Sidon sets in \mathbb{F}_2^n $n \over 2$ and the vectorial nonlinearity

Gábor P. Nagy

University of Szeged (Hungary) and Budapest University of Technology and Economics (Hungary)

The 9th International Workshop on Boolean Functions and their Applications

> September 9-13, 2024 Dubrovnik (Croatia)

Outline

- 2 Differential uniformity vs vectorial nonlinearity
- 3 Sidon sets in \mathbb{F}_2^n 2
- 4 Large Sidon sets in \mathbb{F}_2^n 2
- 5 [Computing](#page-21-0) [the](#page-21-0) vectorial nonlinearity

Outline

1 Nonlinearity vs vectorial nonlinearity

- Differential uniformity vs vectorial nonlinearity
- 3 Sidon sets in F₂ 2
- 4 Large Sidon sets in \mathbb{F}_2^n 2
- 5 [Computing](#page-21-0) [the](#page-21-0) vectorial nonlinearity

International Olympiad in Cryptography NSUCRYPTO'2021 Second round General, Teams October 18-25

Problem 11. «Distance to affine functions»

Given two functions F and G from \mathbb{F}_2^n $n/2$ (or \mathbb{F}_{2^n}) to itself, their Hamming distance equals by definition the number of inputs x at which $F(x) \neq G(x)$.

The minimum Hamming distance between any such function F and all affine functions A is known to be strictly smaller than $2^n - n - 1$.

Find constructions of infinite classes of functions F having a distance to affine functions as large as possible.

International Olympiad in Cryptography NSUCRYPTO'2021 Second round General, Teams October 18-25

Problem 11. «Distance to affine functions»

Given two functions F and G from \mathbb{F}_2^n $n/2$ (or \mathbb{F}_{2^n}) to itself, their Hamming distance equals by definition the number of inputs x at which $F(x) \neq G(x)$.

The minimum Hamming distance between any such function F and all affine functions A is known to be strictly smaller than $2^n - n - 1$.

Find constructions of infinite classes of functions F having a distance to affine functions as large as possible.

International Olympiad in Cryptography NSUCRYPTO'2021 Second round General, Teams October 18-25

Problem 11. «Distance to affine functions»

Given two functions F and G from \mathbb{F}_2^n $n/2$ (or \mathbb{F}_{2^n}) to itself, their Hamming distance equals by definition the number of inputs x at which $F(x) \neq G(x)$.

The minimum Hamming distance between any such function F and all affine functions A is known to be strictly smaller than $2^n - n - 1$.

Find constructions of infinite classes of functions F having a distance to affine functions as large as possible.

The Hamming distance of
$$
f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m
$$
 is
\n
$$
d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.
$$

- 2 Let ω : \mathbb{F}_2^m $\frac{m}{2} \rightarrow F_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n$ 2 \rightarrow F₂, $(\omega f)(x) = \omega(f(x))$ is called a component Boolean function of f.
- **3** The nonlinearity of f is the distance between its component Boolean functions and affine Boolean functions

$$
\mathrm{NL}_1(f) = \min_{\substack{\omega \in (\mathbb{F}_2^m)^* \setminus \{0\} \\ \alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2)}} d_H(\omega f, \alpha).
$$

4 For all f, the *covering radius (CR)* bound gives

 $\text{NL}_1(f) \leq 2^n - 2^{n/2-1}$.

- The functions achieving this bound are called (n, m) -bent functions.
- The *Walsh-Hadamard transform* provides an effective tool for computation with nonlinearity $NL_1(f)$.

The Hamming distance of
$$
f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m
$$
 is
\n
$$
d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.
$$

- 2 Let $\omega : \mathbb{F}_2^m$
 $\omega f \cdot \mathbb{F}^n \rightarrow$ $L_2^m \rightarrow F_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n$ 2 \rightarrow \mathbb{F}_2 , $(\omega f)(x) = \omega(f(x))$ is called a component Boolean function of f.
- ³ The nonlinearity of f is the distance between its component Boolean functions and affine Boolean functions

$$
\mathrm{NL}_1(f) = \min_{\substack{\omega \in (\mathbb{F}_2^m)^* \setminus \{0\} \\ \alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2)}} d_{\mathrm{H}}(\omega f, \alpha).
$$

4 For all f, the *covering radius (CR)* bound gives

 $\text{NL}_1(f) \leq 2^n - 2^{n/2-1}$.

- The functions achieving this bound are called (n, m) -bent functions.
- The *Walsh-Hadamard transform* provides an effective tool for computation with nonlinearity $NL_1(f)$.

The Hamming distance of
$$
f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m
$$
 is
\n
$$
d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.
$$

- 2 Let $\omega : \mathbb{F}_2^m$
 $\omega f \cdot \mathbb{F}^n \rightarrow$ $L_2^m \rightarrow F_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n$ 2 \rightarrow \mathbb{F}_2 , $(\omega f)(x) = \omega(f(x))$ is called a component Boolean function of f.
- **3** The *nonlinearity* of f is the distance between its component Boolean functions and affine Boolean functions

$$
\mathrm{NL}_1(f) = \min_{\substack{\omega \in (\mathbb{F}_2^m)^* \setminus \{0\} \\ \alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2)}} d_{\mathsf{H}}(\omega f, \alpha).
$$

- 4 For all f, the *covering radius (CR)* bound gives $\text{NL}_1(f) \leq 2^n - 2^{n/2-1}$
- . 5 The functions achieving this bound are called (n, m) -bent functions.
- The *Walsh-Hadamard transform* provides an effective tool for computation with nonlinearity $NL_1(f)$.

The Hamming distance of
$$
f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m
$$
 is
\n
$$
d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.
$$

- 2 Let $\omega : \mathbb{F}_2^m$
 $\omega f \cdot \mathbb{F}^n \rightarrow$ $L_2^m \rightarrow F_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n$ 2 \rightarrow \mathbb{F}_2 , $(\omega f)(x) = \omega(f(x))$ is called a component Boolean function of f.
- **3** The *nonlinearity* of f is the distance between its component Boolean functions and affine Boolean functions

$$
\mathrm{NL}_1(f) = \min_{\substack{\omega \in (\mathbb{F}_2^m)^* \setminus \{0\} \\ \alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2)}} d_H(\omega f, \alpha).
$$

 \bullet For all f, the *covering radius (CR)* bound gives

 $\mathrm{NL}_1(f) \leq 2^n - 2^{n/2-1}$.

- 5 The functions achieving this bound are called (n, m) -bent functions.
- The Walsh-Hadamard transform provides an effective tool for computation with nonlinearity $NL_1(f)$.

The Hamming distance of
$$
f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m
$$
 is
\n
$$
d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.
$$

- 2 Let $\omega : \mathbb{F}_2^m$
 $\omega f \cdot \mathbb{F}^n \rightarrow$ $L_2^m \rightarrow F_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n$ 2 \rightarrow \mathbb{F}_2 , $(\omega f)(x) = \omega(f(x))$ is called a component Boolean function of f.
- **3** The *nonlinearity* of f is the distance between its component Boolean functions and affine Boolean functions

$$
\mathrm{NL}_1(f) = \min_{\substack{\omega \in (\mathbb{F}_2^m)^* \setminus \{0\} \\ \alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2)}} d_H(\omega f, \alpha).
$$

 \bullet For all f, the *covering radius (CR)* bound gives

 $\mathrm{NL}_1(f) \leq 2^n - 2^{n/2-1}$.
.
.

 $\overline{\mathbf{5}}$ The functions achieving this bound are called (n, m) -bent functions.

The *Walsh-Hadamard transform* provides an effective tool for computation with nonlinearity $NL_1(f)$.

