$.

For applications in hardware implementations, especially masked implementations, goals are

- **a**lgebraic degree of G_i should be small (typically 2 or 3),
- \blacksquare ℓ should also be as small as possible.

Samuele Andreoli, George Petrides	Further Existence Results of	of Decompositions of Per	September 12, 2024	4 / 16	
Preliminaries	Our Contribution	Conclusions		Ref	erences

Carlitz Theorem [Car53]

Let \mathbb{F}_q be a finite field, then all permutation polynomials are generated by $x^{-1} = x^{q-2}$ and the affine polynomials ax + b, with $a, b \in \mathbb{F}_q$, $a \neq 0$.

Which means, for any F(x) permutation polynomial in $\mathbb{F}_{p^n}[x]$,

$$F(x) = A_1(x) \circ x^{-1} \circ A_2(x) \circ x^{-1} \circ \cdots \circ A_{\ell-1}(x) \circ x^{-1} \circ A_\ell(x),$$

and $A_i(x) = a_i x + b_i$.

Further need to decompose x^{-1} into low algebraic degree functions G_i .

- use generic low degree polynomials,
- use low degree power permutations

Samuele Andreoli, George Petrides	Further Existence Results	of Decompositions of Per	September 12, 2024	5 / 16	
Preliminaries	Our Contribution	Conclusions		Refe	erences

Carlitz Theorem [Car53]

Let \mathbb{F}_q be a finite field, then all permutation polynomials are generated by $x^{-1} = x^{q-2}$ and the affine polynomials ax + b, with $a, b \in \mathbb{F}_q$, $a \neq 0$.

Which means, for any F(x) permutation polynomial in $\mathbb{F}_{p^n}[x]$,

$$F(x) = A_1(x) \circ x^{-1} \circ A_2(x) \circ x^{-1} \circ \cdots \circ A_{\ell-1}(x) \circ x^{-1} \circ A_\ell(x),$$

and $A_i(x) = a_i x + b_i$.

Further need to decompose x^{-1} into low algebraic degree functions G_i .

- use generic low degree polynomials,
- use low degree power permutations

Samuele Andreoli, George Petrides	Further Existence Results	of Decompositions of Per	September 12, 2024	5 / 16	
Preliminaries	Our Contribution	Conclusions		Refe	rences

Carlitz Theorem [Car53]

Let \mathbb{F}_q be a finite field, then all permutation polynomials are generated by $x^{-1} = x^{q-2}$ and the affine polynomials ax + b, with $a, b \in \mathbb{F}_q$, $a \neq 0$.

Which means, for any F(x) permutation polynomial in $\mathbb{F}_{p^n}[x]$,

$$F(x) = A_1(x) \circ x^{-1} \circ A_2(x) \circ x^{-1} \circ \cdots \circ A_{\ell-1}(x) \circ x^{-1} \circ A_\ell(x),$$

and $A_i(x) = a_i x + b_i$.

Further need to decompose x^{-1} into low algebraic degree functions G_i .

- use generic low degree polynomials,
- use low degree power permutations

Samuele Andreoli, George Petrides	Further Existence Results	of Decompositions of Per	September 12, 2024	5 / 16	
Preliminaries	Our Contribution	Conclusions		Refere	ences

Find decomposition

$$x^d = x^{e_1} \circ \ldots \circ x^{e_\ell},$$

where all power functions have algebraic degree no greater than two (or three).

The problem is equivalent to finding

$$d = e_1 \dots e_\ell \pmod{p^n - 1},$$

where all factors have p-weight no greater than two (or three).

Samuele Andreoli, George Petrides	Further Existence Results of Decomposition	ons of Per	September 12, 2024	6 / 16	
Preliminaries	Our Contribution	Conclusions		Refe	erences

Find decomposition

$$x^d = x^{e_1} \circ \ldots \circ x^{e_\ell},$$

where all power functions have algebraic degree no greater than two (or three).

The problem is equivalent to finding

$$d = e_1 \dots e_\ell \pmod{p^n - 1},$$

where all factors have p-weight no greater than two (or three).

