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Environment and field’s flowers

Let q = 2m, m ∈ N, and denote by Fq the finite field with q
elements; Fq[X1, . . . ,Xn], the ring of polynomials in n
indeterminates over finite field Fq;
Vectorial Boolean functions F : Fn

q → Fn
q are fundamental

building blocks in symmetric cryptography: many block
ciphers employ them as components in their S-boxes.
To counter known cipher attacks, these vectorial Boolean
functions have to satisfy many criteria such as nonlinearity,
avalanche features, differential uniformity, etc.
Most such F ’s have to be permutations when used in
applications!
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Our problem

Recently, Rai and Gupta (CCDS 2023) studied permutation
trinomials over finite fields of odd characteristic and proposed a
conjecture.

Conjecture

Let q = pk , where p > 7 is a prime. Then, for α ∈ F∗
q and k > 1,

the trinomial

f (X ) = X q(p−1)+1 + αX pq + X q+p−1

is a permutation polynomial over Fq2 if and only if α = −1 and
k = 2.

It is the intent of our paper to prove this conjecture.
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Tools from algebraic geometry I

Field F, F be its algebraic closure, and Pm(F) (respectively,
Am(F)) the m-dimensional projective (respectively, affine)
space over the field F.
Variety: solutions of a system of eqs over Fq.

An algebraic hypersurface (def by a single eq) over a field
F is absolutely irreducible if the associated polynomial is
irreducible over the algebraic closure of F.
V is a variety of deg(V) = d if d = #(V ∩ H), where
H ⊆ Ar (Fq) is a general projective subspace of dimension
r − s; an upper bound to deg(V) is given by

∏s
i=1 deg(Fi);

to find it precisely, not an easy matter.
The Frobenius map Φq : x 7→ xq is an automorphism of Fqk

and generates the group Gal(Fqk/Fq) of automorphisms of
Fqk that fixes Fq, pointwise.
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General Idea and Tools I

A crucial point in our investigation: prove the existence of
suitable Fq-rational points in algebraic surfaces V attached
to each permutation trinomial, by showing the existence of
absolutely irreducible Fq-rational components in V and
lower bounding the number of their Fq-rational points.
We need some generalizations of Lang-Weil type bounds

Theorem (Cafure–Matera, 2006)

Let V ⊆ An(Fq) be an absolutely irreducible variety over Fq of
dimension r > 0 and degree δ. If q > 2(r + 1)δ2, then∣∣#(V(An(Fq)))− qr ∣∣ ≤ (δ − 1)(δ − 2)qr−1/2 + 5δ13/3qr−1.
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General Idea and Tools II

Lemma (Aubry – McGuire – Rodier, 2010)

Let H be a projective hypersurface and X a projective variety in
Pn(Fq). If X ∩H has a non-repeated absolutely irreducible
component defined over Fq then X has a non-repeated
absolutely irreducible component defined over Fq.

Theorem (Bézout Theorem)
Let C1, C2 be two projective plane curves of degrees d1,
respectively, d2. If C1 and C2 do not have a common component,
then the sum of multiplicities of their common points is∑

P∈C1∩C2

m (P, C1 ∩ C2) = d1d2.
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Our approach for k ≥ 4 I

Consider again the polynomial

fα(X ) = X (p−1)q+1+αX pq+X q+p−1 = X q+p−1(X (q−1)(p−2)+αX (q−1)(p−1)) ∈ Fq2 [X ], k ≥ 4

which permutes Fq2 (note GCD(q + p − 1,q2 − 1) = 1) iff

gα(X ) = X q+p−1(X p−2 + αX p−1 + 1)q−1

permutes µq+1 = {a ∈ Fq2 : aq+1 = 1} (see Park & Lee
2001, Zieve 2009, Akbary, Ghioca & Wang 2011).
WLOG α+ 2 ̸= 0, otherwise gα(1) = 0, so, gα is not PP.

For x ∈ µq+1, gα(x) = . . . = x+α+xp−1

xp−1+αxp+x .

Known: µq+1 \ {1} =
{

t+i
t−i : t ∈ Fq, iq = −i

}
.
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Our approach for k ≥ 4 II

Note that gα permutes µq+1 if ̸ ∃(x , y) ∈ µ2
q+1, x ̸= y , s.t.

Fα(x , y) = 0, where Fα(X ,Y ) is given by

(X + α+ X p−1)(Y p−1 + αY p + Y )− (Y + α+ Y p−1)(X p−1 + αX p + X )

= α(X p−1Y p − X pY p−1 + XY p − X pY + α(Y − X )p + Y p−1 − X p−1 + Y − X ).

F (1)
α (X ,Y ) := Fα(X ,Y )/(X − Y ) defines an affine curve Cα,

Fq2-birationally equiv. to the affine curve Dα defined by

Gα(X ,Y ) :=
(X − i)(Y − i)

2i(Y − X )
Fα

(
X + i
X − i

,
Y + i
Y − i

)
.

This birationality does not preserve the Fq-rationality of
points nor of components of the two curves in general, but
sends (x , y) ∈ µ2

q+1 in Cα into (x , y) ∈ F2
q in Dα and

viceversa and preserves the # of components of the two
curves.
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Our approach for k ≥ 4 III

Thus, the curve Dα is absolutely irreducible iff Cα is a.i.
We aim to show that the curve Cα is absolutely irreducible.
By way of contradiction, let

C(1)
α : X r1Y r2 + · · · = 0,

C(2)
α : X p−1−r1Y p−1−r2 + · · · = 0

be two (not necessarily irreducible) components.
They intersect, by Bézout Theorem, in precisely

(r1 + r2)(p − 1 − r1 + p − 1 − r2)

points counted with multiplicity. Also C(1)
α and C(2)

α must
intersect at singular points of Cα.
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Our approach for k ≥ 4 IV

Some work required to show that the only singular points
of Cα are (1 : 0 : 0), (0 : 1 : 0), and (1 : 1 : 1) together with
at most other four affine ordinary double points; also, the
multiplicity of intersection of C(1)

α and C(2)
α at these points is

r1(p − 1 − r1) + r2(p − 1 − r2).