The Hamming distance of
$$
f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m
$$
 is
\n
$$
d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.
$$

- 2 Let $\omega : \mathbb{F}_2^m$
 $\omega f \cdot \mathbb{F}^n \rightarrow$ $L_2^m \rightarrow F_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n$ 2 \rightarrow \mathbb{F}_2 , $(\omega f)(x) = \omega(f(x))$ is called a component Boolean function of f.
- **3** The *nonlinearity* of f is the distance between its component Boolean functions and affine Boolean functions

$$
\mathrm{NL}_1(f) = \min_{\substack{\omega \in (\mathbb{F}_2^m)^* \setminus \{0\} \\ \alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2)}} d_H(\omega f, \alpha).
$$

 \bullet For all f, the *covering radius (CR)* bound gives

 $\mathrm{NL}_1(f) \leq 2^n - 2^{n/2-1}$.
.
.

- 5 The functions achieving this bound are called (n, m) -bent functions.
- **6** The *Walsh-Hadamard transform* provides an effective tool for computation with nonlinearity $NL_1(f)$.

Vectorial nonlinearity and Problem 11

The vectorial nonlinearity of f is its distance from the set of affine functions

$$
\mathrm{NL}_{\mathbf{v}}(f)=d_{\mathsf{H}}(f,\mathsf{Aff}(\mathbb{F}_2^n,\mathbb{F}_2^m))=\min_{\alpha\in\mathsf{Aff}(\mathbb{F}_2^n,\mathbb{F}_2^m)}d_{\mathsf{H}}(f,\alpha).
$$

Find infinite classes of functions $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^n$ $\frac{n}{2}$ with high vectorial nonlinearity.

The computation of the vectorial nonlinearity $\mathrm{NL}_{\mathbf{v}}(f)$ is generally difficult.

Define $n = 2m$, $f : \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \rightarrow \mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ by

 $f(x, y) = (xy, 0).$

Then $\mathrm{NL}_\mathbf{v}(f) = (2^m-1)^2 = 2^n - 2\cdot 2^{n/2} + 1.$

Vectorial nonlinearity and Problem 11

The vectorial nonlinearity of f is its distance from the set of affine functions

$$
\mathrm{NL}_{\mathbf{v}}(f)=d_{\mathsf{H}}(f,\mathsf{Aff}(\mathbb{F}_2^n,\mathbb{F}_2^m))=\min_{\alpha\in\mathsf{Aff}(\mathbb{F}_2^n,\mathbb{F}_2^m)}d_{\mathsf{H}}(f,\alpha).
$$

Problem 11 reformulated

Find infinite classes of functions $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^n$ $\frac{n}{2}$ with high vectorial nonlinearity.

The computation of the vectorial nonlinearity $\mathrm{NL}_{\mathbf{v}}(f)$ is generally difficult.

```
Define n = 2m, f : \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \to \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} by
```
 $f(x, y) = (xy, 0).$

Then $\mathrm{NL}_\mathbf{v}(f) = (2^m-1)^2 = 2^n - 2\cdot 2^{n/2} + 1.$

Vectorial nonlinearity and Problem 11

The vectorial nonlinearity of f is its distance from the set of affine functions

$$
\mathrm{NL}_{\mathbf{v}}(f)=d_{\mathsf{H}}(f,\mathsf{Aff}(\mathbb{F}_2^n,\mathbb{F}_2^m))=\min_{\alpha\in\mathsf{Aff}(\mathbb{F}_2^n,\mathbb{F}_2^m)}d_{\mathsf{H}}(f,\alpha).
$$

Problem 11 reformulated

Find infinite classes of functions $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^n$ $\frac{n}{2}$ with high vectorial nonlinearity.

The computation of the vectorial nonlinearity $\mathrm{NL}_{\mathbf{v}}(f)$ is generally difficult.

Partial solution (Maróti, G Nagy, G Nagy 2021)

Define $n = 2m$, $f : \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \to \mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ by

 $f(x, y) = (xy, 0).$

Then $\mathrm{NL}_\mathbf{v}(f) = (2^m-1)^2 = 2^n - 2\cdot 2^{n/2} + 1$.

Nonlinearity vs vectorial nonlinearity

Trivial bounds:

$$
\mathrm{NL}_1(f)\leq \mathrm{NL}_{\mathbf{v}}(f)<2^n-n-1.
$$

Theorem (Carlet, Ding, Yuan 2005)

Let n , m be integers, when n is even. If f is an (n, m) -bent function, then we have

$$
\left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right)\leq \mathrm{NL}_{\mathbf{v}}(f)\leq \left(1-\frac{1}{2^m}\right)\left(2^n+2^{n/2}\right).
$$

If an (n, ^m)-function ^f satisfies **[...],** then

$$
NL_v(f) \leq \left(1 - \frac{1}{2^m}\right)\left(2^n - 2^{n/2}\right).
$$

Nonlinearity vs vectorial nonlinearity

Trivial bounds:

$$
\mathrm{NL}_1(f)\leq \mathrm{NL}_{\mathbf{v}}(f)<2^n-n-1.
$$

Theorem (Carlet, Ding, Yuan 2005)

Let n , m be integers, when n is even. If f is an (n, m) -bent function, then we have

$$
\left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right)\leq \mathrm{NL}_{\mathbf{v}}(f)\leq \left(1-\frac{1}{2^m}\right)\left(2^n+2^{n/2}\right).
$$

Theorem (Liu, Mesnager, Chen 2017)

If an (n, ^m)-function ^f satisfies **[...],** then

$$
\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right).
$$

For (n, m) -functions f, the upper bound

$$
NL_{\mathbf{v}}(f) \leq \left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right)
$$

is tight.

- LMCC holds for $m = 1$ by the covering radius bound. \bigcirc
- **LMCC implies**

$$
NL_{\mathbf{v}}(f) = \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right)
$$

for (n, m) -bent functions f.

For (n, m) -functions f, the upper bound

$$
\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right)
$$

is tight.

- LMCC holds for $m = 1$ by the covering radius bound. \bullet
- **LMCC implies**

$$
\mathrm{NL}_{\mathbf{v}}(f) = \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right)
$$

for (n, m) -bent functions f.

For (n, m) -functions f, the upper bound

$$
\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right)
$$

is tight.

- LMCC holds for $m = 1$ by the covering radius bound.
- **LMCC implies**

$$
\mathrm{NL}_{\mathbf{v}}(f)=\bigg(1-\frac{1}{2^m}\bigg)\big(2^n-2^{n/2}\big)
$$

for (n, m) -bent functions f.

For (n, m) -functions f, the upper bound

$$
\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right)
$$

is tight.

- LMCC holds for $m = 1$ by the covering radius bound.
- **LMCC implies**

$$
\mathrm{NL}_{\mathbf{v}}(f) = \left(1 - \frac{1}{2^m}\right)\left(2^n - 2^{n/2}\right)
$$

for (n, m) -bent functions f.

Outline

Nonlinearity vs vectorial nonlinearity

2 Differential uniformity vs vectorial nonlinearity

3 Sidon sets in F₂ 2

4 Large Sidon sets in \mathbb{F}_2^n 2

5 [Computing](#page-21-0) [the](#page-21-0) vectorial nonlinearity

1 The *differential uniformity* of the function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $\frac{m}{2}$ is $\delta_{\mathit{f}} = \max_{\boldsymbol{a} \in \mathbb{F}_2^n \setminus \{\mathcal{f}}\} }$ $\binom{n}{2}\{0\}$ $b \bar{\in} \mathbb{F}_2^m$ 2 $\{X \in \mathbb{F}_2^n\}$ 2 $| f(x) + f(x + a) = b |.$

 $\frac{2}{3}$ $\frac{1}{2}$ ≥ 2 .

