

Markov Eigenvalues

Joan Daemen and Shahram Rasoozadeh, Radboud University NL and Bochum University DE BFA, September 10, 2024 Dubrovnik, Croatia

1

Key-alternating block ciphers

- r-fold iteration of a relatively simple round function R
- alternated with round key additions

Key-alternating block ciphers

- *r*-fold iteration of a relatively simple round function R
- alternated with round key additions

- Example: *Distinguisher*-based key recovery
 - property likely absent in a random permutation
 - to recover part of the last round key

Statistical attacks

- Example: *Distinguisher*-based key recovery
 - property likely absent in a random permutation
 - to recover part of the last round key
- Attack using Ω over r-1 rounds, has two phases:
 - online: get many couples P_i , $C_i = B_{\kappa}(P_i)$
 - offline: guess part of last round key k_a and ∀i compute a_i

Statistical attacks

- Example: *Distinguisher*-based key recovery
 - property likely absent in a random permutation
 - to recover part of the last round key
- Attack using Ω over r-1 rounds, has two phases:
 - online: get many couples P_i , $C_i = B_{\kappa}(P_i)$
 - offline: guess part of last round key k_a and ∀i compute a_i
- This works if
 - guessed k_a gives access to last round input
 - right guess exhibits Ω
 - wrong guess doesn't

• Statistical attack with following distinguisher:

- Statistical attack with following distinguisher:
 - inputs P_i and P_i^* with $P_i \oplus P_i^* = \Delta_p$
 - lead to difference Δ_a at input of last round

- Statistical attack with following distinguisher:
 - inputs P_i and P_i^* with $P_i \oplus P_i^* = \Delta_p$
 - lead to difference Δ_a at input of last round
 - with some probability $\mathsf{DP}(\Delta_p, \Delta_a) \ggg 2^{-b}$
 - this probability in general depends on the key K

- Statistical attack with following distinguisher:
 - inputs P_i and P_i^* with $P_i \oplus P_i^* = \Delta_p$
 - lead to difference Δ_a at input of last round
 - with some probability $\mathsf{DP}(\Delta_p, \Delta_a) \gg 2^{-b}$
 - this probability in general depends on the key K
- Requires about $1/DP(\Delta_p, \Delta_a)$ input/output pairs

- Statistical attack with following distinguisher:
 - inputs P_i and P_i^* with $P_i \oplus P_i^* = \Delta_p$
 - lead to difference Δ_a at input of last round
 - with some probability $\mathsf{DP}(\Delta_p, \Delta_a) \gg 2^{-b}$
 - this probability in general depends on the key K
- Requires about $1/DP(\Delta_p, \Delta_a)$ input/output pairs
- Terminology:
 - (Δ_p, Δ_a) is called a *differential*

- Statistical attack with following distinguisher:
 - inputs P_i and P_i^* with $P_i \oplus P_i^* = \Delta_p$
 - lead to difference Δ_a at input of last round
 - with some probability $\mathsf{DP}(\Delta_p, \Delta_a) \ggg 2^{-b}$
 - this probability in general depends on the key ${\it K}$
- Requires about $1/DP(\Delta_p, \Delta_a)$ input/output pairs
- Terminology:
 - (Δ_p, Δ_a) is called a *differential*
 - EDP(Δ_p, Δ_a) its expected differential probability: DP(Δ_p, Δ_a) averaged over all round key sequences

- Statistical attack with following distinguisher:
 - inputs P_i and P_i^* with $P_i \oplus P_i^* = \Delta_p$
 - lead to difference Δ_a at input of last round
 - with some probability $\mathsf{DP}(\Delta_p, \Delta_a) \ggg 2^{-b}$
 - this probability in general depends on the key ${\it K}$
- Requires about $1/DP(\Delta_p, \Delta_a)$ input/output pairs
- Terminology:
 - (Δ_p, Δ_a) is called a *differential*
 - EDP(Δ_p, Δ_a) its expected differential probability: DP(Δ_p, Δ_a) averaged over all round key sequences

