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Boolean functions

F2 = {0, 1}.
〈Fn

2,⊕〉 is an n-dimensional vector space over F2.
f : Fn

2 → F2 is a Boolean function on n variables.

Every Boolean function can be represented in the algebraic normal
form (ANF)

f (x1, . . . , xn) =
⊕
y∈Fn

2

Mf (y)xy1
1 · · · xyn

n , (1)

where x0 = 1, x1 = x , Mf : Fn
2 → F2 is the Möbius transform of f .

The weight of y ∈ Fn
2 is the number of nonzero coordinates of y .

The algebraic degree of f is called the maximal degree of the
monomial in ANF, i. e., degalg (f ) = max

Mf (y)=1
wt(y).



Boolean functions

`u : Fn
2 → F2 is a linear function if

`u(x) = 〈u, x〉 = u1x1 ⊕ u2x1 ⊕ · · · ⊕ unxn, u ∈ Fn
2,

`1(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn.



pseudo-Boolean functions

A real-valued function f : Fn
2 → R is called a pseudo-Boolean

function.
V = {f : Fn

2 → R} is a 2n-dimensional vector space over R.

Every pseudo-Boolean function can be represented in the
numerical normal form (NNF)

f (x1, . . . , xn) =
∑
y∈Fn

2

a(y)xy1
1 · · · xyn

n , (2)

where x0 = 1, x1 = x , a(y), xi ∈ R.

The numerical degree of f is called the maximal degree of the
monomial in NNF, i. e., degnum(f ) = max

a(y) 6=0
wt(y).



inequalities for degrees

(−1)b = 1− 2b if b ∈ {0, 1} ⊂ R.

f (x1, . . . , xn) =
⊕

y∈Fn
2

a(y)xy1
1 · · · xyn

n , a(y) = Mf (y),

(−1)f (x1,...,xn) =
∏

y∈Fn
2

(−1)a(y)xy1
1 ···xyn

n ,

1− 2f (x) =
∏

y∈Fn
2

(1− 2a(y)xy1
1 · · · xyn

n ).

x2 = x if x ∈ {0, 1} ⊂ R then
degalg (f ) ≤ degnum(f ) = degnum((−1)f ).



Walsh–Hadamard transform

The Walsh–Hadamard transform of a Boolean function f is

Wf (y) =
∑
x∈Fn

2

(−1)f (x)(−1)〈y ,x〉.

W(f ) = {Wf (y)|y ∈ Fn
2} is the Walsh spectrum of f .

{(−1)〈y ,x〉 : y ∈ Fn
2} is an orthogonal basis in V .

(−1)f (x) =
1
2n

∑
y∈Fn

2

Wf (y)(−1)〈y ,x〉.

(−1)〈y ,x〉 =
∏n

i=1(−1)yixi =
∏n

i=1(1− 2yixi ).



Walsh–Hadamard transform

(−1)f (x) =
1
2n

∑
y∈Fn

2

Wf (y)(−1)〈y ,x〉.

(−1)〈y ,x〉 =
∏n

i=1(−1)yixi =
∏n

i=1(1− 2yixi ).

Then degnum(f ) = degnum((−1)f ) = max
Wf (y) 6=0

wt(y).



Relevant variables

Given a function f on T n, a variable xi , 1 ≤ i ≤ n, is called
relevant (essential, or effective) if there exist
a1, . . . , ai−1, ai+1, . . . , an ∈ T and b, c ∈ T such that

f (a1, . . . , ai−1, b, ai+1, . . . , an) 6= f (a1, . . . , ai−1, c, ai+1, . . . , an).

Denote by t(f ) the number of relevant variables of f .

From the definitions, degalg (f ) ≤ t(f ) and degnum(f ) ≤ t(f ).
Is there any opposite inequality?

(i)consider Boolean function `1(x) = x1 ⊕ · · · ⊕ xn, then
degalg (`1) = 1, degnum(`1) = n, t(`1) = n;

(ii)consider real-valued function
(x) = (−1)x1 + · · ·+ (−1)xn = n − 2(x1 + · · ·+ xn), then
degnum() = 1, t() = n.



Relevant variables

Let f be a Boolean function and d = degNum(f ). Then

t(f ) ≤ d2d−1 Nisan and Szegedy (1994);
t(f ) ≤ 6.614 · 2d Chiarelli, Hatami and Saks (2020);
t(f ) ≤ 4.394 · 2d Wellens (2022).



q-ary Fourier–Hadamard transform

We consider the linear space V (Zn
q) of complex valued functions

with finite domain Zn
q = (Z/qZ)n. Let ξ = e2πi/q. We can define

characters of Zn
q as φz(x) = ξ〈x ,z〉, where and

〈x , z〉 = x1z1 + · · ·+ xnzn mod q for each z ∈ Zn
q.

Consider the expansion of f ∈ V (Zn
q) with respect to the basis of

characters
f (x) =

1
qn

∑
z∈Zn

q

Wf (z)φz(x),

where Wf (z) = (f , φz) are called the Fourier–Hadamard
coefficients of f .



degrees of q-ary functions

Below we will consider Zq as the set {−q−2
2 , . . . ,−1, 0, 1, . . . , q/2}

if q is even and as the set {−q−1
2 , . . . ,−1, 0, 1, . . . , q−1

2 } if q is
odd. Define the mth degree of φz , z = (z1, . . . , zn), as the sum
degm(φz) =

∑n
k=1 |zk |m.

f (x) =
1
qn

∑
z∈Zn

q

Wf (z)φz(x),

degm(f ) = max
Wf (z) 6=0

degm(φz).



degrees of q-ary functions

Let f be a Boolean-valued function on Zn
q and d = deg0(f ). Then

t(f ) ≤ 4.394 · 2dlog2 qed Filmus and Ihringer (2019),
Wellens (2022);

t(f ) ≤ dqd+1

4(q−1) Valyuzhenich (2024).

Theorem

t(f ) ≤ 1
4π2deg1(f )qdeg0(f )−1;

t(f ) ≤ 1
2π2deg2(f )qdeg0(f )−2.



Example

For q = 3 the presented bounds are weaker than Valyuzhenich’s
bound.

q = 4. Let h : Z4 → {0, 1} be defined by the vector of values
(1, 1, 0, 0). Consider fm : Zn

4 → {0, 1}, where
fm(x1, . . . , xn) = h(x1) · h(x2) · · · h(xm).
It is clear that t(fm) = m.

The new bound t(fm) ≤ π2m
32 4m is slightly better than

Valuzhenich’s bound t(fm) ≤ m4m

3 .



Method of the proof

We consider f : Zn
q → {0, 1} as a 2-coloring of a graph G such that

V (G ) = Zn
q.

(i) I [f ] is the number of mixed colored edges in a graph, estimation
of I [f ] by using adjacency matrix of the graph (Nisan and Szegedy)

(ii) Estimation of the Hamming difference between functions from
the same invariant subspace of the adjacency matrix (Valyuzhenich)

(iii) Using Cay(Zn
q, S

n) = Cq� · · ·�Cq = Cn
q instead of

H(n, q) = Kq� · · ·�Kq.