If $n = m$ and $\delta_f = 2$, then the function f is called almost perfect nonlinear (APN).

The graph of the function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $\frac{m}{2}$ is

> $\Gamma_f = \{ (x, f(x)) \mid x \in \mathbb{F}_2^n \}$ $\binom{n}{2} \subseteq \mathbb{F}_2^{n+m}$ 2 .

$$
\delta_f = \max_{(a,b)\in\mathbb{F}_2^{2n}\setminus\{(0,0)\}} |\Gamma_f \cap (\Gamma_f + (a,b))|.
$$

1 The *differential uniformity* of the function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $\frac{m}{2}$ is $\delta_{\mathit{f}} = \max_{\boldsymbol{a} \in \mathbb{F}_2^n \setminus \{\mathcal{f}}\} }$ $\binom{n}{2}\{0\}$ $b \bar{\in} \mathbb{F}_2^m$ 2 $\{X \in \mathbb{F}_2^n\}$ 2 $| f(x) + f(x + a) = b |.$

$\frac{\partial}{\partial t}$ ≥ 2 .

If $n = m$ and $\delta_f = 2$, then the function f is called almost perfect nonlinear (APN).

The graph of the function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $\frac{m}{2}$ is

$$
\Gamma_f=\{(x,f(x))\mid x\in\mathbb{F}_2^n\}\subseteq\mathbb{F}_2^{n+m}.
$$

$$
\delta_f = \max_{(a,b)\in\mathbb{F}_2^{2n}\setminus\{(0,0)\}} |\Gamma_f \cap (\Gamma_f + (a,b))|.
$$

GP Nagy (Hungary) Sidon sets and nonlinearity BFA 2024 10/34

1 The *differential uniformity* of the function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $\frac{m}{2}$ is $\delta_{\mathit{f}} = \max_{\boldsymbol{a} \in \mathbb{F}_2^n \setminus \{\mathcal{f}}\} }$ $\binom{n}{2}\{0\}$ $b \bar{\in} \mathbb{F}_2^m$ 2 $\{X \in \mathbb{F}_2^n\}$ 2 $| f(x) + f(x + a) = b |.$

 $\frac{\partial}{\partial t}$ ≥ 2 .

3 If $n = m$ and $\delta_f = 2$, then the function f is called almost perfect nonlinear (APN).

The graph of the function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $\frac{m}{2}$ is

$$
\Gamma_f=\{(x,f(x))\mid x\in\mathbb{F}_2^n\}\subseteq\mathbb{F}_2^{n+m}.
$$

$$
\delta_f = \max_{(a,b)\in \mathbb{F}_2^{2n}\setminus\{(0,0)\}} |\Gamma_f \cap (\Gamma_f + (a,b))|.
$$

1 The *differential uniformity* of the function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $\frac{m}{2}$ is $\delta_{\mathit{f}} = \max_{\boldsymbol{a} \in \mathbb{F}_2^n \setminus \{\mathcal{f}}\} }$ $\binom{n}{2}\{0\}$ $b \bar{\in} \mathbb{F}_2^m$ 2 $\{X \in \mathbb{F}_2^n\}$ 2 $| f(x) + f(x + a) = b |.$

 $\frac{\partial}{\partial t}$ ≥ 2 .

3 If $n = m$ and $\delta_f = 2$, then the function f is called almost perfect nonlinear (APN).

Notation

The graph of the function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $\frac{m}{2}$ is

$$
\Gamma_f=\{(x,f(x))\mid x\in\mathbb{F}_2^n\}\subseteq\mathbb{F}_2^{n+m}.
$$

$$
\delta_f = \max_{(a,b)\in\mathbb{F}_2^{2n}\setminus\{(0,0)\}}|\Gamma_f\cap(\Gamma_f+(a,b))|.
$$

1 The *differential uniformity* of the function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $\frac{m}{2}$ is $\delta_{\mathit{f}} = \max_{\boldsymbol{a} \in \mathbb{F}_2^n \setminus \{\mathcal{f}}\} }$ $\binom{n}{2}\{0\}$ $b \bar{\in} \mathbb{F}_2^m$ 2 $\{X \in \mathbb{F}_2^n\}$ 2 $| f(x) + f(x + a) = b |.$

 $\frac{\partial}{\partial t}$ ≥ 2 .

3 If $n = m$ and $\delta_f = 2$, then the function f is called almost perfect nonlinear (APN).

Notation

The graph of the function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $\frac{m}{2}$ is

$$
\Gamma_f=\{(x,f(x))\mid x\in\mathbb{F}_2^n\}\subseteq\mathbb{F}_2^{n+m}.
$$

Lemma 1

$$
\delta_f = \max_{(a,b)\in\mathbb{F}_2^{2n}\setminus\{(0,0)\}} |\Gamma_f \cap (\Gamma_f + (a,b))|.
$$

- Carlet (2021) proved a lower bound for $NL_{\mathbf{v}}(f)$ in terms of the differential uniformity.
- Carlet's bound has been slightly improved:

For all $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $_2^m$, we have

$$
\mathrm{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{\delta_f} \cdot 2^{n/2} - \frac{1}{2}
$$

In particular, for an APN function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^n$ n
2'

$$
NL_{\mathbf{v}}(f) \geq 2^n - \sqrt{2} \cdot 2^{n/2} - \frac{1}{2}.
$$

- **"APN functions are good candidates for approaching the Liu-Mesnager-Chen Conjecture."**
- **The trick:** Study the structure of the level sets $f^{-1}(b)$.

GP Nagy (Hungary) Sidon sets and nonlinearity BFA 2024 11/34

- Carlet (2021) proved a lower bound for $NL_{\mathbf{v}}(f)$ in terms of the differential uniformity.
- Carlet's bound has been slightly improved:

For all $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $_2^m$, we have $\mathrm{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{2}$ \cdot 2^{n/2} $-$ 1 2 . In particular, for an APN function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^n$ n
2' $\text{NL}_\mathbf{v}(f) \geq 2^n \sqrt{2} \cdot 2^{n/2} -$ 1 2 .

- **"APN functions are good candidates for approaching the Liu-Mesnager-Chen Conjecture."**
- **The trick:** Study the structure of the level sets $f^{-1}(b)$.

GP Nagy (Hungary) Sidon sets and nonlinearity BFA 2024 11/34

- Carlet (2021) proved a lower bound for $NL_{\mathbf{v}}(f)$ in terms of the differential uniformity.
- Carlet's bound has been slightly improved:

Theorem (GN 2022, Ryabov 2023) For all $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $_2^m$, we have $\mathrm{NL}_\mathbf{v}(f) \geq 2^n - \sqrt{2}$ $\bm{o_f}$ \cdot 2^{$n/2$} – 1 2 . In particular, for an APN function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^n$ n
2' $\text{NL}_{\mathbf{v}}(f) \geq 2^n$ – √ $\sqrt{2} \cdot 2^{n/2} -$ 1 2 .

- **"APN functions are good candidates for approaching the Liu-Mesnager-Chen Conjecture."**
- **The trick:** Study the structure of the level sets $f^{-1}(b)$.

- Carlet (2021) proved a lower bound for $NL_{\mathbf{v}}(f)$ in terms of the differential uniformity.
- Carlet's bound has been slightly improved:

Theorem (GN 2022, Ryabov 2023)

For all $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $_2^m$, we have

$$
\mathrm{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{\delta_f} \cdot 2^{n/2} - \frac{1}{2}.
$$

In particular, for an APN function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^n$ n
2'

$$
NL_{\nu}(f) \geq 2^{n} - \sqrt{2} \cdot 2^{n/2} - \frac{1}{2}.
$$

- **"APN functions are good candidates for approaching the Liu-Mesnager-Chen Conjecture."**
- **The trick:** Study the structure of the level sets $f^{-1}(b)$.

