Boolean Functions and Applications (BFA) 2024, Dubrovnik, Croatia

A conjecture on permutation trinomials

Pante Stănică

Department of Applied Mathematics Naval Postgraduate School Monterey, CA 93943, USA; pstanica@nps.edu

Pante Stănică: A conjecture on permutation trinomials

My co-authors:

Ţ

Daniele Bartoli Mohit Pal

Work started while visiting Daniele at University of Perugia in Spring of 2024

Environment and field's flowers

- Let $q = 2^m$, $m \in \mathbb{N}$, and denote by \mathbb{F}_q the finite field with q elements; $\mathbb{F}_q[X_1,\ldots,X_n]$, the ring of polynomials in *n* indeterminates over finite field \mathbb{F}_q ;
- Vectorial Boolean functions $F: \mathbb{F}_q^n \to \mathbb{F}_q^n$ are fundamental building blocks in symmetric cryptography: many block ciphers employ them as components in their S-boxes.
- To counter known cipher attacks, these vectorial Boolean functions have to satisfy many criteria such as nonlinearity, avalanche features, differential uniformity, etc.
- Most such *F*'s have to be permutations when used in applications!

Our problem

Recently, Rai and Gupta (CCDS 2023) studied permutation trinomials over finite fields of odd characteristic and proposed a conjecture.

Conjecture

Let $q = p^k$, where $p > 7$ is a prime. Then, for $\alpha \in \mathbb{F}_q^*$ and $k > 1$, *the trinomial*

$$
f(X) = X^{q(p-1)+1} + \alpha X^{pq} + X^{q+p-1}
$$

is a permutation polynomial over \mathbb{F}_{q^2} *if and only if* $\alpha = -1$ *and* $k = 2$.

It is the intent of our paper to prove this conjecture.

Tools from algebraic geometry I

- Field $\mathbb{F}, \overline{\mathbb{F}}$ be its algebraic closure, and $\mathbb{P}^m(\mathbb{F})$ (respectively, A *^m*(F)) the *m*-dimensional projective (respectively, affine) space over the field \mathbb{F} .
- *Variety*: solutions of a system of eqs over \mathbb{F}_q .
- An algebraic hypersurface (def by a single eq) over a field F is *absolutely irreducible* if the associated polynomial is irreducible over the algebraic closure of F.
- V is a variety of deg(V) = *d* if $d = \#(V \cap H)$, where $H \subseteq \mathbb{A}^r(\overline{\mathbb{F}_q})$ is a general projective subspace of dimension *r* − *s*; an upper bound to deg(\mathcal{V}) is given by $\prod_{i=1}^s \deg(\mathcal{F}_i)$; to find it precisely, not an easy matter.
- The Frobenius map $\Phi_q: x \mapsto x^q$ is an automorphism of $\mathbb{F}_{q^k_q}$ and generates the group $Gal(\mathbb{F}_{q^k}/\mathbb{F}_q)$ of automorphisms of \mathbb{F}_{q^k} that fixes \mathbb{F}_q , pointwise.

General Idea and Tools I

- A crucial point in our investigation: prove the existence of suitable \mathbb{F}_q -rational points in algebraic surfaces $\mathcal V$ attached to each permutation trinomial, by showing the existence of absolutely irreducible \mathbb{F}_q -rational components in $\mathcal V$ and lower bounding the number of their \mathbb{F}_q -rational points.
- We need some generalizations of Lang-Weil type bounds

Theorem (Cafure–Matera, 2006)

Let $V \subseteq \mathbb{A}^n(\mathbb{F}_q)$ be an absolutely irreducible variety over \mathbb{F}_q of *dimension r* > 0 *and degree* δ . If q > 2(r + 1) δ ², then

$$
|\#(\mathcal{V}(\mathbb{A}^n(\mathbb{F}_q))) - q^r| \leq (\delta - 1)(\delta - 2)q^{r-1/2} + 5\delta^{13/3}q^{r-1}.
$$

General Idea and Tools II

Lemma (Aubry – McGuire – Rodier, 2010)

Let H *be a projective hypersurface and* X *a projective variety in* P *n* (F*q*)*. If* X ∩ H *has a non-repeated absolutely irreducible component defined over* F*^q then* X *has a non-repeated absolutely irreducible component defined over* F*q.*

Theorem (Bézout Theorem)

Let C_1, C_2 be two projective plane curves of degrees d_1 , *respectively,* d_2 *. If* C_1 *and* C_2 *do not have a common component, then the sum of multiplicities of their common points is*

$$
\sum_{P\in\mathcal{C}_1\cap\mathcal{C}_2} m(P,\mathcal{C}_1\cap\mathcal{C}_2)=d_1d_2.
$$