Designers are expected to show their cipher has no differentials with high EDP

• Statistical attack with following distinguisher:

- Statistical attack with following distinguisher:
 - correlation between sum of input bits $u_p^\top P$
 - ... and sum of bits $u_a^\top A$ at input of last round

- Statistical attack with following distinguisher:
 - correlation between sum of input bits $u_p^{\top} P$
 - ... and sum of bits $u_a^\top A$ at input of last round
 - with $|C(u_a, u_p)| \gg 2^{b/2}$
 - this correlation in general depends on the key K

- Statistical attack with following distinguisher:
 - correlation between sum of input bits $u_p^{\top} P$
 - ... and sum of bits $u_a^\top A$ at input of last round
 - with $|C(u_a, u_p)| \gg 2^{b/2}$
 - this correlation in general depends on the key K
- Requires about $1/\text{Corr}^2(u_a, u_p)$ input/output pairs

- Statistical attack with following distinguisher:
 - correlation between sum of input bits $u_p^{\top} P$
 - ... and sum of bits $u_a^\top A$ at input of last round
 - with $|C(u_a, u_p)| \gg 2^{b/2}$
 - this correlation in general depends on the key K
- Requires about $1/\text{Corr}^2(u_a, u_p)$ input/output pairs
- Terminology:

- Statistical attack with following distinguisher:
 - correlation between sum of input bits $u_p^{\top} P$
 - ... and sum of bits $u_a^\top A$ at input of last round
 - with $|C(u_a, u_p)| \gg 2^{b/2}$
 - this correlation in general depends on the key K
- Requires about $1/\text{Corr}^2(u_a, u_p)$ input/output pairs
- Terminology:
 - (u_a, u_p) is called a *linear approximation*

- Statistical attack with following distinguisher:
 - correlation between sum of input bits $u_p^{\top} P$
 - ... and sum of bits $u_a^\top A$ at input of last round
 - with $|C(u_a, u_p)| \gg 2^{b/2}$
 - this correlation in general depends on the key K
- Requires about $1/\text{Corr}^2(u_a, u_p)$ input/output pairs
- Terminology:
 - (u_a, u_p) is called a *linear approximation*
 - LP(u_a, u_p) its linear probability (or potential):
 C²(u_a, u_p) averaged over all round key sequences

Designers are expected to show absence of linear approximations with high LP

- The following was proven in [Lai, Massey & Murphy, 1992]:
 - let D be a $2^{b} 1 \times 2^{b} 1$ matrix with DP(x, y) over R in row y and column x

- The following was proven in [Lai, Massey & Murphy, 1992]:
 - let D be a $2^{b} 1 \times 2^{b} 1$ matrix with DP(x, y) over R in row y and column x
 - then $EDP(\Delta_p, \Delta_c)$ is the entry in row Δ_c and column Δ_p of D^r

- The following was proven in [Lai, Massey & Murphy, 1992]:
 - let D be a $2^{b} 1 \times 2^{b} 1$ matrix with DP(x, y) over R in row y and column x
 - then $EDP(\Delta_p, \Delta_c)$ is the entry in row Δ_c and column Δ_p of D^r
 - For a good round function D^r converges quickly to the uniform matrix with all entries $(2^b 1)^{-1}$

- The following was proven in [Lai, Massey & Murphy, 1992]:
 - let D be a $2^{b} 1 \times 2^{b} 1$ matrix with DP(x, y) over R in row y and column x
 - then $EDP(\Delta_p, \Delta_c)$ is the entry in row Δ_c and column Δ_p of D^r
 - For a good round function D^r converges quickly to the uniform matrix with all entries $(2^b 1)^{-1}$
- D of a round function R
 - a huge matrix of 2^{2b} probabilities

- The following was proven in [Lai, Massey & Murphy, 1992]:
 - let D be a $2^{b} 1 \times 2^{b} 1$ matrix with DP(x, y) over R in row y and column x
 - then $EDP(\Delta_p, \Delta_c)$ is the entry in row Δ_c and column Δ_p of D^r
 - For a good round function D^r converges quickly to the uniform matrix with all entries $(2^b 1)^{-1}$
- D of a round function R
 - a huge matrix of 2^{2b} probabilities
 - but for the typical round function R its entries are easy to compute

