Using a CCZ-transformation in a multivariate scheme

Irene Villa joint work with Marco Calderini and Alessio Caminata

University of Genoa and University of Trento

BFA 2024

Multivariate Cryptography

A standard multivariate cryptosystem:

- \blacktriangleright a public finite field \mathbb{F}_q
- \triangleright m private (quadratic) polynomials in *n* variables

$$
\mathcal{F} = \begin{bmatrix} f_1 \\ \vdots \\ f_m \end{bmatrix} : \mathbb{F}_q^n \to \mathbb{F}_q^m \text{ (computationally feasible to invert)}
$$

 \blacktriangleright two private affine/linear invertible maps $\mathcal{S}: \mathbb{F}_q^m \to \mathbb{F}_q^m$, $\mathcal{T}: \mathbb{F}_q^n \to \mathbb{F}_q^n$

▶ the public map $\mathcal{P} := \mathcal{S} \circ \mathcal{F} \circ \mathcal{T} : \mathbb{F}_q^n \to \mathbb{F}_q^m$, look like m random (quadratic) polynomials

$$
\text{Encrypt} \quad a \in \mathbb{F}_q^n \xrightarrow{\mathcal{P}} b = \mathcal{P}(a) \in \mathbb{F}_q^m \tag{Verify}
$$

Decrypt $b \in \mathbb{F}_q^m$ $\stackrel{S^{-1}}{\longrightarrow} w \in \mathbb{F}_q^m$ $\overline{\mathcal{F}}^{-1}$ $z \in \mathbb{F}_q^n$ $\overline{\mathcal{I}} \longrightarrow a \in \mathbb{F}_q^n$ (Sign)

A classical example: MI scheme

Matsumoto-Imai cryptosystem (1988)

▶ Consider \mathbb{F}_q^n , \mathbb{F}_{q^n} and $\phi: \mathbb{F}_q^n \to \mathbb{F}_{q^n}$ standard isomorphism

► Take
$$
F: \mathbb{F}_{q^n} \to \mathbb{F}_{q^n} \left[F(x) = x^{q^i+1} \right]
$$
 s.t. $gcd(q^n - 1, q^i + 1) = 1$
F bijection easy to invert

$$
\blacktriangleright \text{ Then } \mathcal{F} = \phi \circ F \circ \phi^{-1} : \mathbb{F}_q^n \to \mathbb{F}_q^n \text{ and } \mathcal{P} = \mathcal{S} \circ \mathcal{F} \circ \mathcal{T}
$$

Linearization attack by Patarin (1995)

$$
\blacktriangleright \text{ If } y = F(x) = x^{q^i+1}, \text{ then } y^{q^i}x = yx^{q^{2i}}
$$

- \blacktriangleright Bilinear relation between input-output of F
- \blacktriangleright It exists also a bilinear relation between input-output of $\mathcal P$

A more general transformation for $F: \mathbb{F}_q^n \to \mathbb{F}_q^m$?

\star **EA-transformation** $G = A_1 \circ F \circ A_2 + A$

▶ only affine maps involved

A more general transformation for $F: \mathbb{F}_q^n \to \mathbb{F}_q^m$?

- \star **EA-transformation** $G = A_1 \circ F \circ A_2 + A$
	- \triangleright only affine maps involved
- \star CCZ-transformation $\mathcal{A}(\Gamma_F) = \Gamma_G$ for $\mathcal A$ aff. bij. of \mathbb{F}_q^{n+m} , and $\Gamma_F = \{(z, F(z)) : z \in \mathbb{F}_q^n\}$
	- \triangleright not preserved the algebraic degree (and the bijectivity)
	- ▶ difficult to construct a random CCZ-transformation

A more general transformation for $F: \mathbb{F}_q^n \to \mathbb{F}_q^m$?

