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Key-alternating block ciphers

• r -fold iteration of a relatively simple round function R

• alternated with round key additions
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Statistical attacks
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• Example: Distinguisher-based key recovery

• property likely absent in a random permutation

• to recover part of the last round key

• Attack using Ω over r − 1 rounds, has two phases:

• online: get many couples Pi ,Ci = BK (Pi )

• offline: guess part of last round key ka and ∀i
compute ai

• This works if

• guessed ka gives access to last round input

• right guess exhibits Ω

• wrong guess doesn’t
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Differential cryptanalysis
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• Statistical attack with following distinguisher:

• inputs Pi and P∗
i with Pi ⊕ P∗

i = ∆p

• lead to difference ∆a at input of last round

• with some probability DP(∆p,∆a) ≫ 2−b

• this probability in general depends on the key K

• Requires about 1/DP(∆p,∆a) input/output pairs

• Terminology:

• (∆p,∆a) is called a differential

• EDP(∆p,∆a) its expected differential probability:

DP(∆p,∆a) averaged over all round key sequences

Designers are expected to show their cipher has no differentials with high EDP
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Linear cryptanalysis
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• Statistical attack with following distinguisher:

• correlation between sum of input bits u⊤p P

• . . . and sum of bits u⊤a A at input of last round

• with |C(ua, up)| ≫ 2b/2

• this correlation in general depends on the key K

• Requires about 1/Corr2(ua, up) input/output pairs

• Terminology:

• (ua, up) is called a linear approximation

• LP(ua, up) its linear probability (or potential):

C2(ua, up) averaged over all round key sequences

Designers are expected to show absence of linear approximations with high LP
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Express EDP(∆p,∆c) as a function of DP of S-box differentials

• The following was proven in [Lai, Massey & Murphy, 1992]:

• let D be a 2b−1×2b−1 matrix with DP(x , y) over R in row y and column x

• then EDP(∆p,∆c) is the entry in row ∆c and column ∆p of Dr

• For a good round function Dr converges quickly to the uniform matrix with

all entries (2b − 1)−1

• D of a round function R

• a huge matrix of 22b probabilities

• but for the typical round function R its entries are easy to compute

• e.g., if non-linear operation consists of an S-box layer

in terms of entries of D of the S-boxes

• D of an S-box: DDT with entries divided by 2n (and row 0 and col. 0 removed)
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Round function resistance against differential cryptanalysis

We can do the eigenvalue decomposition: D = QΛQ−1 with

• Λ a diagonal matrix with the (complex) eigenvalues in decreasing order of modulus

• Q an orthogonal matrix with the eigenvectors as its columns

Dr = QΛrQ−1

D is a doubly stochastic matrix:
∑

b DP(a, b) = 1 and
∑

a DP(a, b) = 1

• The eigenvalues of D are on or within the unit circle

• It has an eigenvalue 1 with eigenvector the uniform vector

• There are 2b − 2 other eigenvalues

So we wish the 2b − 2 other eigenvalues to be as small as possible
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BipBip: a small low-latency tweakable block cipher [Belkheyar et al., TCHES 2023]

R′ R′ R′ R R R R R R′ R′ R′

χ G G G′ G G′ G G′ G

κ1 κ2 κ3 κ4 κ5 κ6

κ0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11

E E E0 E0 E0 E0 E0 E

T ∗

C P

• Tweakable: additional input T ′ giving different permutations for a given key K

• For a fixed tweak it is a key-alternating cipher

• Width b = 24 and non-linear layer is a layer of four 6-bit S-boxes

• Columns of Dr can be efficiently computed using [Eichlseder et al., Indocrypt 2020]

• We did that as part of preliminary cryptanalysis

8
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BipBip: a small low-latency tweakable block cipher [Belkheyar et al., TCHES 2023]
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Sampling D r for BipBip

• We computed columns of Dr

• About 220 columns: those for input differences with less than 4 active S-boxes

• We report here on the variance of these columns:

r maximum average

3 2−57.85 2−59.46

4 2−73.44 2−75.22

5 2−89.31 2−90.99

6 2−105.05 2−106.74

Clearly the variance decreases exponentially for increasing r
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Express LP(uc , up) as a function of LP of S-box approximations

• The following was demonstrated in the work of Nyberg and [Daemen/Rijmen, 2002]:

• let L be a 2b − 1× 2b − 1 matrix with LP(x , y) over R in row y and column x

• then LP(uc , up) is the entry in row up and column uc of Lr

• For a good round function Lr converges to the matrix with all entries

(2b − 1)−1

• L of a round function R

• a huge matrix of 22b correlations

• but for the typical round function R its entries are easy to compute

• e.g., if non-linear operation consists of an S-box layer

in terms of entries of L of the S-boxes

• L of an S-box: correlation matrix with entries squared
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Round function resistance against linear cryptanalysis