- Carlet (2021) proved a lower bound for $NL_{\mathbf{v}}(f)$ in terms of the differential uniformity.
- Carlet's bound has been slightly improved:

Theorem (GN 2022, Ryabov 2023)

For all $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^m$ $_2^m$, we have

$$
\mathrm{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{\delta_f} \cdot 2^{n/2} - \frac{1}{2}.
$$

In particular, for an APN function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^n$ n
2'

$$
NL_{\nu}(f) \geq 2^{n} - \sqrt{2} \cdot 2^{n/2} - \frac{1}{2}.
$$

- **"APN functions are good candidates for approaching the Liu-Mesnager-Chen Conjecture."**
- **The trick:** Study the structure of the level sets $f^{-1}(b)$.

GP Nagy (Hungary) Sidon sets and nonlinearity BFA 2024 11/34

Outline

Differential uniformity vs vectorial nonlinearity

3 Sidon sets in \mathbb{F}_2^n 2

- 4 Large Sidon sets in \mathbb{F}_2^n 2
- 5 [Computing](#page-21-0) [the](#page-21-0) vectorial nonlinearity

Sidon sets in abelian groups

Simon Sidon (or Szidon, 1892–1941) Hungarian hobby mathematician

Definition (S. Sidon 1932)

Let A be a finite abelian group. We say that $S \subseteq A$ is a *Sidon set* in A, if for any $x, y, z, w \in S$ of which **at least three are different**,

$x + y \neq z + w$.

Equivalently,

$$
x-z\neq w-y.
$$

- Sidon sets and sequences are studied since the 1930's.
- Sidon sequences are Sidon sets in $\mathbb Z$.
- Sidon sequences are closely related to Sidon sets in cyclic groups. \bigcirc
- **Problems:** How large Sidon sets can be? How dense Sidon \bullet sequences can be?

Sidon sets in abelian groups

Simon Sidon (or Szidon, 1892–1941) Hungarian hobby mathematician

Definition (S. Sidon 1932)

Let A be a finite abelian group. We say that $S \subseteq A$ is a *Sidon set* in A, if for any $x, y, z, w \in S$ of which **at least three are different**,

 $x + y \neq z + w$.

Equivalently,

$$
x-z\neq w-y.
$$

- Sidon sets and sequences are studied since the 1930's.
- Sidon sequences are Sidon sets in $\mathbb Z$.
- Sidon sequences are closely related to Sidon sets in cyclic groups. \bullet
- **Problems:** How large Sidon sets can be? How dense Sidon \bullet sequences can be?

Sidon sets in abelian groups

Simon Sidon (or Szidon, 1892–1941) Hungarian hobby mathematician

Definition (S. Sidon 1932)

Let A be a finite abelian group. We say that $S \subseteq A$ is a *Sidon set* in A, if for any $x, y, z, w \in S$ of which **at least three are different**,

 $x + y \neq z + w$.

Equivalently,

$$
x-z\neq w-y.
$$

- Sidon sets and sequences are studied since the 1930's.
- \bullet Sidon sequences are Sidon sets in $\mathbb Z$.
- Sidon sequences are closely related to Sidon sets in cyclic groups.
- **Problems:** How large Sidon sets can be? How dense Sidon \bullet sequences can be?
Sidon sets in abelian groups

Simon Sidon (or Szidon, 1892–1941) Hungarian hobby mathematician

Definition (S. Sidon 1932)

Let A be a finite abelian group. We say that $S \subseteq A$ is a *Sidon set* in A, if for any $x, y, z, w \in S$ of which **at least three are different**,

 $x + y \neq z + w$.

Equivalently,

$$
x-z\neq w-y.
$$

- **•** Sidon sets and sequences are studied since the 1930's.
- \bullet Sidon sequences are Sidon sets in $\mathbb Z$.
- Sidon sequences are closely related to Sidon sets in cyclic groups. \bullet
- **Problems:** How large Sidon sets can be? How dense Sidon \bullet sequences can be?

Sidon sets in abelian groups

Simon Sidon (or Szidon, 1892–1941) Hungarian hobby mathematician

Definition (S. Sidon 1932)

Let A be a finite abelian group. We say that $S \subseteq A$ is a *Sidon set* in A, if for any $x, y, z, w \in S$ of which **at least three are different**,

 $x + y \neq z + w$.

Equivalently,

$$
x-z\neq w-y.
$$

- **•** Sidon sets and sequences are studied since the 1930's.
- \bullet Sidon sequences are Sidon sets in $\mathbb Z$.
- Sidon sequences are closely related to Sidon sets in cyclic groups.
- **Problems:** How *large* Sidon sets can be? How *dense* Sidon sequences can be?

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \text{max}$ ma \times | $\mathcal{T} \cap (\mathcal{T} + a)$ |.

- 1 In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \leq 2$.
- 2 If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- **3** If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

We have

 $|T| \leq \sqrt{t|A|} +$ 1 2 .

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \text{max}$ ma \times | $\mathcal{T} \cap (\mathcal{T} + a)$ |.

- **1** In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \leq 2$.
- If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

⁴ We have

 $|T| \leq \sqrt{t|A|} +$ 1 2 .

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \text{max}$ ma \times | $\mathcal{T} \cap (\mathcal{T} + a)$ |.

- **1** In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \leq 2$.
- **2** If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- **3** If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

We have

 $|T| \leq \sqrt{t|A|} +$ 1 2 .

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \text{max}$ ma \times | $\mathcal{T} \cap (\mathcal{T} + a)$ |.

- **1** In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \leq 2$.
- **2** If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- **3** If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

We have

 $|T| \leq \sqrt{t|A|} +$ 1 2 .

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \text{max}$ ma \times | $\mathcal{T} \cap (\mathcal{T} + a)$ |.

- **1** In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \leq 2$.
- **2** If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- **3** If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

⁴ We have

 $|T| \leq \sqrt{t|A|} +$ 1 2 .

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \text{max}$ ma \times | $\mathcal{T} \cap (\mathcal{T} + a)$ |.

- **1** In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \leq 2$.
- **2** If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- **3** If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

⁴ We have

$$
|T| \leq \sqrt{t|A|} + \frac{1}{2}.
$$

Reformulation of Lemma 1

Proposition 2 (Obvious upper bound)

Let S be a S *idon set* in the abelian group A . Then

$$
|S| \leq \sqrt{2|A|} + \frac{1}{2}.
$$

In particular, for $A = \mathbb{F}_2^n$ n
2'

$$
|S|\leq \sqrt{2}\cdot 2^{n/2}+\frac{1}{2}.
$$

 $A = \mathbb{F}_2^n$ $\frac{n}{2}$ has Sidon sets of size

$$
|S| \ge \begin{cases} 2^{n/2} & \text{if } n \text{ is even,} \\ 2^{\frac{n-1}{2}} + 2^{\frac{n-1}{4}} \cong \frac{1}{\sqrt{2}} 2^{n/2} & \text{if } n \text{ is odd.} \end{cases}
$$

Proposition 2 (Obvious upper bound)