- \star **EA-transformation** $G = A_1 \circ F \circ A_2 + A$
	- \triangleright only affine maps involved
- \star CCZ-transformation $\mathcal{A}(\Gamma_F) = \Gamma_G$ for $\mathcal A$ aff. bij. of \mathbb{F}_q^{n+m} , and $\Gamma_F = \{(z, F(z)) : z \in \mathbb{F}_q^n\}$
	- \triangleright not preserved the algebraic degree (and the bijectivity)
	- ▶ difficult to construct a random CCZ-transformation
- *⋆* Towards a random CCZ construction
	- ▶ The *t*-twist: for $t \leq \min(n, m)$, $F : \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^t \times \mathbb{F}_q^{m-t}$

$$
F(x,y) = \begin{pmatrix} T(x,y) \\ U(x,y) \end{pmatrix} = \begin{pmatrix} T_y(x) \\ U(x,y) \end{pmatrix}, \quad G(x,y) = \begin{pmatrix} T_y(x)^{-1} \\ U(T_y(x)^{-1},y) \end{pmatrix}
$$

with $T_{y}(x)$ invertible for every y

- ▶ CCZ = EA + t-twist + EA [Canteaut-Perrin 2019 for $q = 2$]
- ▶ if deg(F) = 2, then deg(G) $\leq 2 \cdot$ deg($\mathcal{T}_y(x)^{-1}$)

$$
F(x, y) = \begin{pmatrix} T_y(x) \\ U(x, y) \end{pmatrix}, \quad G(x, y) = \begin{pmatrix} T_y^{-1}(x) \\ U(T_y^{-1}(x), y) \end{pmatrix}
$$

Idea: private quadratic map $F \xrightarrow{t-twist} G \xrightarrow{aff-transf} \mathcal{P}$ public map
sk A_1, A_2, T, U pk $\mathcal{P} = A_1 \circ G \circ A_2$

$$
F(x,y) = \begin{pmatrix} T_y(x) \\ U(x,y) \end{pmatrix}, \quad G(x,y) = \begin{pmatrix} T_y^{-1}(x) \\ U(T_y^{-1}(x),y) \end{pmatrix}
$$

Idea: private quadratic map $\digamma \xrightarrow{t-twist} \mathsf{G} \xrightarrow{aff-transf} \mathcal{P}$ public map

sk A_1 , A_2 , T , U pk $P = A_1 \circ G \circ A_2$

Sign $s:=Sign(d, sk): h = H(d) \in \mathbb{F}_q^m \longrightarrow \mathcal{P}(s) = h$?

Verify
$$
\text{Ver}(d, s, pk)
$$
: $h = \mathcal{H}(d) \in \mathbb{F}_q^m \longrightarrow \text{check } \mathcal{P}(s) = h$

$$
F(x,y) = \begin{pmatrix} T_y(x) \\ U(x,y) \end{pmatrix}, \quad G(x,y) = \begin{pmatrix} T_y^{-1}(x) \\ U(T_y^{-1}(x),y) \end{pmatrix}
$$

Idea: private quadratic map $\digamma \xrightarrow{t-twist} \mathsf{G} \xrightarrow{aff-transf} \mathcal{P}$ public map

sk A_1, A_2, T, U pk $P = A_1 \circ G \circ A_2$

Sign $s:=Sign(d, sk): h = H(d) \in \mathbb{F}_q^m \longrightarrow \mathcal{P}(s) = h$? 1. $A_1^{-1}(h) = (w_T, w_U) \in \mathbb{F}_q^t \times \mathbb{F}_q^{m-t}$, so $\int w_T$ w_U $= G(x, y) = \begin{pmatrix} T_y^{-1}(x) \\ U(T^{-1}(y)) \end{pmatrix}$ $U(T_{y}^{-1}(x), y)$ $= \left(\begin{array}{c} T_y^{-1}(x) \\ U(x) \end{array} \right)$ $U(w_T, y)$ \setminus

