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Multivariate Cryptography

A standard multivariate cryptosystem:
▶ a public finite field Fq
▶ m private (quadratic) polynomials in n variables

F =

 f1
...

fm

 : Fn
q → Fm

q (computationally feasible to invert)

▶ two private affine/linear invertible maps S : Fm
q → Fm

q , T : Fn
q → Fn

q
▶ the public map P := S ◦ F ◦ T : Fn

q → Fm
q ,

look like m random (quadratic) polynomials

Encrypt a ∈ Fn
q

P−→ b = P(a) ∈ Fm
q (Verify)

Decrypt b ∈ Fm
q

S−1
−−→ w ∈ Fm

q
F−1
−−→ z ∈ Fn

q
T −1
−−→ a ∈ Fn

q (Sign)



A classical example: MI scheme

Matsumoto-Imai cryptosystem (1988)
▶ Consider Fn

q, Fqn and ϕ : Fn
q → Fqn standard isomorphism

▶ Take F : Fqn → Fqn F (x) = xqi +1 s.t. gcd(qn − 1, qi + 1) = 1
F bijection easy to invert

▶ Then F = ϕ ◦ F ◦ ϕ−1 : Fn
q → Fn

q and P = S ◦ F ◦ T

Linearization attack by Patarin (1995)

▶ If y = F (x) = xqi +1, then yqi x = yxq2i

▶ Bilinear relation between input-output of F
▶ It exists also a bilinear relation between input-output of P



A more general transformation for F : Fn
q → Fm

q ?
⋆ EA-transformation G = A1 ◦ F ◦ A2 + A
▶ only affine maps involved

⋆ CCZ-transformation A(ΓF ) = ΓG for A aff. bij. of Fn+m
q , and

ΓF = {(z , F (z)) : z ∈ Fn
q}

▶ not preserved the algebraic degree (and the bijectivity)
▶ difficult to construct a random CCZ-transformation

⋆ Towards a random CCZ construction
▶ The t-twist: for t ≤ min(n, m), F : Ft

q × Fn−t
q → Ft

q × Fm−t
q

F (x , y) =
(

T (x , y)
U(x , y)

)
=
(

Ty (x)
U(x , y)

)
, G(x , y) =

(
Ty (x)−1

U(Ty (x)−1, y)

)
with Ty (x) invertible for every y

▶ CCZ = EA + t-twist + EA [Canteaut-Perrin 2019 for q = 2]
▶ if deg(F ) = 2, then deg(G) ≤ 2 · deg(Ty (x)−1)
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CCZ Signature scheme

F (x , y) =
(

Ty (x)
U(x , y)

)
, G(x , y) =

(
T −1

y (x)
U(T −1

y (x), y)

)

Idea: private quadratic map F t−twist−−−−→ G aff −transf−−−−−−→ P public map

sk A1, A2, T , U pk P = A1 ◦ G ◦ A2

Sign s:=Sign(d,sk): h = H(d) ∈ Fm
q −→ P(s) = h?

1. A−1
1 (h) = (wT , wU) ∈ Ft

q × Fm−t
q , so(

wT
wU

)
= G(x , y) =

(
T −1

y (x)
U(T −1

y (x), y)

)
=
(

T −1
y (x)

U(wT , y)

)
2. Y = {y ∈ Fn−t

q : wU = U(wT , y)}
3. get ȳ ∈ Y , x̄ = Tȳ (wT ), then s̄ = A−1

2 (x̄ , ȳ) is a valid signature

Verify Ver(d,s,pk): h = H(d) ∈ Fm
q −→ check P(s) = h



CCZ Signature scheme

F (x , y) =
(

Ty (x)
U(x , y)

)
, G(x , y) =

(
T −1

y (x)
U(T −1

y (x), y)

)

Idea: private quadratic map F t−twist−−−−→ G aff −transf−−−−−−→ P public map

sk A1, A2, T , U pk P = A1 ◦ G ◦ A2

Sign s:=Sign(d,sk): h = H(d) ∈ Fm
q −→ P(s) = h?

1. A−1
1 (h) = (wT , wU) ∈ Ft

q × Fm−t
q , so(

wT
wU

)
= G(x , y) =

(
T −1

y (x)
U(T −1

y (x), y)

)
=
(

T −1
y (x)

U(wT , y)

)
2. Y = {y ∈ Fn−t

q : wU = U(wT , y)}
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2 (x̄ , ȳ) is a valid signature

Verify Ver(d,s,pk): h = H(d) ∈ Fm
q −→ check P(s) = h



CCZ Signature scheme

F (x , y) =
(

Ty (x)
U(x , y)

)
, G(x , y) =

(
T −1

y (x)
U(T −1

y (x), y)

)

Idea: private quadratic map F t−twist−−−−→ G aff −transf−−−−−−→ P public map

sk A1, A2, T , U pk P = A1 ◦ G ◦ A2

Sign s:=Sign(d,sk): h = H(d) ∈ Fm
q −→ P(s) = h?