- The following was proven in [Lai, Massey & Murphy, 1992]:
 - let D be a $2^{b} 1 \times 2^{b} 1$ matrix with DP(x, y) over R in row y and column x
 - then $EDP(\Delta_p, \Delta_c)$ is the entry in row Δ_c and column Δ_p of D^r
 - For a good round function D^r converges quickly to the uniform matrix with all entries $(2^b 1)^{-1}$
- D of a round function R
 - a huge matrix of 2^{2b} probabilities
 - but for the typical round function R its entries are easy to compute
 - e.g., if non-linear operation consists of an S-box layer in terms of entries of *D* of the S-boxes

- The following was proven in [Lai, Massey & Murphy, 1992]:
 - let D be a $2^{b} 1 \times 2^{b} 1$ matrix with DP(x, y) over R in row y and column x
 - then $EDP(\Delta_p, \Delta_c)$ is the entry in row Δ_c and column Δ_p of D^r
 - For a good round function D^r converges quickly to the uniform matrix with all entries $(2^b 1)^{-1}$
- D of a round function R
 - a huge matrix of 2^{2b} probabilities
 - but for the typical round function R its entries are easy to compute
 - e.g., if non-linear operation consists of an S-box layer in terms of entries of *D* of the S-boxes
- D of an S-box: DDT with entries divided by 2^n (and row 0 and col. 0 removed)

We can do the eigenvalue decomposition: $D = Q \Lambda Q^{-1}$ with

- Λ a diagonal matrix with the (complex) eigenvalues in decreasing order of modulus
- Q an orthogonal matrix with the eigenvectors as its columns

We can do the eigenvalue decomposition: $D = Q \Lambda Q^{-1}$ with

- Λ a diagonal matrix with the (complex) eigenvalues in decreasing order of modulus
- Q an orthogonal matrix with the eigenvectors as its columns

 $D^r = Q \Lambda^r Q^{-1}$

We can do the eigenvalue decomposition: $D = Q \Lambda Q^{-1}$ with

- Λ a diagonal matrix with the (complex) eigenvalues in decreasing order of modulus
- Q an orthogonal matrix with the eigenvectors as its columns

 $D^r = Q \Lambda^r Q^{-1}$

D is a doubly stochastic matrix: $\sum_{b} DP(a, b) = 1$ and $\sum_{a} DP(a, b) = 1$

- The eigenvalues of *D* are on or within the unit circle
- It has an eigenvalue 1 with eigenvector the uniform vector
- There are $2^b 2$ other eigenvalues

We can do the eigenvalue decomposition: $D = Q \Lambda Q^{-1}$ with

- Λ a diagonal matrix with the (complex) eigenvalues in decreasing order of modulus
- Q an orthogonal matrix with the eigenvectors as its columns

 $D^r = Q\Lambda^r Q^{-1}$

D is a doubly stochastic matrix: $\sum_{b} DP(a, b) = 1$ and $\sum_{a} DP(a, b) = 1$

- The eigenvalues of *D* are on or within the unit circle
- It has an eigenvalue 1 with eigenvector the uniform vector
- There are $2^b 2$ other eigenvalues

So we wish the $2^{b} - 2$ other eigenvalues to be as small as possible

• Tweakable: additional input T' giving different permutations for a given key K

- Tweakable: additional input T' giving different permutations for a given key K
- For a fixed tweak it is a key-alternating cipher

- Tweakable: additional input T' giving different permutations for a given key K
- For a fixed tweak it is a key-alternating cipher
- Width b = 24 and non-linear layer is a layer of four 6-bit S-boxes

- Tweakable: additional input T' giving different permutations for a given key K
- For a fixed tweak it is a key-alternating cipher
- Width b = 24 and non-linear layer is a layer of four 6-bit S-boxes
- Columns of D^r can be efficiently computed using [Eichlseder et al., Indocrypt 2020]