Verify $\mathtt{Ver}(\mathtt{d},\mathtt{s},\mathtt{pk})$: $h = \mathcal{H}(\mathtt{d}) \in \mathbb{F}_q^m \longrightarrow$ check $\mathcal{P}(\mathtt{s}) = h$

$$
F(x,y) = \begin{pmatrix} T_y(x) \\ U(x,y) \end{pmatrix}, \quad G(x,y) = \begin{pmatrix} T_y^{-1}(x) \\ U(T_y^{-1}(x),y) \end{pmatrix}
$$

Idea: private quadratic map $\digamma \xrightarrow{t-twist} \mathsf{G} \xrightarrow{aff-transf} \mathcal{P}$ public map

sk A_1, A_2, T, U pk $P = A_1 \circ G \circ A_2$

Sign $s:=Sign(d, sk): h = H(d) \in \mathbb{F}_q^m \longrightarrow \mathcal{P}(s) = h$? 1. $A_1^{-1}(h) = (w_T, w_U) \in \mathbb{F}_q^t \times \mathbb{F}_q^{m-t}$, so $\int w_T$ w_U $= G(x, y) = \begin{pmatrix} T_y^{-1}(x) \\ U(T^{-1}(y)) \end{pmatrix}$ $U(T_{y}^{-1}(x), y)$ $= \left(\begin{array}{c} T_y^{-1}(x) \\ U(x) \end{array} \right)$ $U(w_T, y)$ \setminus 2. $Y = \{y \in \mathbb{F}_q^{n-t} : w_U = U(w_T, y)\}\$

Verify $\mathtt{Ver}(\mathtt{d},\mathtt{s},\mathtt{pk})$: $h = \mathcal{H}(\mathtt{d}) \in \mathbb{F}_q^m \longrightarrow$ check $\mathcal{P}(\mathtt{s}) = h$

$$
F(x,y) = \begin{pmatrix} T_y(x) \\ U(x,y) \end{pmatrix}, \quad G(x,y) = \begin{pmatrix} T_y^{-1}(x) \\ U(T_y^{-1}(x),y) \end{pmatrix}
$$

Idea: private quadratic map $\digamma \xrightarrow{t-twist} \mathsf{G} \xrightarrow{aff-transf} \mathcal{P}$ public map

sk A_1, A_2, T, U pk $P = A_1 \circ G \circ A_2$

Sign $s:=Sign(d, sk): h = H(d) \in \mathbb{F}_q^m \longrightarrow \mathcal{P}(s) = h$? 1. $A_1^{-1}(h) = (w_T, w_U) \in \mathbb{F}_q^t \times \mathbb{F}_q^{m-t}$, so $\int w_T$ w_U $= G(x, y) = \begin{pmatrix} T_y^{-1}(x) \\ U(T^{-1}(y)) \end{pmatrix}$ $U(T_{y}^{-1}(x), y)$ $= \left(\begin{array}{c} T_y^{-1}(x) \\ U(x) \end{array} \right)$ $U(w_T, y)$ \setminus 2. $Y = \{y \in \mathbb{F}_q^{n-t} : w_U = U(w_T, y)\}\$ 3. get $\bar{y}\in Y$, $\bar{x}=$ $\mathcal{T}_{\bar{y}}(w_\mathcal{T})$, then $\bar{\mathbf{s}}=A_2^{-1}(\bar{x},\bar{y})$ is a valid signature

Verify $\mathtt{Ver}(\mathtt{d},\mathtt{s},\mathtt{pk})$: $h = \mathcal{H}(\mathtt{d}) \in \mathbb{F}_q^m \longrightarrow$ check $\mathcal{P}(\mathtt{s}) = h$

$$
x=(x_1,\ldots,x_t) y=(y_1,\ldots,y_{n-t})
$$

 $\mathcal{T}: \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^t$ $T(x, y)$ invertible for every fixed y

$$
U: \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^{m-t}
$$

$$
U(x, y): \text{ fixed } x \text{ it must be "easy" to}
$$

get a preimage with respect to y

$$
(\overline{y} \in Y)
$$

$$
x=(x_1,\ldots,x_t) y=(y_1,\ldots,y_{n-t})
$$

 $\mathcal{T}: \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^t$ $T(x, y)$ invertible for every fixed y