Samuele Andreoli, George Petrides	Further Existence Results	of Decompositions of Per	September 12, 2024	6 / 16	
Preliminaries	Our Contribution	Conclusions		Refe	rences

Previous Work

Search algorithm for p = 2 in [NNR19]

- Compute all exponents *b* of 2-weight 2 in $Z_{p^n-1}^*$.
- Compute their orders *m*_b.
- Try all combinations of $\prod_i b_i^{e_i}$ for $e_i = 0, \ldots, m_{b_i}$.

Later improved by Petrides in [Pet23].

Decompositions for the inverse for infinite values of odd *n*

- using only quadratic power permutations [Pet23]
- using quadratic and cubic power permutations [LSaa23].
- using one quadratic power permutation [APB⁺23]

Samuele Andreoli, George Petrides	Further Existence Results of Decompositio	ns of Per	September 12, 2024	7 / 16	
Preliminaries	Our Contribution	Conclusions		Re	ference

Previous Work

Search algorithm for p = 2 in [NNR19]

- Compute all exponents *b* of 2-weight 2 in *Z*^{*}_{pⁿ-1}.
- Compute their orders *m*_b.

Try all combinations of $\prod_i b_i^{e_i}$ for $e_i = 0, \ldots, m_{b_i}$.

Later improved by Petrides in [Pet23].

Decompositions for the inverse for infinite values of odd n
using only quadratic power permutations [Pet23]
using quadratic and cubic power permutations [LSaa2]

using one quadratic power permutation [APB⁺23]

Samuele Andreoli, George Petrides	Further Existence Results of Decompositio	ns of Per	September 12, 2024	7 / 16	
Preliminaries	Our Contribution	Conclusions		Rei	erence

Previous Work

Search algorithm for p = 2 in [NNR19]

- Compute all exponents *b* of 2-weight 2 in $Z_{p^n-1}^*$.
- Compute their orders *m*_b.

Try all combinations of $\prod_i b_i^{e_i}$ for $e_i = 0, \ldots, m_{b_i}$.

Later improved by Petrides in [Pet23].

Decompositions for the inverse for infinite values of odd n

- using only quadratic power permutations [Pet23]
- using quadratic and cubic power permutations [LSaa23].
- using one quadratic power permutation [APB⁺23]

Samuele Andreoli, George Petrides	Further Existence Results of Decompositio	ns of Per	September 12, 2024	7/16	
Preliminaries	Our Contribution	Conclusions		Re	ferences

A criterion for the decomposition of the inverse

Lemma

Let *n* be an integer and x^d a power permutation of \mathbb{F}_{2^n} . The inversion power permutation in \mathbb{F}_{2^n} admits a decomposition into the power function x^d if and only if ord (*d*) is even and $\gcd\left(2^n - 1, d^{\frac{\operatorname{ord}(d)}{2}} - 1\right) = 1$.

If ord (*d*) is even, then

$$d^{\operatorname{ord}(d)} - 1 \equiv \left(d^{\frac{\operatorname{ord}(d)}{2}} - 1\right) \left(d^{\frac{\operatorname{ord}(d)}{2}} + 1\right) \equiv 0 \pmod{2^n - 1}.$$

Samuele Andreoli.George Petrides	Further Existence Resul	ts of Decompositions of Per September 12, 2024	8/16	
Preliminaries	Our Contribution	Conclusions	Referen	ces

A criterion for the decomposition of the inverse

Lemma

Let *n* be an integer and x^d a power permutation of \mathbb{F}_{2^n} . The inversion power permutation in \mathbb{F}_{2^n} admits a decomposition into the power function x^d if and only if ord (*d*) is even and $\gcd\left(2^n - 1, d^{\frac{\operatorname{ord}(d)}{2}} - 1\right) = 1$.

If $\operatorname{ord}(d)$ is even, then

$$d^{\operatorname{ord}(d)} - 1 \equiv \left(d^{\frac{\operatorname{ord}(d)}{2}} - 1\right) \left(d^{\frac{\operatorname{ord}(d)}{2}} + 1\right) \equiv 0 \pmod{2^n - 1}.$$

Samuele Andreeli George Petrides	Eurther Existence Results	of Decompositions of Per September 12, 2024	8 / 16	
Preliminaries	Our Contribution	Conclusions	Reference	bes

Speeding up the search

Efficient to check if the order is even computing the Jacobi Symbol
 Computing ord (*d*) /2 and checking directly is more efficient than computing the gcd

Next step, try to reduce the search space with some equivalence relation.