- Tweakable: additional input T' giving different permutations for a given key K
- For a fixed tweak it is a key-alternating cipher
- Width b = 24 and non-linear layer is a layer of four 6-bit S-boxes
- Columns of D^r can be efficiently computed using [Eichlseder et al., Indocrypt 2020]
- We did that as part of preliminary cryptanalysis

• We computed columns of D^r

- We computed columns of D^r
- About 2^{20} columns: those for input differences with less than 4 active S-boxes

- We computed columns of *D*^r
- About 2^{20} columns: those for input differences with less than 4 active S-boxes
- We report here on the variance of these columns:

r	maximum	average		
3	$2^{-57.85}$	$2^{-59.46}$		
4	$2^{-73.44}$	$2^{-75.22}$		
5	$2^{-89.31}$	$2^{-90.99}$		
6	$2^{-105.05}$	$2^{-106.74}$		

- We computed columns of *D*^r
- About 2^{20} columns: those for input differences with less than 4 active S-boxes
- We report here on the variance of these columns:

r	maximum	average
3	$2^{-57.85}$	$2^{-59.46}$
4	$2^{-73.44}$	$2^{-75.22}$
5	$2^{-89.31}$	$2^{-90.99}$
6	$2^{-105.05}$	$2^{-106.74}$

Clearly the variance decreases exponentially for increasing r

• The following was demonstrated in the work of Nyberg and [Daemen/Rijmen, 2002]:

- The following was demonstrated in the work of Nyberg and [Daemen/Rijmen, 2002]:
 - let L be a $2^{b} 1 \times 2^{b} 1$ matrix with LP(x, y) over R in row y and column x

- The following was demonstrated in the work of Nyberg and [Daemen/Rijmen, 2002]:
 - let L be a $2^{b} 1 \times 2^{b} 1$ matrix with LP(x, y) over R in row y and column x
 - then $LP(u_c, u_p)$ is the entry in row u_p and column u_c of L^r

- The following was demonstrated in the work of Nyberg and [Daemen/Rijmen, 2002]:
 - let L be a $2^{b} 1 \times 2^{b} 1$ matrix with LP(x, y) over R in row y and column x
 - then $LP(u_c, u_p)$ is the entry in row u_p and column u_c of L^r
 - For a good round function L^r converges to the matrix with all entries $(2^b 1)^{-1}$

- The following was demonstrated in the work of Nyberg and [Daemen/Rijmen, 2002]:
 - let L be a $2^{b} 1 \times 2^{b} 1$ matrix with LP(x, y) over R in row y and column x
 - then $LP(u_c, u_p)$ is the entry in row u_p and column u_c of L^r
 - For a good round function L^r converges to the matrix with all entries $(2^b 1)^{-1}$
- L of a round function R
 - a huge matrix of 2^{2b} correlations
 - but for the typical round function R its entries are easy to compute
 - e.g., if non-linear operation consists of an S-box layer in terms of entries of *L* of the S-boxes
- L of an S-box: correlation matrix with entries squared

Round function resistance against linear cryptanalysis

We can do the eigenvalue decomposition: $L = R\Lambda' R^{-1}$

 $L^r = R\Lambda'^r R^{-1}$

L is a doubly stochastic matrix as $\sum_{y} C^{2}(x, y) = 1$ and $\sum_{x} C^{2}(x, y) = 1$

- The eigenvalues of *L* are on or within the unit circle
- It has an eigenvalue 1 with eigenvector the uniform vector
- There are $2^{b} 2$ other eigenvalues

So we wish the $2^{b} - 2$ other eigenvalues to be as small as possible

- We computed columns of L^r
- About 2²⁰ columns: those with output masks with less than 4 active S-boxes
- We report here on the variance of these columns:

- We computed columns of L^r
- About 2²⁰ columns: those with output masks with less than 4 active S-boxes
- We report here on the variance of these columns:

r	maximum	average
3	$2^{-58.54}$	$2^{-59.75}$
4	$2^{-74.38}$	$2^{-75.55}$
5	$2^{-90.20}$	$2^{-91.37}$
6	$2^{-106.09}$	$2^{-107.18}$