 \blacktriangleright $\tau(x, y) = \ell(x) + q(y)$, ℓ linear bijection, q random quadratic

$$
U: \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^{m-t}
$$

$$
U(x, y):
$$
 fixed x it must be "easy" to
get a preimage with respect to y

$$
(\overline{y} \in Y)
$$

$$
\blacktriangleright \text{ w.l.o.g.}
$$

 $T(x, y) = x + q(y)$ $T_{y}^{-1}(x) = x - q(y)$

 \blacktriangleright deg(G) \lt 4

$$
x=(x_1,\ldots,x_t) y=(y_1,\ldots,y_{n-t})
$$

 $\mathcal{T}: \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^t$ $T(x, y)$ invertible for every fixed y

- \blacktriangleright $\tau(x, y) = \ell(x) + q(y)$, ℓ linear bijection, q random quadratic
- $U: \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^{m-t}$ $U(x, y)$: fixed x it must be "easy" to get a preimage with respect to y $(\bar{v} \in Y)$
	- ▶ use Oil-and-Vinegar (OV) maps

$$
T(x, y) = x + q(y)
$$

$$
T_y^{-1}(x) = x - q(y)
$$

 \blacktriangleright deg(G) $<$ 4

 \blacktriangleright w.l.o.g.

$$
(OV) \qquad \boxed{f(z) = \sum_{j,k \in V} \alpha_{jk} z_j z_k + \sum_{j \in V} \sum_{k \in O} \beta_{jk} z_j z_k + \sum_{j \in V} \gamma_j z_j + \sum_{j \in O} \gamma_j z_j + \delta}
$$

$$
x=(x_1,\ldots,x_t) y=(y_1,\ldots,y_{n-t})
$$

 $\mathcal{T}: \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^t$ $T(x, y)$ invertible for every fixed y

 \blacktriangleright $\tau(x, y) = \ell(x) + q(y)$, ℓ linear bijection, q random quadratic

 \blacktriangleright w.l.o.g.

$$
T(x, y) = x + q(y)
$$

$$
T_y^{-1}(x) = x - q(y)
$$

 \blacktriangleright deg(G) $<$ 4

- $U: \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^{m-t}$ $U(x, y)$: fixed x it must be "easy" to get a preimage with respect to y $(\bar{v} \in Y)$
	- ▶ use Oil-and-Vinegar (OV) maps
	- ▶ fix $0 \leq s \leq n-t$, U is a system of $m - t$ OV equations with $\{x_1, \ldots, x_t, y_1, \ldots, y_s\}$ vinegar and $\{y_{s+1}, \ldots, y_{n-t}\}\$ oil

$$
(OV) \qquad \qquad f(z) = \sum_{j,k \in V} \alpha_{jk} z_j z_k + \sum_{j \in V} \sum_{k \in O} \beta_{jk} z_j z_k + \sum_{j \in V} \gamma_j z_j + \sum_{j \in O} \gamma_j z_j + \delta
$$

UOV-CCZ Scheme

▶ *n, m, t, s* with $t \leq min(n, m)$ and $s \leq n - t$ ▶ q: $\mathbb{F}_q^{n-t} \to \mathbb{F}_q^t$ random quadratic, so $T(x, y) = x + q(y)$ ▶ $U: \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^{m-t}$ random OV maps with $t + s$ vinegar variables $(x_i,\,y_j,\,j\leq s)$ and $n-t-s$ oil variables $(y_j,\,j>s)$ \blacktriangleright A₁, A₂ **random affine bijections** of \mathbb{F}_q^m , \mathbb{F}_q^n **►** $G(x, y) = (x - q(y), U(x - q(y), y))$