Proposition

Let $n \ge 3$ and d be integers such that the conditions of the Lemma are satisfied. The conditions are also satisfied for n and $d' = 2^i d$ if and only if $\nu_2(n) \le \nu_2(i)$.

Only need to test $d' = 2^i d$ for $i = 0, ..., \nu_2(n)$ for each d.

Samuele Andreoli, George Petrides	Further Existence Result	ts of Decompositions of Per Septembe	r 12, 2024	9 / 16
Preliminaries	Our Contribution	Conclusions		References

Speeding up the search

- Efficient to check if the order is even computing the Jacobi Symbol
- Computing ord (d) /2 and checking directly is more efficient than computing the gcd

Next step, try to reduce the search space with some equivalence relation.

Proposition

Let $n \ge 3$ and d be integers such that the conditions of the Lemma are satisfied. The conditions are also satisfied for n and $d' = 2^i d$ if and only if $\nu_2(n) \le \nu_2(i)$.

Only need to test
$$d' = 2^i d$$
 for $i = 0, ..., \nu_2(n)$ for each d .

Samuele Andreoli, George Petrides	Further Existence Results	of Decompositions of Per September 12, 2024	9 / 16	
Preliminaries	Our Contribution	Conclusions	Refe	rences

Further improvement is possible for quadratic *d*.

Theorem. (A., Piccione, Budaghyan, Stănică, Nikova, 2023)

Let $n \ge 3$. All permutations over \mathbb{F}_{2^n} admit a decomposition using quadratic and affine permutations if and only if $4 \nmid n$.

Test one representative *d* from each cyclotomic class, and 2*d* if *n* is even.

More efficient computational search than previously known, with caveats:

- Might return a longer than optimal decomposition
- It does not return for all possible n

We can further tweak the algorithm to achieve shorter decompositions.

Example. n = 17, d = 3

 $3^{422} \equiv 2^8 \cdot 9 \pmod{2^{17} - 1}$, then $-1 \equiv 3^{405} \equiv 2^8 \cdot 3 \cdot 9^{17} \pmod{2^{17} - 1}$. Repeat with 9^{17} to obtain the shortest decomposition.

Samuele Andreoli, George Petrides	Further Existence Results	of Decompositions of Per September 12, 2024	10 / 16	ſ
Preliminaries	Our Contribution	Conclusions	References	5

Further improvement is possible for quadratic *d*.

Theorem. (A., Piccione, Budaghyan, Stănică, Nikova, 2023)

Let $n \ge 3$. All permutations over \mathbb{F}_{2^n} admit a decomposition using quadratic and affine permutations if and only if $4 \nmid n$.

Test one representative *d* from each cyclotomic class, and 2*d* if *n* is even.

More efficient computational search than previously known, with caveats:

- Might return a longer than optimal decomposition
- It does not return for all possible n

We can further tweak the algorithm to achieve shorter decompositions.

Example. n = 17, d = 3

 $3^{422} \equiv 2^8 \cdot 9 \pmod{2^{17} - 1}$, then $-1 \equiv 3^{405} \equiv 2^8 \cdot 3 \cdot 9^{17} \pmod{2^{17} - 1}$. Repeat with 9^{17} to obtain the shortest decomposition.

Samuele Andreeli George Betrides	Further Existence Results	f Decompositions of Per	September 12, 2024	10 / 16	Chees
Samuele Andreoli,George Petrides	Further Existence Results of	of Decompositions of Per	September 12, 2024	10 / 16	

Further improvement is possible for quadratic *d*.

Theorem. (A., Piccione, Budaghyan, Stănică, Nikova, 2023)

Let $n \ge 3$. All permutations over \mathbb{F}_{2^n} admit a decomposition using quadratic and affine permutations if and only if $4 \nmid n$.

Test one representative *d* from each cyclotomic class, and 2*d* if *n* is even.

More efficient computational search than previously known, with caveats:

- Might return a longer than optimal decomposition
- It does not return for all possible n

We can further tweak the algorithm to achieve shorter decompositions.