- We computed columns of L^r
- About 2²⁰ columns: those with output masks with less than 4 active S-boxes
- We report here on the variance of these columns:

r	maximum	average		r	maximum
3	$2^{-58.54}$	$2^{-59.75}$	_	3	$2^{-57.85}$
4	$2^{-74.38}$	$2^{-75.55}$		4	$2^{-73.44}$
5	$2^{-90.20}$	$2^{-91.37}$		5	$2^{-89.31}$
6	$2^{-106.09}$	$2^{-107.18}$		6	$2^{-105.05}$

so for L^r

what we had for D^r

average $2^{-59.46}$ $2^{-75.22}$ $2^{-90.99}$ $2^{-106.74}$

Links between different matrices

[Vaudenay/Chabaud 1994]

 $T_{\mathsf{R}}[y,x] = \delta(y - \mathsf{R}(x))$

[Vaudenay/Chabaud 1994]

 $T_{\mathsf{R}}[y,x] = \delta(y - \mathsf{R}(x))$

D is self-convolution of T

 $D=2^{-b}T*T$

[Vaudenay/Chabaud 1994]

 $T_{\mathsf{R}}[y,x] = \delta(y - \mathsf{R}(x))$

Walsh-Hadamard change of basis gives [Beyne 2023]

 $C = HT^{\top}H^{-1}$

 $\ensuremath{\textit{D}}$ is self-convolution of $\ensuremath{\textit{T}}$

 $D=2^{-b}T*T$

[Vaudenay/Chabaud 1994]

 $T_{\mathsf{R}}[y,x] = \delta(y - \mathsf{R}(x))$

Walsh-Hadamard change of basis gives [Beyne 2023] $C = HT^{\top}H^{-1}$

D is self-convolution of T $D = 2^{-b}T * T$ *L* is *C* with components squared $L = C \odot C$

[Vaudenay/Chabaud 1994]

 $T_{\mathsf{R}}[y,x] = \delta(y - \mathsf{R}(x))$

Walsh-Hadamard change of basis gives [Beyne 2023] $C = HT^{\top}H^{-1}$

D is self-convolution of TL is C with components squared $D = 2^{-b}T * T$ $L = C \odot C$

(inverse) Walsh-Hadamard converts componentwise product in convolution, so

 $L = HD^{\top}H^{-1}$

• For *B*: key alternating cipher with rounds R_1 to R_r

 $D_B = D_{\mathsf{R}_r} \cdots D_{\mathsf{R}_2} D_{\mathsf{R}_1} \qquad \qquad L_B = L_{\mathsf{R}_1} L_{\mathsf{R}_2} \cdots L_{\mathsf{R}_r}$

• For *B*: key alternating cipher with rounds R_1 to R_r

 $D_B = D_{\mathsf{R}_r} \cdots D_{\mathsf{R}_2} D_{\mathsf{R}_1} \qquad \qquad L_B = L_{\mathsf{R}_1} L_{\mathsf{R}_2} \cdots L_{\mathsf{R}_r}$

• For F: permutation (or fixed-key block cipher) with rounds R_1 to R_r

 $T_F = T_{\mathsf{R}_r} \cdots T_{\mathsf{R}_2} T_{\mathsf{R}_1}$

 $C_F = C_{\mathsf{R}_1} C_{\mathsf{R}_2} \cdots C_{\mathsf{R}_r}$

• For *B*: key alternating cipher with rounds R_1 to R_r

 $D_B = D_{\mathsf{R}_r} \cdots D_{\mathsf{R}_2} D_{\mathsf{R}_1} \qquad \qquad L_B = L_{\mathsf{R}_1} L_{\mathsf{R}_2} \cdots L_{\mathsf{R}_r}$