 $p \times \mathcal{P} = A_1 \circ G \circ A_2$ sk q, U, A₁, A₂

UOV-CCZ Scheme

\n- $$
n, m, t, s
$$
 with $t \leq \min(n, m)$ and $s \leq n - t$
\n- $q: \mathbb{F}_q^{n-t} \to \mathbb{F}_q^t$ random quadratic, so $T(x, y) = x + q(y)$
\n- $U: \mathbb{F}_q^t \times \mathbb{F}_q^{n-t} \to \mathbb{F}_q^{m-t}$ random OV maps with $t + s$ vinegar variables $(x_i, y_j, j \leq s)$ and $n - t - s$ oil variables $(y_j, j > s)$
\n- A_1 , A_2 random affine bijections of \mathbb{F}_q^m , \mathbb{F}_q^n
\n- $G(x, y) = (x - q(y), U(x - q(y), y))$
\n- $\mathbb{P}^m \in \mathcal{P} = A_1 \circ G \circ A_2$ s k q, U, A_1, A_2
\n

a.k.a. Pesto scheme

Like in the Pesto Sauce, we try to fully mix the variables (ingredients) using a CCZ transformation (mortar and pestle).

Key Sizes

Theorem

The public key consists of $m\binom{n+4}{4}$ $_4^{+4})$ coefficients over \mathbb{F}_q , and the secret key consists of

$$
m^2 + m + n^2 + n + t\binom{n-t+2}{2} + (m-t)\binom{t+s+2}{2} + (m-t)(n-t-s)(t+s+1)
$$

coefficients over \mathbb{F}_q .

Amount of coefficients of \mathbb{F}_q to store

Linearization attack for $s = 0$

Linearization Equation (LE) $\mathcal{R}:\mathbb{F}_q^n\times\mathbb{F}_q^m\to\mathbb{F}_q$

$$
\mathcal{R}(z, w) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{ij} z_i w_j + \sum_{i=1}^{n} \beta_i z_i + \sum_{j=1}^{m} \gamma_j w_j + \delta \in \mathbb{F}_q[z, w]
$$

s.t. $\forall \bar{z} \in \mathbb{F}_q^n$, $\mathcal{P}(\bar{z}) = \bar{w}$, $\mathcal{R}(\bar{z},\bar{w}) = 0$.

- ▶ Fixed the output $\bar{w} \in \mathbb{F}_q^m$, $\mathcal{R}(z, \bar{w})$ is *linear* in z (input)
- \blacktriangleright Higher Order LE (HOLE): relation R only linear in the input

Linearization attack for $s = 0$

Linearization Equation (LE) $\mathcal{R}:\mathbb{F}_q^n\times\mathbb{F}_q^m\to\mathbb{F}_q$

$$
\mathcal{R}(z, w) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{ij} z_i w_j + \sum_{i=1}^{n} \beta_i z_i + \sum_{j=1}^{m} \gamma_j w_j + \delta \in \mathbb{F}_q[z, w]
$$

s.t. $\forall \bar{z} \in \mathbb{F}_q^n$, $\mathcal{P}(\bar{z}) = \bar{w}$, $\mathcal{R}(\bar{z},\bar{w}) = 0$.

- ▶ Fixed the output $\bar{w} \in \mathbb{F}_q^m$, $\mathcal{R}(z, \bar{w})$ is *linear* in z (input)
- \triangleright Higher Order LE (HOLE): relation R only linear in the input Attack for $s = 0$ (in U $\{x_i\}$ vinegar and $\{y_i\}$ oil)

1.
$$
\begin{pmatrix} w_T \\ w_U \end{pmatrix} = G(x, y) \Rightarrow \boxed{w_U = U(w_T, y)}
$$
 quadratic HOLEs

- 2. we have quadratic HOLEs for $\mathcal{P} = A_1 \circ G \circ A_2$
- 3. reconstruct the coefficients (by considering enough input-output pairs)
- 4. given a targeted output, we have $m t$ linear equations in the input

