Sidon sets in \mathbb{F}_{2}^{n} and the vectorial nonlinearity

Gábor P. Nagy

University of Szeged (Hungary) and Budapest University of Technology and Economics (Hungary)

The 9th International Workshop on Boolean Functions and their Applications

> September 9-13, 2024 Dubrovnik (Croatia)

Outline

- 2 Differential uniformity vs vectorial nonlinearity
- 3 Sidon sets in \mathbb{F}_2^n
- 4 Large Sidon sets in \mathbb{F}_2^n
- 5 Computing the vectorial nonlinearity

Outline

1 Nonlinearity vs vectorial nonlinearity

- 2 Differential uniformity vs vectorial nonlinearity
- 3 Sidon sets in \mathbb{F}_2^n
- 4 Large Sidon sets in \mathbb{F}_2^n
- 5 Computing the vectorial nonlinearity

International Olympiad in Cryptography NSUCRYPTO'2021Second roundOctober 18-25General, Teams

$Problem \, 11. \ {\rm \ll Distance \ to \ affine \ functions} {\rm \gg}$

Given two functions *F* and *G* from \mathbb{F}_2^n (or \mathbb{F}_{2^n}) to itself, their Hamming distance equals by definition the number of inputs *x* at which $F(x) \neq G(x)$.

The minimum Hamming distance between any such function *F* and all affine functions *A* is known to be strictly smaller than $2^n - n - 1$.

Find constructions of infinite classes of functions *F* having a distance to affine functions as large as possible.

International Olympiad in Cryptography NSUCRYPTO'2021Second roundOctober 18-25General, Teams

Problem 11. «Distance to affine functions»

Given two functions *F* and *G* from \mathbb{F}_2^n (or \mathbb{F}_{2^n}) to itself, their Hamming distance equals by definition the number of inputs *x* at which $F(x) \neq G(x)$.

The minimum Hamming distance between any such function *F* and all affine functions *A* is known to be strictly smaller than $2^n - n - 1$.

Find constructions of infinite classes of functions *F* having a distance to affine functions as large as possible.

International Olympiad in Cryptography NSUCRYPTO'2021Second roundOctober 18-25General, Teams

 $Problem \, 11. \ {\rm \ eDistance \ to \ affine \ functions} {\rm \ }$

Given two functions *F* and *G* from \mathbb{F}_2^n (or \mathbb{F}_{2^n}) to itself, their Hamming distance equals by definition the number of inputs *x* at which $F(x) \neq G(x)$.

The minimum Hamming distance between any such function *F* and all affine functions *A* is known to be strictly smaller than $2^n - n - 1$.

Find constructions of infinite classes of functions *F* having a distance to affine functions as large as possible.

• The Hamming distance of
$$f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 is
$$d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|$$

- 2 Let $\omega : \mathbb{F}_2^m \to \mathbb{F}_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n \to \mathbb{F}_2$, $(\omega f)(x) = \omega(f(x))$ is called a *component Boolean function* of *f*.
- The nonlinearity of f is the distance between its component Boolean functions and affine Boolean functions

$$\mathrm{NL}_{1}(f) = \min_{\substack{\omega \in (\mathbb{F}_{2}^{m})^{*} \setminus \{0\}\\ \alpha \in \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2})}} d_{H}(\omega f, \alpha).$$

For all f, the covering radius (CR) bound gives

 $NL_1(f) \le 2^n - 2^{n/2-1}.$

- 5 The functions achieving this bound are called (n, m)-bent functions.
- The Walsh-Hadamard transform provides an effective tool for computation with nonlinearity NL₁(f).

٠

• The Hamming distance of
$$f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 is
$$d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.$$

- 2 Let $\omega : \mathbb{F}_2^m \to \mathbb{F}_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n \to \mathbb{F}_2$, $(\omega f)(x) = \omega(f(x))$ is called a *component Boolean function* of *f*.
- The nonlinearity of f is the distance between its component Boolean functions and affine Boolean functions

$$\mathrm{NL}_{1}(f) = \min_{\substack{\omega \in (\mathbb{F}_{2}^{m})^{*} \setminus \{0\}\\ \alpha \in \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2})}} d_{H}(\omega f, \alpha).$$

• For all *f*, the *covering radius* (*CR*) bound gives

- 5 The functions achieving this bound are called (n, m)-bent functions.
- The Walsh-Hadamard transform provides an effective tool for computation with nonlinearity NL₁(f).