- For *F*: permutation (or fixed-key block cipher) with rounds R₁ to R_r $T_F = T_{R_r} \cdots T_{R_2} T_{R_1} \qquad C_F = C_{R_1} C_{R_2} \cdots C_{R_r}$
- We also have

$$D_F = 2^{-b} T_F * T_F \qquad \qquad L_F = C_F \odot C_F$$

• For *B*: key alternating cipher with rounds R_1 to R_r

 $D_B = D_{\mathsf{R}_r} \cdots D_{\mathsf{R}_2} D_{\mathsf{R}_1} \qquad \qquad L_B = L_{\mathsf{R}_1} L_{\mathsf{R}_2} \cdots L_{\mathsf{R}_r}$

- For *F*: permutation (or fixed-key block cipher) with rounds R_1 to R_r $T_F = T_{R_r} \cdots T_{R_2} T_{R_1}$ $C_F = C_{R_1} C_{R_2} \cdots C_{R_r}$
- We also have

 $D_F = 2^{-b} T_F * T_F \qquad \qquad L_F = C_F \odot C_F$

• T and C have the same eigenvalues that were investigated/used by Beyne

• For *B*: key alternating cipher with rounds R_1 to R_r

 $D_B = D_{\mathsf{R}_r} \cdots D_{\mathsf{R}_2} D_{\mathsf{R}_1} \qquad \qquad L_B = L_{\mathsf{R}_1} L_{\mathsf{R}_2} \cdots L_{\mathsf{R}_r}$

- For *F*: permutation (or fixed-key block cipher) with rounds R_1 to R_r $T_F = T_{R_r} \cdots T_{R_2} T_{R_1}$ $C_F = C_{R_1} C_{R_2} \cdots C_{R_r}$
- We also have

 $D_F = 2^{-b} T_F * T_F \qquad \qquad L_F = C_F \odot C_F$

- T and C have the same eigenvalues that were investigated/used by Beyne
- *D* and *L* have the same eigenvalues and have not been investigated yet (as far as we know)

Interesting research questions

Interesting research questions

- For some concrete ciphers resistance against LC and DC is quite different
 - examples: PRESENT block cipher [Bogdanov et al. CHES 2007] and Gaston permutation [elHirch et al. CRYPTO 2020]
 - how can that be reconciled with similarity of *D* and *L*?

Interesting research questions

- For some concrete ciphers resistance against LC and DC is quite different
 - examples: PRESENT block cipher [Bogdanov et al. CHES 2007] and Gaston permutation [elHirch et al. CRYPTO 2020]
 - how can that be reconciled with similarity of *D* and *L*?
- Can we use eigenvalues of R to design/choose better linear layers?
- For some concrete ciphers resistance against LC and DC is quite different
 - examples: PRESENT block cipher [Bogdanov et al. CHES 2007] and Gaston permutation [elHirch et al. CRYPTO 2020]
 - how can that be reconciled with similarity of *D* and *L*?
- Can we use eigenvalues of R to design/choose better linear layers?
- We can classify S-boxes by the value of their eigenvalues or determinant
 - are these meaningful?
 - are these classifications equivalent to an existing ones?

- For some concrete ciphers resistance against LC and DC is quite different
 - examples: PRESENT block cipher [Bogdanov et al. CHES 2007] and Gaston permutation [elHirch et al. CRYPTO 2020]
 - how can that be reconciled with similarity of *D* and *L*?
- Can we use eigenvalues of R to design/choose better linear layers?
- We can classify S-boxes by the value of their eigenvalues or determinant
 - are these meaningful?
 - are these classifications equivalent to an existing ones?
- Are there ciphers in the wild with a non-trivial eigenvalue on the unit circle?

- For some concrete ciphers resistance against LC and DC is quite different
 - examples: PRESENT block cipher [Bogdanov et al. CHES 2007] and Gaston permutation [elHirch et al. CRYPTO 2020]
 - how can that be reconciled with similarity of *D* and *L*?
- Can we use eigenvalues of R to design/choose better linear layers?
- We can classify S-boxes by the value of their eigenvalues or determinant
 - are these meaningful?
 - are these classifications equivalent to an existing ones?
- Are there ciphers in the wild with a non-trivial eigenvalue on the unit circle?
- Can we formulate an attack exploiting largest non-trivial eigenvalue and vector?