Our approach for $k \geq 4$ I

• Consider again the polynomial

 $f_{\alpha}(X)=X^{(\rho-1)q+1}+\alpha X^{\rho q}+X^{q+\rho-1}=X^{q+\rho-1}(X^{(q-1)(\rho-2)}+\alpha X^{(q-1)(\rho-1)})\in \mathbb{F}_{q^2}[X]$

which permutes \mathbb{F}_{q^2} (note $GCD(q+p-1,q^2-1)=1)$ iff

$$
g_{\alpha}(X)=X^{q+p-1}(X^{p-2}+\alpha X^{p-1}+1)^{q-1}
$$

permutes $\mu_{\bm{q}+1} = \{\bm{a}\in \mathbb{F}_{\bm{q}^2} \ : \ \bm{a}^{\bm{q}+1} = 1\}$ (see Park & Lee 2001, Zieve 2009, Akbary, Ghioca & Wang 2011).

• WLOG $\alpha + 2 \neq 0$, otherwise $g_{\alpha}(1) = 0$, so, g_{α} is not PP.

- For $x \in \mu_{q+1}, g_\alpha(x) = \ldots = \frac{x + \alpha + x^{p-1}}{x^{p-1} + \alpha x^{p+1}}$ $\frac{x+\alpha+x^{\rho-1}}{x^{\rho-1}+\alpha x^{\rho}+x}$.
- Known: $\mu_{q+1} \setminus \{1\} = \left\{ \frac{t+i}{t-i} : t \in \mathbb{F}_q, i^q = -i \right\}.$

Our approach for $k > 4$ II

Note that g_{α} permutes μ_{q+1} if $\mathcal{A}(x,y) \in \mu_{q+1}^2$, $x \neq y$, s.t. $F_\alpha(x, y) = 0$, where $F_\alpha(X, Y)$ is given by

 $(X + \alpha + X^{p-1})(Y^{p-1} + \alpha Y^p + Y) - (Y + \alpha + Y^{p-1})(X^{p-1} + \alpha X^p + X)$ $\hspace{.26in} = \hspace{.2in} \alpha (X^{p-1}Y^p - X^pY^{p-1} + XY^p - X^pY + \alpha (Y-X)^p + Y^{p-1} - X^{p-1} + Y - X^p)$

.

 $F^{(1)}_{\alpha}(X, Y) := F_{\alpha}(X, Y)/(X - Y)$ defines an affine curve \mathcal{C}_{α} , \mathbb{F}_{q^2} -birationally equiv. to the affine curve \mathcal{D}_{α} defined by

$$
G_{\alpha}(X,Y):=\frac{(X-i)(Y-i)}{2i(Y-X)}F_{\alpha}\left(\frac{X+i}{X-i},\frac{Y+i}{Y-i}\right)
$$

• This birationality does not preserve the \mathbb{F}_q -rationality of points nor of components of the two curves in general, but sends $(x,y)\in\mu_{q+1}^2$ in \mathcal{C}_α into $(\overline{x},\overline{y})\in\mathbb{F}_q^2$ in \mathcal{D}_α and viceversa and preserves the $#$ of components of the two curves.

Our approach for $k > 4$ III

- **•** Thus, the curve \mathcal{D}_{α} is absolutely irreducible iff \mathcal{C}_{α} is a.i.
- We aim to show that the curve \mathcal{C}_{α} is absolutely irreducible.
- By way of contradiction, let

$$
C_{\alpha}^{(1)}: X^{r_1}Y^{r_2} + \cdots = 0,
$$

$$
C_{\alpha}^{(2)}: X^{p-1-r_1}Y^{p-1-r_2} + \cdots = 0
$$

be two (not necessarily irreducible) components.

• They intersect, by Bézout Theorem, in precisely

$$
(r_1+r_2)(p-1-r_1+p-1-r_2)
$$

points counted with multiplicity. Also $\mathcal{C}^{(1)}_{\alpha}$ and $\mathcal{C}^{(2)}_{\alpha}$ must intersect at singular points of C_{α} .