We can do the eigenvalue decomposition: L = RΛ′R−1

Lr = RΛ′rR−1

L is a doubly stochastic matrix as
∑

y C
2(x , y) = 1 and

∑
x C

2(x , y) = 1

• The eigenvalues of L are on or within the unit circle

• It has an eigenvalue 1 with eigenvector the uniform vector

• There are 2b − 2 other eigenvalues

So we wish the 2b − 2 other eigenvalues to be as small as possible

11



Sampling Lr for BipBip

• We computed columns of Lr

• About 220 columns: those with output masks with less than 4 active S-boxes

• We report here on the variance of these columns:

r maximum average

3 2−58.54 2−59.75

4 2−74.38 2−75.55

5 2−90.20 2−91.37

6 2−106.09 2−107.18

so for Lr

r maximum average

3 2−57.85 2−59.46

4 2−73.44 2−75.22

5 2−89.31 2−90.99

6 2−105.05 2−106.74

what we had for Dr
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Links between different matrices

Transition matrix linearizes mapping

[Vaudenay/Chabaud 1994]

TR[y , x ] = δ(y − R(x))

D is self-convolution of T

D = 2−bT ∗ T

Walsh-Hadamard change of basis gives

[Beyne 2023]

C = HT⊤H−1

L is C with components squared

L = C ⊙ C

(inverse) Walsh-Hadamard converts componentwise product in convolution, so

L = HD⊤H−1

13
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Iterating rounds

• For B: key alternating cipher with rounds R1 to Rr

DB = DRr · · ·DR2DR1 LB = LR1LR2 · · · LRr

• For F : permutation (or fixed-key block cipher) with rounds R1 to Rr

TF = TRr · · ·TR2TR1 CF = CR1CR2 · · ·CRr

• We also have

DF = 2−bTF ∗ TF LF = CF ⊙ CF

• T and C have the same eigenvalues that were investigated/used by Beyne

• D and L have the same eigenvalues and have not been investigated yet

(as far as we know)
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Interesting research questions

• For some concrete ciphers resistance against LC and DC is quite different

• examples: PRESENT block cipher [Bogdanov et al. CHES 2007] and Gaston

permutation [elHirch et al. CRYPTO 2020]

• how can that be reconciled with similarity of D and L?

• Can we use eigenvalues of R to design/choose better linear layers?

• We can classify S-boxes by the value of their eigenvalues or determinant

• are these meaningful?

• are these classifications equivalent to an existing ones?

• Are there ciphers in the wild with a non-trivial eigenvalue on the unit circle?

• Can we formulate an attack exploiting largest non-trivial eigenvalue and vector?

• What about singular value decomposition of Dr/Lr?

• etc. etc.
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Illustration: variants of the PRESENT S-box

We computed the eigenvalues for 1000 variants of the Present S-box obtained by

applying different linear mappings

We report on the eigenvalues of best one and worst one

Thanks for your attention!
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Supporting slides
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Block ciphers

• Permutation BK operating on {0, 1}b with b the block length

• One permutation for each key K

B is called strong pseudorandom permutation (SPRP) secure if . . .

it is hard to distinguish BK from a random permutation for an adversary

• . . . that can query BK (P) and B−1
K (C ) with chosen P or C

• but does not know the secret key K 18



What EDP means for the fixed-key DP of differentials

• For fixed-key-and-tweak a differential (a, b) has an integer number of pairs N(a, b)

• So DP(a, b) must be a multiple of 21−b(= 2−23)

• [Albrecht/Leander SAC ’12] conjecture N(a, b) follows Poisson w. λ = 2b−1 EDP(a, b)

• Our experiments confirm this conjecture:
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The EDP value can still be measured by sampling the differential for many tweaks 19



What LP means for the fixed-key correlation of linear approximations

• Fixed-key-and-tweak correlation of a linear approximation (uc , up) has a

distribution with mean 0 and variance LP(uc , up)

• [Daemen et al. ’08] conjecture that for enough rounds this has a normal distribution

• Our experiments confirm this conjecture:
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LP(uc , up) can be measured by sampling the linear approximation for many tweaks 20



Interesting research questions: difference between average and fixed-key values

• For B: 2-round cipher with rounds R, the average DP and LP values are given by

DB = (T ∗ T )2 LB = (C ⊙ C )2

• For F : permutation (or fixed-key block cipher) with round R the exact DP and

squared values are

DF = (T 2) ∗ (T 2) LF = (C 2)⊙ (C 2)

• The deviation between average values and fixed-key values are:

(T 2) ∗ (T 2)− (T ∗ T )2 (C 2)⊙ (C 2)− (C ⊙ C )2 (1)

Can (1) be used to investigate key-dependence?
21