• The Hamming distance of
$$f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 is
$$d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.$$

- 2 Let $\omega : \mathbb{F}_2^m \to \mathbb{F}_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n \to \mathbb{F}_2$, $(\omega f)(x) = \omega(f(x))$ is called a *component Boolean function* of *f*.
- The nonlinearity of f is the distance between its component Boolean functions and affine Boolean functions

$$\mathrm{NL}_{1}(f) = \min_{\substack{\omega \in (\mathbb{F}_{2}^{m})^{*} \setminus \{0\}\\ \alpha \in \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2})}} d_{H}(\omega f, \alpha).$$

④ For all f, the covering radius (CR) bound gives

- 5 The functions achieving this bound are called (n, m)-bent functions.
- The Walsh-Hadamard transform provides an effective tool for computation with nonlinearity NL₁(f).

• The Hamming distance of
$$f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 is
$$d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.$$

- 2 Let $\omega : \mathbb{F}_2^m \to \mathbb{F}_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n \to \mathbb{F}_2$, $(\omega f)(x) = \omega(f(x))$ is called a *component Boolean function* of *f*.
- The nonlinearity of f is the distance between its component Boolean functions and affine Boolean functions

$$\mathrm{NL}_{1}(f) = \min_{\substack{\omega \in (\mathbb{F}_{2}^{m})^{*} \setminus \{0\}\\ \alpha \in \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2})}} d_{H}(\omega f, \alpha).$$

For all f, the covering radius (CR) bound gives

- The functions achieving this bound are called (n, m)-bent functions.
- The Walsh-Hadamard transform provides an effective tool for computation with nonlinearity NL₁(f).

• The Hamming distance of
$$f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 is
$$d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.$$

- 2 Let $\omega : \mathbb{F}_2^m \to \mathbb{F}_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n \to \mathbb{F}_2$, $(\omega f)(x) = \omega(f(x))$ is called a *component Boolean function* of *f*.
- The nonlinearity of f is the distance between its component Boolean functions and affine Boolean functions

$$\mathrm{NL}_{1}(f) = \min_{\substack{\omega \in (\mathbb{F}_{2}^{m})^{*} \setminus \{0\}\\ \alpha \in \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2})}} d_{H}(\omega f, \alpha).$$

For all f, the covering radius (CR) bound gives

 $NL_1(f) \le 2^n - 2^{n/2-1}.$

Solutions The functions achieving this bound are called (n, m)-bent functions.

The Walsh-Hadamard transform provides an effective tool for computation with nonlinearity NL₁(f).

• The Hamming distance of
$$f, g : \mathbb{F}_2^n \to \mathbb{F}_2^m$$
 is
$$d_H(f, g) = |\{x \in \mathbb{F}_2^n \mid f(x) \neq g(x)\}|.$$

- 2 Let $\omega : \mathbb{F}_2^m \to \mathbb{F}_2$ be a nonzero linear functional. The Boolean function $\omega f : \mathbb{F}_2^n \to \mathbb{F}_2$, $(\omega f)(x) = \omega(f(x))$ is called a *component Boolean function* of *f*.
- The nonlinearity of f is the distance between its component Boolean functions and affine Boolean functions

$$\mathrm{NL}_{1}(f) = \min_{\substack{\omega \in (\mathbb{F}_{2}^{m})^{*} \setminus \{0\}\\ \alpha \in \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2})}} d_{H}(\omega f, \alpha).$$

For all f, the covering radius (CR) bound gives

- The functions achieving this bound are called (n, m)-bent functions.
- The Walsh-Hadamard transform provides an effective tool for computation with nonlinearity $NL_1(f)$.

Vectorial nonlinearity and Problem 11

The vectorial nonlinearity of f is its distance from the set of affine functions

$$\mathrm{NL}_{\mathbf{v}}(f) = d_{H}(f, \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2}^{m})) = \min_{\alpha \in \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2}^{m})} d_{H}(f, \alpha).$$

Problem 11 reformulated

Find infinite classes of functions $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ with high vectorial nonlinearity.

The computation of the vectorial nonlinearity $NL_{v}(f)$ is generally difficult.