We also show that C(1)
α and C(2)

α intersect at (1 : 1 : 1), so
the smallest homogeneous part in the polynomials defining
these two curves must be proportional to (Y − X )

p−1
2 . So,

r1 + r2 > p−1
2 and p − 1 − r1 + p − 1 − r2 > p−1

2 .
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Our approach for k ≥ 4 V

Rearranging components, we can assume that either
r1 = r2 or r1 = p − 1 − r2; In both these cases the sum of
the intersection multiplicities of C(1)

α and C(2)
α is at most

r1(p − 1 − r1) + r1(p − 1 − r1) +
p2 − 1

4
+ 4.

Since p−1
4 < r1 < 3(p−1)

4 and p ≥ 11,
p2−1

4 + 4 < 2r1(p − 1 − r1) <
(p−1)2

2 holds.
If r1 = r2,

r1(p − 1 − r1) + r1(p − 1 − r1) +
p2 − 1

4
+ 4

< 2r1(p − 1 − r1) + 2r1(p − 1 − r1)

< 4r1(p − 1 − r1) = deg(C(1)
α ) deg(C(2)

α ).
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Our approach for k ≥ 4 VI

If r1 = p − 1 − r2,

r1(p − 1 − r1) + r1(p − 1 − r1) +
p2 − 1

4
+ 4

<
(p − 1)2

2
+

p2 − 1
4

+ 4

< (p − 1)2 = deg(C(1)
α ) deg(C(2)

α ).

Both these cases contradict Bézout Theorem.
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Our approach for k ≥ 4 VII

Theorem

Let α ∈ F∗
q and q = pk , k ≥ 4, p > 7 prime. Then the trinomial

f (X ) = X q(p−1)+1 + αX pq + X q+p−1

is not a permutation polynomial over Fq2 .

Proof (sketch)
If α = −2 then gα(1) = 0 and thus gα is not PP;

Let α ̸= −2. The curve Cα is absolutely irreducible and so
is Dα.
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Our approach for k ≥ 4 VIII

Since deg(Dα) = p − 1, Hasse-Weil bound implies that it
has at least

pk + 1 − (p − 2)(p − 3)pk/2

Fq-rational points in P2(Fq) and at most 2(p − 1) of them
belong to the line at infinity or to X − Y = 0.
Since k ≥ 4,

pk + 1 − (p − 2)(p − 3)pk/2 − 2(p − 1) > 0.

Thus, ∃ x ̸= y ∈ Fq, s.t.
gα((x + i)/(x − i) = gα((y + i)/(y − i)), so, gα does not
permute µq+1.
This shows that f (X ) is not a permutation over Fq2 . □
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The case of k = 3 I

Go2Tks

Cases k = 2,3 require different methods.

Write f (X ) = αX pq + Tr(X q+p−1) = (αX p + Tr(X q+p−1))q,
where Tr is the relative trace map from Fq2 to Fq given by
Tr(X ) = X q + X .

Note that f is a PP iff αX p + Tr(X q+p−1) is PP, so we
assume that f (X ) = αX p + Tr(X q+p−1), α ∈ F∗

q.

For k = 3, we now consider the equation

αX p + Tr(X p3+p−1) = αX p +X p3+p−1 +X p4−p3+1 = g. (1)
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The case of k = 3 II

Raising to the p3 power (note that αp3
= α,X p6

= X ), we
get αX p4

+ X p3+p−1 + X p4−p3+1 = gp3
, which combined

with (1), renders

α(X p4 − X p) + g − gp3
= 0.

We use the transformation g 7→ hp, α 7→ βp, obtaining

X p3 − X − B = 0, where B =
hp3 − h

β
,

which either has no roots or it has p3 roots, of the form
X = −B/2 + λ, with λ ∈ Fp3 .
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The case of k = 3 III

We plug this into (1) using Bp3
= −B, λp3

= λ, γ = λ
B ,

t :=

(
hp3

+ h
hp3 − h

)p

, µ =
1

α+ 2
, with some effort we get

γp+2 − 1 − 4µ
4

γp − (1 − 2µ)t
4

γ2 − µγ + (1− 2µ)t = 0. (2)

Goal: Need h /∈ Fp3 s.t. (2) has 0 or ≥ 2 sols.
First, we showed that ∀α, ∃h with T p = −T .
We next show that the following equation has no solution

γp+2 − 1 − 4µ
4

γp − T
4
γ2 − µγ + T = 0. (3)

Note that Fp6 = ⟨µ,T ⟩Fp , since µ ∈ Fp3 ,T ∈ Fp2 ;
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The case of k = 3 IV

If γ exists, then γ = aµ+ bT ,a,b ∈ Fp with ab ̸= 0, since
γ /∈ Fp3 ; plug it into (3) (use T 2 =: ω ∈ Fp and T 3 ∈ T · Fp).
A bit more algebraic number theory work is required to
show that the obtained eq. has no solution.
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Thank you for your attention!

[Pante Stanica: http://faculty.nps.edu/pstanica]
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