1. A−1
1 (h) = (wT , wU) ∈ Ft

q × Fm−t
q , so(

wT
wU

)
= G(x , y) =

(
T −1

y (x)
U(T −1

y (x), y)

)
=
(

T −1
y (x)

U(wT , y)

)
2. Y = {y ∈ Fn−t

q : wU = U(wT , y)}
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The choice of T and U

x = (x1, . . . , xt) y = (y1, . . . , yn−t)

T : Ft
q × Fn−t

q → Ft
q

T (x , y) invertible for every fixed y

▶ T (x , y) = ℓ(x) + q(y), ℓ linear
bijection, q random quadratic

▶ w.l.o.g.

T (x , y) = x + q(y)
T −1

y (x) = x − q(y)

▶ deg(G) ≤ 4

U : Ft
q × Fn−t

q → Fm−t
q

U(x , y): fixed x it must be "easy" to
get a preimage with respect to y
(ȳ ∈ Y )

▶ use Oil-and-Vinegar (OV) maps

▶ fix 0 ≤ s ≤ n − t, U is a system
of m − t OV equations with
{x1, . . . , xt , y1, . . . , ys} vinegar
and {ys+1, . . . , yn−t} oil

(OV) f (z) =
∑

j,k∈V
αjkzjzk +

∑
j∈V

∑
k∈O

βjkzjzk +
∑
j∈V

γjzj +
∑
j∈O

γjzj + δ
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UOV-CCZ Scheme

▶ n, m, t, s with t ≤ min(n, m) and s ≤ n − t
▶ q : Fn−t

q → Ft
q random quadratic, so T (x , y) = x + q(y)

▶ U : Ft
q × Fn−t

q → Fm−t
q random OV maps with t + s vinegar

variables (xi , yj , j ≤ s) and n − t − s oil variables (yj , j > s)
▶ A1, A2 random affine bijections of Fm

q , Fn
q

▶ G(x , y) = (x − q(y), U(x − q(y), y))
pk P = A1 ◦ G ◦ A2 sk q, U, A1, A2

a.k.a. Pesto scheme

Like in the Pesto Sauce, we try to fully mix the
variables (ingredients) using a CCZ transformation
(mortar and pestle).
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Key Sizes

Theorem
The public key consists of m

(n+4
4
)

coefficients over Fq, and the secret key
consists of

m2 +m+n2 +n+t
(

n − t + 2
2

)
+(m−t)

(
t + s + 2

2

)
+(m−t)(n−t −s)(t +s +1)

coefficients over Fq.

Amount of coefficients of Fq to store

n m t s amount for pk amount for sk
5 4 2 1 504 106
6 5 2 2 1050 177
10 8 3 2 8008 545



Linearization attack for s = 0

Linearization Equation (LE) R : Fn
q × Fm

q → Fq

R(z , w) =
n∑

i=1

m∑
j=1

αijziwj +
n∑

i=1
βizi +

m∑
j=1

γjwj + δ ∈ Fq[z , w ]

s.t. ∀z̄ ∈ Fn
q, P(z̄) = w̄ , R(z̄ , w̄) = 0.

▶ Fixed the output w̄ ∈ Fm
q , R(z , w̄) is linear in z (input)

▶ Higher Order LE (HOLE): relation R only linear in the input

Attack for s = 0 (in U {xi} vinegar and {yi} oil)

1.
(

wT
wU

)
= G(x , y) ⇒ wU = U(wT , y) quadratic HOLEs

2. we have quadratic HOLEs for P = A1 ◦ G ◦ A2

3. reconstruct the coefficients (by considering enough input-output pairs)
4. given a targeted output, we have m − t linear equations in the input
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Differential attack via linear structures

P = A1 ◦
[

x − q(y)
U(x − q(y), y)

]
◦ A2, with x − q(y) =

x1 − q1(y)
...

xt − qt(y)


• P has (at least) qt − 1 quadratic components (Pλ = λ · P : Fn

q → Fq)
• For f = xi − qi(y), LS(f ) = {a ∈ Fn

q | f (z + a) − f (z) const},
then LS(f ) ⊇ Ft

q × {0n−t} ( a = (a′, 0n−t) with a′ ∈ Ft
q )

Idea of the attack:
▶ recover ∆ the quadratic components of P (assume |∆| = qt − 1)
▶ ∃ t-dimensional vector subspace of V ⊆ Fn

q s.t. V ⊆
⋂

f ∈∆ LS(f )
▶ then L2(V ) = Ft

q × {0n−t}, with A2(·) = L2(·) + const
In V there are t linearly independent vectors which form the first t
columns of L−1

2



A variant in univariate form F : Fqn → Fqn

Set q = 2, Trn(x) = x + x2 + · · · + x2n−1 .
Examples of A : F2n × F2n → F2n × F2n , A(ΓF ) = ΓG

A1

(
x
y

)
=
(

x + γ1Trn(θx + λy)
γ1Trn(θx) + y

)
, A2

(
x
y

)
=
(

x + γ2Trn(λy)
y

)

under some restriction on the parameters

▶ Not UOV-CCZ instances
▶ If F is easily invertible, P constructed with (one of) these

transformations can be used in a cryptographic scheme
▶ deg(P) ≤ 3



To conclude

We proposed a scheme which "hides" the central map F via a
CCZ-transformation and we performed a preliminary security analysis.

We believe that more interesting results can come out by connecting
further the theory of Boolean functions with the theory of

multivariate cryptography.

Thank you for your attention
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