Let S be a S *idon set* in the abelian group A . Then

$$
|S| \leq \sqrt{2|A|} + \frac{1}{2}.
$$

In particular, for $A = \mathbb{F}_2^n$ n
2'

$$
|S|\leq \sqrt{2}\cdot 2^{n/2}+\frac{1}{2}.
$$

The known constructions are far from the upper bound

 $A=\mathbb{F}_2^n$ $\frac{n}{2}$ has Sidon sets of size

$$
|S| \ge \begin{cases} 2^{n/2} & \text{if } n \text{ is even,} \\ 2^{\frac{n-1}{2}} + 2^{\frac{n-1}{4}} \cong \frac{1}{\sqrt{2}} 2^{n/2} & \text{if } n \text{ is odd.} \end{cases}
$$

Proposition 2 (Obvious upper bound)

Let S be a S *idon set* in the abelian group A . Then

$$
|S| \leq \sqrt{2|A|} + \frac{1}{2}.
$$

In particular, for $A = \mathbb{F}_2^n$ n
2'

$$
|S|\leq \sqrt{2}\cdot 2^{n/2}+\frac{1}{2}.
$$

The known constructions are far from the upper bound

 $A=\mathbb{F}_2^n$ $\frac{n}{2}$ has Sidon sets of size

$$
|S| \ge \begin{cases} 2^{n/2} & \text{if } n \text{ is even,} \\ 2^{\frac{n-1}{2}} + 2^{\frac{n-1}{4}} \cong \frac{1}{\sqrt{2}} 2^{n/2} & \text{if } n \text{ is odd.} \end{cases}
$$

Proposition 2 (Obvious upper bound)

Let S be a S *idon set* in the abelian group A . Then

$$
|S| \leq \sqrt{2|A|} + \frac{1}{2}.
$$

In particular, for $A = \mathbb{F}_2^n$ n
2'

$$
|S|\leq \sqrt{2}\cdot 2^{n/2}+\frac{1}{2}.
$$

The known constructions are far from the upper bound

 $A=\mathbb{F}_2^n$ $\frac{n}{2}$ has Sidon sets of size

$$
|S| \ge \begin{cases} 2^{n/2} & \text{if } n \text{ is even,} \\ 2^{\frac{n-1}{2}} + 2^{\frac{n-1}{4}} \cong \frac{1}{\sqrt{2}} 2^{n/2} & \text{if } n \text{ is odd.} \end{cases}
$$

Theorem (Lindström 1969)

Let $n = 2m$ even, and identify \mathbb{F}_2^n $\frac{n}{2}$ with $\mathbb{F}_{2^m}\times\mathbb{F}_{2^m}$.

 $\{(x, x^3) | x \in \mathbb{F}_{2^m}\}\)$

is a Sidon set in $\mathbb{F}_{2^m}\times\mathbb{F}_{2^m}$.

The function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^n$ $\frac{n}{2}$ is APN if and only if its graph is Sidon in \mathbb{F}_2^{2n} 2 .

Theorem (Lindström 1969)

Let $n = 2m$ even, and identify \mathbb{F}_2^n $\frac{n}{2}$ with $\mathbb{F}_{2^m}\times\mathbb{F}_{2^m}$.

 $\{(x, x^3) | x \in \mathbb{F}_{2^m}\}\)$

is a Sidon set in $\mathbb{F}_{2^m}\times\mathbb{F}_{2^m}$.

Theorem (folklore)

The function $f : \mathbb{F}_2^n$ $\frac{n}{2} \rightarrow \mathbb{F}_2^n$ $\frac{n}{2}$ is APN if and only if its graph is Sidon in \mathbb{F}_2^{2n} 2 .

Lemma 3

Let f, α be (n, m) -functions, f APN, α affine.

- **1** The graph Γ_{α} is an affine subspace of dimension *n* in \mathbb{F}_2^{n+m} 2 .
- 2 Γ $_f$ ∩ Γ $_\alpha$ is a Sidon set in Γ $_\alpha$.

$$
\mathrm{NL}_{\mathbf{v}}(f)=2^{n}-\max_{\alpha\in \mathrm{Aff}(\mathbb{F}_{2}^{n},\mathbb{F}_{2}^{m})}|\Gamma_{f}\cap \Gamma_{\alpha}|.
$$

It follows from the obvious upper bound

$$
|T| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}
$$

on the size of a Sidon set T in \mathbb{F}_2^n 2 . □

Lemma 3

Let f, α be (n, m) -functions, f APN, α affine.

- **1** The graph Γ_{α} is an affine subspace of dimension *n* in \mathbb{F}_2^{n+m} n+in
2
- 2 Γ $_f \cap \Gamma_\alpha$ is a Sidon set in Γ_α .

$$
\mathrm{NL}_{\mathbf{v}}(f)=2^{n}-\max_{\alpha\in \mathrm{Aff}(\mathbb{F}_{2}^{n},\mathbb{F}_{2}^{m})}|\Gamma_{f}\cap \Gamma_{\alpha}|.
$$

It follows from the obvious upper bound

$$
|T| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}
$$

on the size of a Sidon set T in \mathbb{F}_2^n 2 . □

GP Nagy (Hungary) Sidon sets and nonlinearity BFA 2024 17/34

Lemma 3

Let f, α be (n, m) -functions, f APN, α affine.

- **1** The graph Γ_{α} is an affine subspace of dimension *n* in \mathbb{F}_2^{n+m} n+in
2
- **2** Γ_f \cap Γ_α is a Sidon set in Γ_α.

$$
\mathrm{NL}_{\mathbf{v}}(f)=2^{n}-\max_{\alpha\in \mathrm{Aff}(\mathbb{F}_{2}^{n},\mathbb{F}_{2}^{m})}|\Gamma_{f}\cap \Gamma_{\alpha}|.
$$

It follows from the obvious upper bound

$$
|T| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}
$$

on the size of a Sidon set T in \mathbb{F}_2^n 2 . □

GP Nagy (Hungary) Sidon sets and nonlinearity BFA 2024 17/34

Lemma 3

Let f, α be (n, m) -functions, f APN, α affine.

- **1** The graph Γ_{α} is an affine subspace of dimension *n* in \mathbb{F}_2^{n+m} n+in
2
- **2** Γ_f \cap Γ_α is a Sidon set in Γ_α.

Lemma 4

$$
\mathrm{NL}_{\mathbf{v}}(f)=2^{n}-\max_{\alpha\in \mathrm{Aff}(\mathbb{F}_{2}^{n},\mathbb{F}_{2}^{m})}|\Gamma_{f}\cap \Gamma_{\alpha}|.
$$

It follows from the obvious upper bound

$$
|T| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}
$$

on the size of a Sidon set T in \mathbb{F}_2^n 2 . □

GP Nagy (Hungary) Sidon sets and nonlinearity BFA 2024 17/34

Lemma 3

Let f, α be (n, m) -functions, f APN, α affine.

- **1** The graph Γ_{α} is an affine subspace of dimension *n* in \mathbb{F}_2^{n+m} n+in
2
- **2** Γ_f \cap Γ_α is a Sidon set in Γ_α.

Lemma 4

$$
\mathrm{NL}_{\mathbf{v}}(f)=2^n-\max_{\alpha\in \mathrm{Aff}(\mathbb{F}_2^n,\mathbb{F}_2^m)}|\Gamma_f\cap \Gamma_\alpha|.
$$

The proof of $\text{NL}_\mathbf{v}(f) \geq 2^n \overline{}$ $\overline{{\mathsf{2}}}\cdot{\mathsf{2}}^{{\mathsf{n}}/2}-\frac{1}{2}$ $\frac{1}{2}$.

It follows from the obvious upper bound

$$
|T| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}
$$

on the size of a Sidon set T in \mathbb{F}_2^n 2 . □

Challenge 1

Prove or disprove the Liu-Mesnager-Chen Conjecture

$$
\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right).
$$

Use the Liu-Mesnager-Chen Conjecture to produce **large Sidon sets** in odd dimension.