Our approach for $k > 4$ IV

• Some work required to show that the only singular points of \mathcal{C}_{α} are (1 : 0 : 0), (0 : 1 : 0), and (1 : 1 : 1) together with at most other four affine ordinary double points; also, the multiplicity of intersection of $\mathcal{C}^{(1)}_{\alpha}$ and $\mathcal{C}^{(2)}_{\alpha}$ at these points is

$$
r_1(p-1-r_1)+r_2(p-1-r_2).
$$

We also show that $\mathcal{C}^{(1)}_{\alpha}$ and $\mathcal{C}^{(2)}_{\alpha}$ intersect at (1 : 1 : 1), so the smallest homogeneous part in the polynomials defining these two curves must be proportional to $(Y - X)^{\frac{p-1}{2}}$. So, $r_1 + r_2 > \frac{p-1}{2}$ $\frac{1}{2}$ and $p - 1 - r_1 + p - 1 - r_2 > \frac{p-1}{2}$ $\frac{-1}{2}$.

Our approach for $k \geq 4$ V

• Rearranging components, we can assume that either $r_1 = r_2$ or $r_1 = p - 1 - r_2$; In both these cases the sum of the intersection multiplicities of $\mathcal{C}^{(1)}_{\alpha}$ and $\mathcal{C}^{(2)}_{\alpha}$ is at most

$$
r_1(p-1-r_1)+r_1(p-1-r_1)+\frac{p^2-1}{4}+4.
$$

\n- \n Since
$$
\frac{p-1}{4} < r_1 < \frac{3(p-1)}{4}
$$
 and $p \geq 11$,\n $\frac{p^2-1}{4} + 4 < 2r_1(p-1-r_1) < \frac{(p-1)^2}{2}$ holds.\n
\n- \n If $r_1 = r_2$,\n
\n

$$
r_1(p-1-r_1)+r_1(p-1-r_1)+\frac{p^2-1}{4}+4
$$

< 2r_1(p-1-r_1)+2r_1(p-1-r_1)
< 4r_1(p-1-r_1)=\deg(\mathcal{C}_{\alpha}^{(1)})\deg(\mathcal{C}_{\alpha}^{(2)}).

Our approach for $k \geq 4$ VI

• If
$$
r_1 = p - 1 - r_2
$$
,

$$
r_1(p-1-r_1)+r_1(p-1-r_1)+\frac{p^2-1}{4}+4
$$

$$
<\frac{(p-1)^2}{2}+\frac{p^2-1}{4}+4
$$

$$
<(p-1)^2=\deg(\mathcal{C}_{\alpha}^{(1)})\deg(\mathcal{C}_{\alpha}^{(2)}).
$$

Both these cases contradict Bézout Theorem.

Our approach for *k* ≥ 4 VII

Theorem

Let $\alpha \in \mathbb{F}_q^*$ and $\bm{q} = \bm{\rho}^k$, $k \geq 4$, $\bm{\rho} >$ 7 prime. Then the trinomial

$$
f(X) = X^{q(p-1)+1} + \alpha X^{pq} + X^{q+p-1}
$$

is not a permutation polynomial over \mathbb{F}_{q^2} *.*

Proof (sketch)

- **•** If $\alpha = -2$ then $g_{\alpha}(1) = 0$ and thus g_{α} is not PP;
- Let $\alpha \neq -2$. The curve \mathcal{C}_{α} is absolutely irreducible and so is \mathcal{D}_{α} .

Our approach for $k \geq 4$ VIII

• Since deg(\mathcal{D}_{α}) = $p-1$, Hasse-Weil bound implies that it has at least

$$
\rho^k+1-(\rho-2)(\rho-3)\rho^{k/2}
$$

 \mathbb{F}_q -rational points in $\mathbb{P}^2(\mathbb{F}_q)$ and at most 2($p-1$) of them belong to the line at infinity or to $X - Y = 0$.

• Since $k > 4$,

$$
p^{k}+1-(p-2)(p-3)p^{k/2}-2(p-1)>0.
$$

- **•** Thus, $\exists \overline{x} \neq \overline{y} \in \mathbb{F}_q$, s.t. $g_{\alpha}((\overline{x}+i)/(\overline{x}-i)=g_{\alpha}((\overline{y}+i)/(\overline{y}-i))$, so, g_{α} does not permute μ_{q+1} .
	- This shows that $f(X)$ is not a permutation over \mathbb{F}_{q^2} . \Box

The case of $k = 3$ I

[Go2Tks](#page-0-1)