Example. n = 17, d = 3

 $3^{422} \equiv 2^8 \cdot 9 \pmod{2^{17} - 1}$, then $-1 \equiv 3^{405} \equiv 2^8 \cdot 3 \cdot 9^{17} \pmod{2^{17} - 1}$. Repeat with 9^{17} to obtain the shortest decomposition.

Preliminaries	Our Contribution	Conclusions	References
Samuele Andreoli, George Petrides	Further Existence Resul	ts of Decompositions of Per September 12, 2024	10 / 16

Computational results

We run an exhaustive search for n up to 125 and we find many n for which the Lemma is satisfied.

3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 23, 26, 30, 31, 34, 38, 43, 46, ...

Crucially, we might find families of even values of *n*.

The case of cubics: satisfied for all values up to 100, except

16, 32, 40, 48, 56, 60, 63, 64, 72, 75, 81, 84, 88, 96, ...

Optimal length achieved for some (sparse) values of *n*.
 Improvement of some order of magnitude for most decomposition

AVERSIA PS

Samuele Andreeli George Betrides	Eurther Existence Res	Its of Decompositions of Por September 12, 2024	11 / 16
reinninaries	Our Contribution	Conclusions	i telerences
Proliminarios	Our Contribution	Conclusions	Poforoncos

Computational results

We run an exhaustive search for n up to 125 and we find many n for which the Lemma is satisfied.

3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 23, 26, 30, 31, 34, 38, 43, 46, ...

Crucially, we might find families of **even** values of *n*.

The case of cubics: satisfied for all values up to 100, except

 $16, 32, 40, 48, 56, 60, 63, 64, 72, 75, 81, 84, 88, 96, \ldots$

Optimal length achieved for some (sparse) values of *n*.
 Improvement of some order of magnitude for most decompositions found in [LSaa23].

Samuele Andreoli George Petrides	Further Existence Besult	s of Decompositions of Per September 12 2024	11/16	
Preliminaries	Our Contribution	Conclusions	References	

Computational results

We run an exhaustive search for n up to 125 and we find many n for which the Lemma is satisfied.

3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 23, 26, 30, 31, 34, 38, 43, 46, ...

Crucially, we might find families of **even** values of *n*.

The case of cubics: satisfied for all values up to 100, except

16, 32, 40, 48, 56, 60, 63, 64, 72, 75, 81, 84, 88, 96, ...

- Optimal length achieved for some (sparse) values of *n*.
- Improvement of some order of magnitude for most decompositions found in [LSaa23].

Samuele Andreoli, George Petrides	Further Existence Results	of Decompositions of Per	September 12, 2024	11 / 16	
Preliminaries	Our Contribution	Conclusions		Refer	ences

The case of quadratics

Conjecture

The conditions of the Lemma are satisfied by some quadratic d for an odd integer n if and only if they are also satisfied for 2n.

• Computationally verified for $n \ge 125$.

Why only a conjecture?

- Hard to prove the condition on the gcd if 2ⁿ 1 has many factors.
- No single *d* can be used for all even *n*.

Samuele Andreoli George Petrides	Further Existence Besults	of Decompositions of Per Septer	nber 12 2024 12 / 1	6
Preliminaries	Our Contribution	Conclusions		References

The case of quadratics

Conjecture

The conditions of the Lemma are satisfied by some quadratic d for an odd integer n if and only if they are also satisfied for 2n.

• Computationally verified for $n \ge 125$.

Why only a conjecture?

- Hard to prove the condition on the gcd if $2^n 1$ has many factors.
- No single *d* can be used for all even *n*.

Samuele Andreoli, George Petrides	Further Existence Results	of Decompositions of Per	September 12, 2024	12 / 16	
Preliminaries	Our Contribution Conclusions			References	

Theorem

Let *p* be a prime such that $2^p - 1$ is also prime (a Mersenne prime). Then, the inversion power permutation in both \mathbb{F}_{2^p} and $\mathbb{F}_{2^{2p}}$ has a decomposition into quadratic power permutations.

Proof by finding a suitable $d = 2^{p-1} + 1$ and proving it satisfies the conditions of the Lemma.

Trivial for n = p.