Partial solution (Maróti, G Nagy, G Nagy 2021)

Define n = 2m, $f : \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \to \mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ by

f(x,y)=(xy,0).

Then $NL_{\mathbf{v}}(f) = (2^m - 1)^2 = 2^n - 2 \cdot 2^{n/2} + 1$.

Vectorial nonlinearity and Problem 11

The vectorial nonlinearity of f is its distance from the set of affine functions

$$\mathrm{NL}_{\mathbf{v}}(f) = d_{H}(f, \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2}^{m})) = \min_{\alpha \in \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2}^{m})} d_{H}(f, \alpha).$$

Problem 11 reformulated

Find infinite classes of functions $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ with high vectorial nonlinearity.

The computation of the vectorial nonlinearity $NL_{v}(f)$ is generally difficult.

Partial solution (Maróti, G Nagy, G Nagy 2021)

Define n = 2m, $f : \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \to \mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ by

f(x,y)=(xy,0).

Then $NL_{\mathbf{v}}(f) = (2^m - 1)^2 = 2^n - 2 \cdot 2^{n/2} + 1$.

Vectorial nonlinearity and Problem 11

The vectorial nonlinearity of f is its distance from the set of affine functions

$$\mathrm{NL}_{\mathbf{v}}(f) = d_{H}(f, \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2}^{m})) = \min_{\alpha \in \mathrm{Aff}(\mathbb{F}_{2}^{n}, \mathbb{F}_{2}^{m})} d_{H}(f, \alpha).$$

Problem 11 reformulated

Find infinite classes of functions $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ with high vectorial nonlinearity.

The computation of the vectorial nonlinearity $NL_{v}(f)$ is generally difficult.

Partial solution (Maróti, G Nagy, G Nagy 2021)

Define n = 2m, $f : \mathbb{F}_{2^m} \times \mathbb{F}_{2^m} \to \mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ by

f(x,y)=(xy,0).

Then $NL_{\mathbf{v}}(f) = (2^m - 1)^2 = 2^n - 2 \cdot 2^{n/2} + 1$.

Nonlinearity vs vectorial nonlinearity

Trivial bounds:

$$\mathrm{NL}_1(f) \leq \mathrm{NL}_{\mathbf{v}}(f) < 2^n - n - 1.$$

Theorem (Carlet, Ding, Yuan 2005)

Let n, m be integers, when n is even. If f is an (n, m)-bent function, then we have

$$\left(1-\frac{1}{2^{m}}\right)\left(2^{n}-2^{n/2}\right)\leq \mathrm{NL}_{\mathbf{v}}(f)\leq \left(1-\frac{1}{2^{m}}\right)\left(2^{n}+2^{n/2}\right).$$

Theorem (Liu, Mesnager, Chen 2017)

If an (*n*, *m*)-function *f* satisfies [...], then

$$NL_{\mathbf{v}}(f) \leq \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right).$$

Nonlinearity vs vectorial nonlinearity

Trivial bounds:

$$\mathrm{NL}_1(f) \leq \mathrm{NL}_{\mathbf{v}}(f) < 2^n - n - 1.$$

Theorem (Carlet, Ding, Yuan 2005)

Let n, m be integers, when n is even. If f is an (n, m)-bent function, then we have

$$\left(1-\frac{1}{2^{m}}\right)\left(2^{n}-2^{n/2}\right)\leq \mathrm{NL}_{\mathbf{v}}(f)\leq \left(1-\frac{1}{2^{m}}\right)\left(2^{n}+2^{n/2}\right).$$

Theorem (Liu, Mesnager, Chen 2017)

If an (n, m)-function f satisfies [...], then

$$NL_{\mathbf{v}}(f) \leq \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right).$$

For (n, m)-functions f, the upper bound

$$\mathrm{NL}_{\boldsymbol{v}}(f) \leq \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right)$$

is tight.

- LMCC holds for m = 1 by the covering radius bound.
- LMCC implies

$$\mathrm{NL}_{\mathbf{v}}(f) = \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right)$$

for (n, m)-bent functions f.

For (n, m)-functions f, the upper bound

$$\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right)$$

is tight.

- LMCC holds for m = 1 by the covering radius bound.
- LMCC implies

$$\mathrm{NL}_{\mathbf{v}}(f) = \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right)$$

for (n, m)-bent functions f.