- Cases $k = 2, 3$ require different methods.
- $\text{Write } f(X) = \alpha X^{pq} + \text{Tr}(X^{q+p-1}) = (\alpha X^p + \text{Tr}(X^{q+p-1}))^q,$ where Tr is the relative trace map from \mathbb{F}_{q^2} to \mathbb{F}_q given by $Tr(X) = X^{q} + X.$
- Note that *f* is a PP iff $\alpha X^p + \text{Tr}(X^{q+p-1})$ is PP, so we assume that $f(X) = \alpha X^p + \text{Tr}(X^{q+p-1}), \ \alpha \in \mathbb{F}_q^*.$
- For $k = 3$, we now consider the equation

$$
\alpha X^{\rho} + \text{Tr}(X^{\rho^3 + \rho - 1}) = \alpha X^{\rho} + X^{\rho^3 + \rho - 1} + X^{\rho^4 - \rho^3 + 1} = g. \tag{1}
$$

The case of $k = 3$ II

Raising to the p^3 power (note that $\alpha^{p^3} = \alpha$, $X^{p^6} = X$), we $\mathrm{get}\ \alpha X^{\rho^4} + X^{\rho^3+p-1} + X^{\rho^4-p^3+1} = g^{\rho^3},$ which combined with [\(1\)](#page-15-0), renders

$$
\alpha(X^{p^4}-X^p)+g-g^{p^3}=0.
$$

We use the transformation $g \mapsto h^{\rho}, \alpha \mapsto \beta^{\rho},$ obtaining

$$
X^{p^3}-X-B=0, \;\; \text{where} \; B=\frac{h^{p^3}-h}{\beta},
$$

which either has no roots or it has ρ^3 roots, of the form $X = -B/2 + \lambda$, with $\lambda \in \mathbb{F}_{p^3}$.

The case of $k = 3$ III

We plug this into [\(1\)](#page-15-0) using $B^{\rho^3} = -B, \lambda^{\rho^3} = \lambda, \, \gamma = \frac{\lambda^2}{B}$ $\frac{\lambda}{B}$

$$
t := \left(\frac{h^{p^3} + h}{h^{p^3} - h}\right)^p, \mu = \frac{1}{\alpha + 2}, \text{ with some effort we get}
$$

$$
\gamma^{p+2} - \frac{1-4\mu}{4} \gamma^p - \frac{(1-2\mu)t}{4} \gamma^2 - \mu \gamma + (1-2\mu)t = 0. \tag{2}
$$

- Goal: Need $h \notin \mathbb{F}_{p^3}$ s.t. [\(2\)](#page-17-0) has 0 or \geq 2 sols.
- First, we showed that $\forall \alpha$, $\exists h$ with $T^p = -T$.
- We next show that the following equation has no solution

$$
\gamma^{p+2} - \frac{1 - 4\mu}{4} \gamma^p - \frac{7}{4} \gamma^2 - \mu \gamma + T = 0. \tag{3}
$$

Note that $\mathbb{F}_{\rho^6} = \langle \mu, T \rangle_{\mathbb{F}_\rho}$, since $\mu \in \mathbb{F}_{\rho^3}$, $T \in \mathbb{F}_{\rho^2}$;

The case of $k = 3$ IV

If γ exists, then $\gamma = a\mu + bT$, $a, b \in \mathbb{F}_p$ with $ab \neq 0$, since $\gamma\notin\mathbb{F}_{\rho^3};$ plug it into [\(3\)](#page-17-1) (use $\mathcal{T}^2=:\omega\in\mathbb{F}_{\rho}$ and $\mathcal{T}^3\in\mathcal{T}\cdot\mathbb{F}_{\rho}).$ A bit more algebraic number theory work is required to show that the obtained eq. has no solution.

Thank you for your attention!

[Pante Stanica: http://faculty.nps.edu/pstanica]

m

- h A. Akbary, D. Ghioca, Q. Wang, *On constructing permutations of finite fields*, Finite Fields Appl. **17**(1), 51–67 (2011).
	- R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, no. 52, Springer–Verlag, New York-Heidelberg, 1977.
- 晶 J.W.P. Hirschfeld, G. Korchmáros, F. Torres, Algebraic curves over a finite field, Princeton University Press, 2013.
- 晶 Y.H. Park, J.B. Lee, *Permutation polynomials and group permutation polynomials*, Bull. Austral. Math. Soc. **63**(1), 67–74 (2001).
- 冨 A. Rai, R. Gupta, *Further results on a class of permutation trinomials*, Cryptogr. Commun. **15**, 811–820 (2023).
	- Y. Zheng, Q. Wang, W. Wei, *On Inverses of Permutation Polynomials of Small Degree Over Finite Fields*, IEEE Trans. Inf. Theory 66:2 (2020), 914–922.
	- M.E. Zieve, *On some permutation polynomials over* F*^q of the form x^r h*(*x*^{(*q*−1)/*d*}), Proc. Amer. Math. Soc. **137**(7), 2209–2216 (2009).