¹ For APN functions, the LMCC is

$$
\max_{\alpha\in \text{Aff}(\mathbb{F}_2^n,\mathbb{F}_2^m)}|\Gamma_f\cap \Gamma_\alpha|\geq 2^{n/2}+1-\frac{1}{2^{n/2}}.
$$

2 In other words, for any APN function f , there must be an affine function α such that $\Gamma_f \cap \Gamma_\alpha$ is a Sidon set of size at least $2^{n/2}+1$

in
$$
\Gamma_{\alpha} \cong \mathbb{F}_2^n
$$
.

 $\overline{1}$

Challenge 1

Prove or disprove the Liu-Mesnager-Chen Conjecture

$$
\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right).
$$

Challenge 2

Use the Liu-Mesnager-Chen Conjecture to produce **large Sidon sets** in odd dimension.

Challenge 1

Prove or disprove the Liu-Mesnager-Chen Conjecture

$$
\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right).
$$

Challenge 2

Use the Liu-Mesnager-Chen Conjecture to produce **large Sidon sets** in odd dimension.

\n- **1** For APR functions, the LMCC is
$$
\max_{\alpha \in \text{Aff}(\mathbb{F}_2^n, \mathbb{F}_2^m)} |\Gamma_f \cap \Gamma_\alpha| \geq 2^{n/2} + 1 - \frac{1}{2^{n/2}}
$$
.
\n- **2** In other words, for any APR function *f*, there must be an affine function α such that $\Gamma_f \cap \Gamma_\alpha$ is a Sidon set of size at least $2^{n/2} + 1$ in $\Gamma_\alpha \cong \mathbb{F}_2^n$.
\n

Challenge 1

Prove or disprove the Liu-Mesnager-Chen Conjecture

$$
\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1-\frac{1}{2^m}\right)\left(2^n-2^{n/2}\right).
$$

Challenge 2

Use the Liu-Mesnager-Chen Conjecture to produce **large Sidon sets** in odd dimension.

\n- **1** For APR functions, the LMCC is
\n- $$
\max_{\alpha \in \text{Aff}(\mathbb{F}_2^n, \mathbb{F}_2^m)} |\Gamma_f \cap \Gamma_\alpha| \geq 2^{n/2} + 1 - \frac{1}{2^{n/2}}.
$$
\n
\n- **2** In other words, for any APR function *f*, there must be an
\n

In other words, for any APN function f , there must be an affine function α such that $\Gamma_f \cap \Gamma_\alpha$ is a Sidon set of size at least $2^{n/2}+1$

in $\Gamma_{\alpha} \cong \mathbb{F}_2^n$ 2 .

1 The obvious upper bound for Sidon sets is

$$
|S|\leq \sqrt{2}\cdot 2^{n/2}+\frac{1}{2}.
$$

² **No Sidon sets** of this size are known.

Improve the obvious upper bound for the size of Sidon sets.

- **1** Brouwer, Tolhuizen (1993) sharpened the obvious upper bound by 2 for Sidon sets in odd dimension.
- 2 Partial results by Czerwinski, Pott (2023) for even dimension.

$$
|S|\leq \sqrt{2}\cdot 2^{n/2}+\frac{1}{2}.
$$

² **No Sidon sets** of this size are known.

Improve the obvious upper bound for the size of Sidon sets.

- **1** Brouwer, Tolhuizen (1993) sharpened the obvious upper bound by 2 for Sidon sets in odd dimension.
- 2 Partial results by Czerwinski, Pott (2023) for even dimension.

$$
|S|\leq \sqrt{2}\cdot 2^{n/2}+\frac{1}{2}.
$$

² **No Sidon sets** of this size are known.

Challenge 3

Improve the obvious upper bound for the size of Sidon sets.

¹ Brouwer, Tolhuizen (1993) sharpened the obvious upper bound by 2 for Sidon sets in odd dimension.

2 Partial results by Czerwinski, Pott (2023) for even dimension.

$$
|S|\leq \sqrt{2}\cdot 2^{n/2}+\frac{1}{2}.
$$

² **No Sidon sets** of this size are known.

Challenge 3

Improve the obvious upper bound for the size of Sidon sets.

- ¹ Brouwer, Tolhuizen (1993) sharpened the obvious upper bound by 2 for Sidon sets in odd dimension.
- Partial results by Czerwinski, Pott (2023) for even dimension.

$$
|S|\leq \sqrt{2}\cdot 2^{n/2}+\frac{1}{2}.
$$

² **No Sidon sets** of this size are known.

Challenge 3

Improve the obvious upper bound for the size of Sidon sets.

- ¹ Brouwer, Tolhuizen (1993) sharpened the obvious upper bound by 2 for Sidon sets in odd dimension.
- **2** Partial results by Czerwinski, Pott (2023) for even dimension.

Outline

Nonlinearity vs vectorial nonlinearity

- Differential uniformity vs vectorial nonlinearity
- 3 Sidon sets in F₂ 2
- 4 Large Sidon sets in \mathbb{F}_2^n 2
- 5 [Computing](#page-21-0) [the](#page-21-0) vectorial nonlinearity

Definition: Large

We say that the Sidon set S in \mathbb{F}_2^n 2 is *large*, if $|S| > 2^{n/2}$.

If *n* is even, then graphs of APN functions $\mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ are Sidon sets of size $2^{n/2}$.

The Sidon set S is complete (or maximal), if for any $a \in A \setminus S$, $S \cup \{a\}$ is not a Sidon set.

Definition: Large

We say that the Sidon set S in \mathbb{F}_2^n 2 is *large*, if $|S| > 2^{n/2}$.

If *n* is even, then graphs of APN functions $\mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ are Sidon sets of size $2^{n/2}$.

The Sidon set S is complete (or maximal), if for any $a \in A \setminus S$, $S \cup \{a\}$ is not a Sidon set.

Definition: Large

We say that the Sidon set S in \mathbb{F}_2^n 2 is *large*, if $|S| > 2^{n/2}$.

If *n* is even, then graphs of APN functions $\mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ are Sidon sets of size $2^{n/2}$.

Definition

The Sidon set S is *complete (or maximal)*, if for any $a \in A \setminus S$, $S \cup \{a\}$ is not a Sidon set.

- **Redman (2021) and Carlet (2022) investigated the completeness of** those Sidon sets, that can be obtained as graphs of APN functions.
- Carlet (2022) observed that the incompleteness of the graph of the APN function f is equivalent with the existence of another APN function g such that their Hamming distance is $d_H(f, g) = 1$.
- Budaghyan, Carlet, Helleseth, Li and Sun (2018) conjectured that $d_H(f,g) = 1$ is impossible for two APN functions f, g.

- **Redman (2021) and Carlet (2022) investigated the completeness of** those Sidon sets, that can be obtained as graphs of APN functions.
- Carlet (2022) observed that the incompleteness of the graph of the APN function f is equivalent with the existence of another APN function g such that their Hamming distance is $d_H(f, g) = 1$.
- Budaghyan, Carlet, Helleseth, Li and Sun (2018) conjectured that $d_H(f,g) = 1$ is impossible for two APN functions f, g.

- **Redman (2021) and Carlet (2022) investigated the completeness of** those Sidon sets, that can be obtained as graphs of APN functions.
- Carlet (2022) observed that the incompleteness of the graph of the APN function f is equivalent with the existence of another APN function g such that their Hamming distance is $d_H(f, g) = 1$.
- Budaghyan, Carlet, Helleseth, Li and Sun (2018) conjectured that $d_H(f,g) = 1$ is impossible for two APN functions f, g.