For n = 2p, the key is that $d^{-1} \equiv 2 \pmod{2^n - 1}$, so we can rewrite

$$gcd\left(2^{p}+1,d^{\frac{\operatorname{ord}_{2^{2p}-1}(d)}{2}}-1\right) = gcd\left(2^{p}+1,2^{\frac{\operatorname{ord}_{2^{2p}-1}(d)}{2}}-1\right)$$

Samuele Andreoli George Petrides	Further Existence Results of	of Decompositions of Per	Sentember 12 2024	13 / 16	
Preliminaries	Our Contribution	Conclusions		Refe	rences

Work in progress

Proving the conjecture for quadratics and using it to find other families.

The case of cubics

- The conjecture might also hold for cubics
- Harder to find patterns when most values of n have suitable d
- Finding families of *d* and *n* might be the right direction.

Tweak the algorithm to obtain shorter decompositions

- Is the greedy approach sufficient to produce short decompositions?
- Is there an approach to guarantee optimal decompositions?
- Can we theoretically prove the existence of such congruences?

Samuele Andreoli George Petrides	Further Existence Besul	ts of Decompositions of Per September 12 20	124 14 / 16	
Preliminaries	Our Contribution	Conclusions	Refere	nces

Work in progress

Proving the conjecture for quadratics and using it to find other families.

The case of cubics

- The conjecture might also hold for cubics
- Harder to find patterns when most values of n have suitable d
- Finding families of *d* and *n* might be the right direction.

Tweak the algorithm to obtain shorter decompositions

- Is the greedy approach sufficient to produce short decompositions?
- Is there an approach to guarantee optimal decompositions?
- Can we theoretically prove the existence of such congruences?

Samuele Andreoli.George Petrides	Further Existence Res	ults of Decompositions of Per	September 12, 2024	14 / 16			
Preliminaries	Our Contribution Conclusions		Conclusions		ns		erences

Work in progress

Proving the conjecture for quadratics and using it to find other families.

The case of cubics

- The conjecture might also hold for cubics
- Harder to find patterns when most values of n have suitable d
- Finding families of *d* and *n* might be the right direction.

Tweak the algorithm to obtain shorter decompositions

- Is the greedy approach sufficient to produce short decompositions?
- Is there an approach to guarantee optimal decompositions?
- Can we theoretically prove the existence of such congruences?

Samuele Andreoli George Petrides	Further Existence Results	of Decompositions of Per	September 12 2024	14 / 16	
Preliminaries	Our Contribution Concl			Refer	ences

Conclusions

- Criterion easy(ish) to use in proofs to find families
- First family of decompositions of the inverse for even values of *n*.
- With a small tweak, also efficient for computational searches
- Produce shorter decompositions than the state of the art

Thank you!

Questions?

Samuele Andreoli, George Petrides	Further Existence Result	ts of Decompositions of Per	September 12, 2024	15 / 16	
Preliminaries	Our Contribution	Conclusions		Refer	ences

Conclusions

- Criterion easy(ish) to use in proofs to find families
- First family of decompositions of the inverse for even values of *n*.
- With a small tweak, also efficient for computational searches
- Produce shorter decompositions than the state of the art

Thank you!

Questions?

Samuele Andreoli, George Petrides	Further Existence Result	ts of Decompositions of Per	September 12, 2024	15 / 16	
Preliminaries	Our Contribution	Conclusions		Refer	ences

- Samuele Andreoli, Enrico Piccione, Lilya Budaghyan, Pantelimon Stănică, and Svetla Nikova, On decompositions of permutations in quadratic functions, Cryptology ePrint Archive, Paper 2023/1632, 2023, https://eprint.iacr.org/2023/1632.
- L. Carlitz, *Permutations in a finite field*, 1953.
- Florian Luca, Santanu Sarkar, and Pantelimon Stănică, *Representing the inverse map as a composition of quadratics in a finite field of characteristic* 2, arXiv (2023).
- Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen, *Decomposition of permutations in a finite field*, Cryptogr. Commun. **11** (2019), no. 3, 379–384.
- George Petrides, On decompositions of permutation polynomials into quadratic and cubic power permutations, Cryptogr. Commun. 15 (2023), no. 1, 199–207.

Samuele Andreoli, George Petrides	Further Existence Results of Deco	ompositions of Per	September 12, 2024	16 / 16	
Preliminaries	Our Contribution	Conclusions		Refe	rences