Differential attack via linear structures

$$
\mathcal{P} = A_1 \circ \begin{bmatrix} x - \mathfrak{q}(y) \\ U(x - \mathfrak{q}(y), y) \end{bmatrix} \circ A_2, \text{ with } x - \mathfrak{q}(y) = \begin{pmatrix} x_1 - \mathfrak{q}_1(y) \\ \vdots \\ x_t - \mathfrak{q}_t(y) \end{pmatrix}
$$

- \bullet ${\cal P}$ has (at least) q^t-1 quadratic components $({\cal P}_\lambda=\lambda\cdot{\cal P}:{\mathbb F}_q^n\to{\mathbb F}_q)$
- For $f = x_i q_i(y)$, $\mathcal{LS}(f) = \{a \in \mathbb{F}_q^n \mid f(z+a) f(z) \text{ const}\},$ then $\mathcal{LS}(f)\supseteq\mathbb{F}_q^t\times\{0_{n-t}\}$ ($a=(a',0_{n-t})$ with $a'\in\mathbb{F}_q^t$)

Idea of the attack:

- ▶ recover Δ the quadratic components of $\mathcal P$ (assume $|\Delta|=q^t-1$)
- ▶ ∃ t-dimensional vector subspace of $V \subseteq \mathbb{F}_q^n$ s.t. $V \subseteq \bigcap_{f \in \Delta} \mathcal{LS}(f)$
- ▶ then $L_2(V) = \mathbb{F}_q^t \times \{0_{n-t}\}$, with $A_2(\cdot) = L_2(\cdot) + const$

In V there are t linearly independent vectors which form the first t columns of L_2^{-1}

A variant in univariate form $F: \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$

Set $q = 2$, $Tr_n(x) = x + x^2 + \cdots + x^{2^{n-1}}$. Examples of $\mathcal{A}: \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n}$, $\mathcal{A}(\Gamma_F) = \Gamma_G$

$$
A_1\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \gamma_1 \text{Tr}_n(\theta x + \lambda y) \\ \gamma_1 \text{Tr}_n(\theta x) + y \end{pmatrix}, \quad A_2\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + \gamma_2 \text{Tr}_n(\lambda y) \\ y \end{pmatrix}
$$

under some restriction on the parameters

- ▶ Not UOV-CCZ instances
- \blacktriangleright If F is easily invertible, P constructed with (one of) these transformations can be used in a cryptographic scheme

$$
\blacktriangleright \deg(\mathcal{P}) \leq 3
$$

To conclude

We proposed a scheme which "hides" the central map F via a CCZ-transformation and we performed a preliminary security analysis.

We believe that more interesting results can come out by connecting further the theory of Boolean functions with the theory of multivariate cryptography.

To conclude

We proposed a scheme which "hides" the central map F via a CCZ-transformation and we performed a preliminary security analysis.

We believe that more interesting results can come out by connecting further the theory of Boolean functions with the theory of multivariate cryptography.

Thank you for your attention

Some references

L. Budaghyan, M. Calderini, I. Villa. On relations between CCZ-and EA-equivalences. Cryptography and Communications 12 (2020): 85-100.

M. Calderini, A. Caminata, I. Villa, A new multivariate primitive from CCZ equivalence. arXiv:2405.20968, 2024.

A. Canteaut, L. Perrin. On CCZ-equivalence, extended-affine equivalence, and function twisting. Finite Fields and Their Applications. 2019 Mar 1;56:209-46.

J. Jeong, N. Koo, S. Kwon. On the Functions Which are CCZ-equivalent but not EA-equivalent to Quadratic Functions over \mathbb{F}_{p^n} . arXiv preprint arXiv:2306.13718, (2023).

T. Matsumoto, H. Imai. Public quadratic polynomial-tuples for efficient signature verification and message-encryption, in EUROCRYPT 1988. LNCS, vol. 330 (Springer, 1988), pp. 419-553.

J. Patarin. Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt 88, in CRYPTO 1995. LNCS, vol. 963 (Springer, 1995), pp. 248-261.