- **Redman (2021) and Carlet (2022) investigated the completeness of** those Sidon sets, that can be obtained as graphs of APN functions.
- Carlet (2022) observed that the incompleteness of the graph of the APN function f is equivalent with the existence of another APN function g such that their Hamming distance is $d_H(f, g) = 1$.
- Budaghyan, Carlet, Helleseth, Li and Sun (2018) conjectured that $d_H(f,g) = 1$ is impossible for two APN functions f, g.

Theorem (Carlet 2022?)
Let $q = 2^m$, $n = 2m$, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order $q + 1$.

1 G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- 3 In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if 4 | n.
	- These are **large Sidon sets** of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
	- We can interpret them as **conics** in the affine plane.

Let $q = 2^m$, $n = 2m$, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order $q + 1$.

D G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- 3 In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if 4 | n.
	- These are **large Sidon sets** of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
	- We can interpret them as **conics** in the affine plane.

Let $q = 2^m$, $n = 2m$, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order $q + 1$.

D G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- 3 In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if 4 | n.
	- These are **large Sidon sets** of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
	- We can interpret them as **conics** in the affine plane.

Let $q = 2^m$, $n = 2m$, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order $q + 1$.

D G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- **3** In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if 4 | n.
	- These are **large Sidon sets** of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
	- We can interpret them as **conics** in the affine plane.

Let $q = 2^m$, $n = 2m$, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order $q + 1$.

D G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if 4 | n.
- These are **large Sidon sets** of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
- We can interpret them as **conics** in the affine plane.

Let $q = 2^m$, $n = 2m$, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order $q + 1$.

D G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if 4 | n.
- These are **large Sidon sets** of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
- We can interpret them as **conics** in the affine plane.

$q = 2^m$.

- $\gamma \in \mathbb{F}_q$ such that $X^2 + \gamma X + 1$ is irreducible in $\mathbb{F}_{q^2}.$
- **Affine conics are:**

 $|H| = q - 1$, $|P| = q$, $|E| = q + 1$.

• Nucleus of H and E is $(0, 0)$.

 $q = 2^m$.

- $\gamma \in \mathbb{F}_q$ such that $X^2+\gamma X+1$ is irreducible in $\mathbb{F}_{q^2}.$
- Affine conics are:

hyperbola: $H : XY = 1$, parabola: $P: Y = X^2$ ellipse: $E: X^2 + \gamma XY + Y^2 = 1.$

 \bullet $|H| = q - 1$, $|P| = q$, $|E| = q + 1$.

• Nucleus of H and E is $(0, 0)$.

 $q = 2^m$.

 $\gamma \in \mathbb{F}_q$ such that $X^2 + \gamma X + 1$ is irreducible in $\mathbb{F}_{q^2}.$

• Affine conics are:

 $|H| = q - 1$, $|P| = q$, $|E| = q + 1$. • Nucleus of H and E is $(0, 0)$.

 $q = 2^m$.

 $\gamma \in \mathbb{F}_q$ such that $X^2 + \gamma X + 1$ is irreducible in $\mathbb{F}_{q^2}.$

• Affine conics are:

•
$$
|H| = q - 1
$$
, $|P| = q$, $|E| = q + 1$.

• Nucleus of H and E is $(0, 0)$.

 $q = 2^m$.

 $\gamma \in \mathbb{F}_q$ such that $X^2 + \gamma X + 1$ is irreducible in $\mathbb{F}_{q^2}.$

Affine conics are:

•
$$
|H| = q - 1
$$
, $|P| = q$, $|E| = q + 1$.

• Nucleus of H and E is $(0, 0)$.

- **1** When *m* is even and *C* is a hyperbola, or when *m* is odd and *C* is an ellipse, then C is a complete Sidon set in \mathbb{F}_q^2 z
q·
- 2 When m is odd and C is a hyperbola, or when m is even and C is an ellipse, then $C\cup \{\mathsf{N}\}$ is a complete Sidon set in \mathbb{F}_{q}^{2} q .
	- If m is odd, then $S = H \cup N$ is Sidon of size q. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
	- The ellipse E is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
	- \bullet If m is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}.$
	- \bullet E is also equivalent to the Goppa code Sidon set of size $q + 1$.

- **1** When m is even and C is a hyperbola, or when m is odd and C is an ellipse, then C is a complete Sidon set in \mathbb{F}_q^2 z
q
- 2 When m is odd and C is a hyperbola, or when m is even and C is an ellipse, then $C\cup \{\mathsf{N}\}$ is a complete Sidon set in \mathbb{F}_{q}^{2} q .
- If m is odd, then $S = H \cup N$ is Sidon of size q. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
- The ellipse E is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
- If m is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
- \bullet E is also equivalent to the Goppa code Sidon set of size $q + 1$.

- **1** When m is even and C is a hyperbola, or when m is odd and C is an ellipse, then C is a complete Sidon set in \mathbb{F}_q^2 z
q
- **2** When m is odd and C is a hyperbola, or when m is even and C is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_q^2 q .
	- If m is odd, then $S = H \cup N$ is Sidon of size q. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
	- The ellipse E is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
	- If m is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
	- \bullet E is also equivalent to the Goppa code Sidon set of size $q + 1$.

- **1** When m is even and C is a hyperbola, or when m is odd and C is an ellipse, then C is a complete Sidon set in \mathbb{F}_q^2 z
q
- **2** When m is odd and C is a hyperbola, or when m is even and C is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_q^2 q .
	- If m is odd, then $S = H \cup N$ is Sidon of size q. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
	- The ellipse E is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
	- If m is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
	- \bullet E is also equivalent to the Goppa code Sidon set of size $q + 1$.

- **1** When m is even and C is a hyperbola, or when m is odd and C is an ellipse, then C is a complete Sidon set in \mathbb{F}_q^2 z
q
- **2** When m is odd and C is a hyperbola, or when m is even and C is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_q^2 q .
- If m is odd, then $S = H \cup N$ is Sidon of size q. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
- The ellipse E is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
- If m is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
- \bullet E is also equivalent to the Goppa code Sidon set of size $q + 1$.

- **1** When m is even and C is a hyperbola, or when m is odd and C is an ellipse, then C is a complete Sidon set in \mathbb{F}_q^2 z
q
- **2** When m is odd and C is a hyperbola, or when m is even and C is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_q^2 q .
- If m is odd, then $S = H \cup N$ is Sidon of size q. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
- The ellipse E is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
- If m is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
- \bullet E is also equivalent to the Goppa code Sidon set of size $q + 1$.

- **1** When m is even and C is a hyperbola, or when m is odd and C is an ellipse, then C is a complete Sidon set in \mathbb{F}_q^2 z
q
- **2** When m is odd and C is a hyperbola, or when m is even and C is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_q^2 q .
- If m is odd, then $S = H \cup N$ is Sidon of size q. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
- The ellipse E is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
- If m is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
- \bullet E is also equivalent to the Goppa code Sidon set of size $q + 1$.

Proposition (folklore)

Sidon sets of size s in \mathbb{F}_2^n 2 and $[s - 1, s - 1 - n] \geq 5$] binary linear codes are essentially the same thing.

- **Redman, Rose and Walker (2021)**
- In the seminal "CCZ paper" Carlet, Charpin, Zinoviev (1998), for an APN function F , the minimum distance 5 linear code

$$
H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{N-1}) \end{bmatrix}
$$

- Codes from the **online database** [Grassl] yield maximal Sidon sets for $n \leq 10$.
- Shortening of BCH codes and full support Goppa codes yield Sidon sets of size $2^{n/2} + 1$, n even.