- For some concrete ciphers resistance against LC and DC is quite different
 - examples: PRESENT block cipher [Bogdanov et al. CHES 2007] and Gaston permutation [elHirch et al. CRYPTO 2020]
 - how can that be reconciled with similarity of *D* and *L*?
- Can we use eigenvalues of R to design/choose better linear layers?
- We can classify S-boxes by the value of their eigenvalues or determinant
 - are these meaningful?
 - are these classifications equivalent to an existing ones?
- Are there ciphers in the wild with a non-trivial eigenvalue on the unit circle?
- Can we formulate an attack exploiting largest non-trivial eigenvalue and vector?
- What about singular value decomposition of D^r/L^r?

- For some concrete ciphers resistance against LC and DC is quite different
 - examples: PRESENT block cipher [Bogdanov et al. CHES 2007] and Gaston permutation [elHirch et al. CRYPTO 2020]
 - how can that be reconciled with similarity of *D* and *L*?
- Can we use eigenvalues of R to design/choose better linear layers?
- We can classify S-boxes by the value of their eigenvalues or determinant
 - are these meaningful?
 - are these classifications equivalent to an existing ones?
- Are there ciphers in the wild with a non-trivial eigenvalue on the unit circle?
- Can we formulate an attack exploiting largest non-trivial eigenvalue and vector?
- What about singular value decomposition of D^r/L^r ?
- etc. etc.

We computed the eigenvalues for 1000 variants of the Present S-box obtained by applying different linear mappings

We computed the eigenvalues for 1000 variants of the Present S-box obtained by applying different linear mappings

We computed the eigenvalues for 1000 variants of the Present S-box obtained by applying different linear mappings

We computed the eigenvalues for 1000 variants of the Present S-box obtained by applying different linear mappings

We computed the eigenvalues for 1000 variants of the Present S-box obtained by applying different linear mappings

Thanks for your attention!

Block ciphers

- Permutation B_K operating on $\{0,1\}^b$ with b the block length
- One permutation for each key K

 ${\sf B}$ is called strong pseudorandom permutation (SPRP) secure if \ldots

it is hard to distinguish $\mathsf{B}_{\pmb{K}}$ from a random permutation for an adversary

- ... that can query $B_{\mathcal{K}}(P)$ and $B_{\mathcal{K}}^{-1}(C)$ with chosen P or C
- but does not know the secret key K

What EDP means for the fixed-key DP of differentials

- For fixed-key-and-tweak a differential (a, b) has an integer number of pairs N(a, b)
- So DP(a, b) must be a multiple of $2^{1-b}(=2^{-23})$
- [Albrecht/Leander SAC '12] conjecture N(a, b) follows Poisson w. $\lambda = 2^{b-1} EDP(a, b)$
- Our experiments confirm this conjecture:

The EDP value can still be *measured* by sampling the differential for many tweaks

What LP means for the fixed-key correlation of linear approximations

- Fixed-key-and-tweak correlation of a linear approximation (u_c, u_p) has a distribution with mean 0 and variance LP(u_c, u_p)
- [Daemen et al. '08] conjecture that for enough rounds this has a normal distribution
- Our experiments confirm this conjecture:

 $LP(u_c, u_p)$ can be *measured* by sampling the linear approximation for many tweaks 20

Interesting research questions: difference between average and fixed-key values

- For *B*: 2-round cipher with rounds R, the average DP and LP values are given by $D_B = (T * T)^2 \qquad \qquad L_B = (C \odot C)^2$
- For *F*: permutation (or fixed-key block cipher) with round R the exact DP and squared values are

 $D_F = (T^2) * (T^2)$ $L_F = (C^2) \odot (C^2)$

The deviation between average values and fixed-key values are:

 $(T^{2}) * (T^{2}) - (T * T)^{2}$ $(C^{2}) \odot (C^{2}) - (C \odot C)^{2}$ (1)

Can (1) be used to investigate key-dependence?