Proposition (folklore)

Sidon sets of size s in \mathbb{F}_2^n 2 and $[s - 1, s - 1 - n] \geq 5$] binary linear codes are essentially the same thing.

o Redman, Rose and Walker (2021)

• In the seminal "CCZ paper" Carlet, Charpin, Zinoviev (1998), for an APN function F , the minimum distance 5 linear code

$$
H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{N-1}) \end{bmatrix}
$$

- Codes from the **online database** [Grassl] yield maximal Sidon sets for $n \leq 10$.
- Shortening of BCH codes and full support Goppa codes yield Sidon sets of size $2^{n/2} + 1$, n even.

Proposition (folklore)

Sidon sets of size s in \mathbb{F}_2^n 2 and $[s - 1, s - 1 - n] \geq 5$] binary linear codes are essentially the same thing.

- **o** Redman, Rose and Walker (2021)
- In the seminal "CCZ paper" Carlet, Charpin, Zinoviev (1998), for an APN function F , the minimum distance 5 linear code

$$
H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{N-1}) \end{bmatrix}
$$

- Codes from the **online database** [Grassl] yield maximal Sidon sets for $n \leq 10$.
- Shortening of BCH codes and full support Goppa codes yield Sidon sets of size $2^{n/2} + 1$, n even.

Proposition (folklore)

Sidon sets of size s in \mathbb{F}_2^n 2 and $[s - 1, s - 1 - n] \geq 5$] binary linear codes are essentially the same thing.

- **o** Redman, Rose and Walker (2021)
- In the seminal "CCZ paper" Carlet, Charpin, Zinoviev (1998), for an APN function F , the minimum distance 5 linear code

$$
H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{N-1}) \end{bmatrix}
$$

- Codes from the **online database** [Grassl] yield maximal Sidon sets for $n \leq 10$.
- Shortening of BCH codes and full support Goppa codes yield Sidon sets of size $2^{n/2} + 1$, n even.

Proposition (folklore)

Sidon sets of size s in \mathbb{F}_2^n 2 and $[s - 1, s - 1 - n] \geq 5$] binary linear codes are essentially the same thing.

- **o** Redman, Rose and Walker (2021)
- In the seminal "CCZ paper" Carlet, Charpin, Zinoviev (1998), for an APN function F , the minimum distance 5 linear code

$$
H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{N-1}) \end{bmatrix}
$$

- Codes from the **online database** [Grassl] yield maximal Sidon sets for $n \leq 10$.
- Shortening of BCH codes and full support Goppa codes yield Sidon sets of size $2^{n/2} + 1$, n even.

Other known large Sidon sets

No infinite class of large Sidon sets in odd dimension is known.

The best known class has size \blacksquare

$$
\frac{1}{\sqrt{2}}2^{n/2}+C\cdot 2^{n/4}.
$$

Other known large Sidon sets

- **No infinite class** of large Sidon sets in odd dimension is known.
- **The best known class has size**

$$
\frac{1}{\sqrt{2}}2^{n/2}+C\cdot 2^{n/4}.
$$

\bullet **Constructions.**

- **Automorphisms** and **isomorphisms** using the design of minimum weight codewords.
- \bullet The vertex set of the design is S, the set of blocks is

$$
\mathcal{B}=\{B\subseteq S\mid |B|=5,6,\sum_{x\in B}x=0\}.
$$

- Efficient for $n < 12$. \bullet
- **Classification** of complete Sidon sets up to dimension 8. \bullet

• Constructions.

- **Automorphisms** and **isomorphisms** using the design of minimum \bullet weight codewords.
- \bullet The vertex set of the design is S, the set of blocks is

$$
\mathcal{B}=\{B\subseteq S\mid |B|=5,6,\sum_{x\in B}x=0\}.
$$

- Efficient for $n \leq 12$. \blacksquare
- **Classification** of complete Sidon sets up to dimension 8. \bullet

• Constructions.

- **Automorphisms** and **isomorphisms** using the design of minimum \bullet weight codewords.
- The vertex set of the design is S , the set of blocks is

$$
\mathcal{B}=\{B\subseteq S\mid |B|=5,6,\sum_{x\in B}x=0\}.
$$

- Efficient for $n \leq 12$. \blacksquare
- **Classification** of complete Sidon sets up to dimension 8. \bullet

• Constructions.

- **Automorphisms** and **isomorphisms** using the design of minimum \bullet weight codewords.
- The vertex set of the design is S , the set of blocks is

$$
\mathcal{B}=\{B\subseteq S\mid |B|=5,6,\sum_{x\in B}x=0\}.
$$

- \bullet Efficient for $n \leq 12$.
- **Classification** of complete Sidon sets up to dimension 8.

• Constructions.

- **Automorphisms** and **isomorphisms** using the design of minimum \bullet weight codewords.
- \bullet The vertex set of the design is S , the set of blocks is

$$
\mathcal{B}=\{B\subseteq S\mid |B|=5,6,\sum_{x\in B}x=0\}.
$$

- \bullet Efficient for $n \leq 12$.
- **Classification** of complete Sidon sets up to dimension 8. \bullet

• Constructions.

- **Automorphisms** and **isomorphisms** using the design of minimum \bullet weight codewords.
- \bullet The vertex set of the design is S, the set of blocks is

$$
\mathcal{B}=\{B\subseteq S\mid |B|=5,6,\sum_{x\in B}x=0\}.
$$

- \bullet Efficient for $n \leq 12$.
- **Classification** of complete Sidon sets up to dimension 8. \bullet

Problem

Outline

Nonlinearity vs vectorial nonlinearity

- Differential uniformity vs vectorial nonlinearity
- 3 Sidon sets in F₂ 2
- 4 Large Sidon sets in \mathbb{F}_2^n 2
- 5 [Computing](#page-21-0) [the](#page-21-0) vectorial nonlinearity

- **.** LMCC holds.
- **The vectorial nonlinearity is EA-invariant.**

. LMCC holds.

• The vectorial nonlinearity is EA-invariant.

- **.** LMCC holds.
- **•** The vectorial nonlinearity is EA-invariant.

• LMCC does not hold for $n = 7$.

Is the vectorial nonlinearity CCZ-invariant?

• LMCC does not hold for $n = 7$.

Is the vectorial nonlinearity CCZ-invariant?

• LMCC does not hold for $n = 7$.

Problem

Is the vectorial nonlinearity CCZ-invariant?

• LMCC does not hold for $n = 8, 9$.

• LMCC does not hold for $n = 8, 9$.

Let *n* be divisible by 4, $d = 2^{n/2-1} + 1$ and $f(x) = x^d$ monomial Gold APN function. Then

$$
NL_{\mathbf{v}}(f) \leq 2^{n} - 2^{n/2} - 2.
$$

In particular, LMCC holds for f.

Use the affine function $\alpha(x) = x^{\frac{1}{2}} = x^{2^{n-1}}$. □

Let *n* be divisible by 4, $d = 2^{n/2-1} + 1$ and $f(x) = x^d$ monomial Gold APN function. Then

$$
NL_{\mathbf{v}}(f) \leq 2^{n} - 2^{n/2} - 2.
$$

In particular, LMCC holds for f.

Proof.

Use the affine function $\alpha(x) = x^{\frac{1}{2}} = x^{2^{n-1}}$. □

THANK YOU FOR YOUR ATTENTION!

ÉS BOLDOG ~ 10 75. SZÜLETÉSNAPOT, **KEDVES CLAUDE!!**

ÉS BOLDOG 75. SZÜLETÉSNAPOT,
KEDVES CLAUDE!!