For (n, m)-functions f, the upper bound

$$\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right)$$

is tight.

- LMCC holds for m = 1 by the covering radius bound.
- LMCC implies

$$\mathrm{NL}_{\mathbf{v}}(f) = \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right)$$

for (n, m)-bent functions f.

For (n, m)-functions f, the upper bound

$$\mathrm{NL}_{\mathbf{v}}(f) \leq \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right)$$

is tight.

- LMCC holds for m = 1 by the covering radius bound.
- LMCC implies

$$\mathrm{NL}_{\mathbf{v}}(f) = \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right)$$

for (n, m)-bent functions f.

Outline

Nonlinearity vs vectorial nonlinearity

2 Differential uniformity vs vectorial nonlinearity

- 3 Sidon sets in \mathbb{F}_2^n
- 4 Large Sidon sets in \mathbb{F}_2^n
- 5 Computing the vectorial nonlinearity

• The differential uniformity of the function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is $\delta_f = \max_{\substack{a \in \mathbb{F}_2^n \setminus \{0\} \\ b \in \mathbb{F}_2^m}} |\{x \in \mathbb{F}_2^n \mid f(x) + f(x+a) = b\}|.$

2 $\delta_f \geq 2$.

If n = m and $\delta_f = 2$, then the function f is called *almost perfect nonlinear (APN)*.

Notation

The graph of the function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is

$$\Gamma_f = \{(x, f(x)) \mid x \in \mathbb{F}_2^n\} \subseteq \mathbb{F}_2^{n+m}.$$

Lemma 1

$$\delta_f = \max_{(a,b)\in\mathbb{F}_2^{2n}\setminus\{(0,0)\}} |\Gamma_f \cap (\Gamma_f + (a,b))|.$$

GP Nagy (Hungary)

Sidon sets and nonlinearity

• The differential uniformity of the function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is $\delta_f = \max_{\substack{a \in \mathbb{F}_2^n \setminus \{0\} \\ b \in \mathbb{F}_2^m}} |\{x \in \mathbb{F}_2^n \mid f(x) + f(x+a) = b\}|.$

$\delta_f \geq 2.$

If n = m and $\delta_f = 2$, then the function f is called *almost perfect nonlinear (APN).*

Notation

The graph of the function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is

$$\Gamma_f = \{(x, f(x)) \mid x \in \mathbb{F}_2^n\} \subseteq \mathbb{F}_2^{n+m}.$$

Lemma 1

$$\delta_f = \max_{(a,b)\in\mathbb{F}_2^{2n}\setminus\{(0,0)\}} |\Gamma_f \cap (\Gamma_f + (a,b))|.$$

• The differential uniformity of the function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is $\delta_f = \max_{\substack{a \in \mathbb{F}_2^n \setminus \{0\} \\ b \in \mathbb{F}_2^m}} |\{x \in \mathbb{F}_2^n \mid f(x) + f(x+a) = b\}|.$

 $\delta_f \geq 2.$

If n = m and $\delta_f = 2$, then the function f is called *almost perfect nonlinear (APN)*.

Notation

The graph of the function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is

$$\Gamma_f = \{(x, f(x)) \mid x \in \mathbb{F}_2^n\} \subseteq \mathbb{F}_2^{n+m}.$$

Lemma 1

$$\delta_f = \max_{(a,b)\in\mathbb{F}_2^{2n}\setminus\{(0,0)\}} |\Gamma_f \cap (\Gamma_f + (a,b))|.$$

• The differential uniformity of the function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is $\delta_f = \max_{\substack{a \in \mathbb{F}_2^n \setminus \{0\} \\ b \in \mathbb{F}_2^m}} |\{x \in \mathbb{F}_2^n \mid f(x) + f(x+a) = b\}|.$

 $\delta_f \geq 2.$

If n = m and $\delta_f = 2$, then the function f is called *almost perfect nonlinear (APN).*

Notation

The graph of the function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is

$$\Gamma_f = \{ (x, f(x)) \mid x \in \mathbb{F}_2^n \} \subseteq \mathbb{F}_2^{n+m}.$$

_emma 1

$$\delta_f = \max_{(a,b)\in\mathbb{F}_2^{2n}\setminus\{(0,0)\}} |\Gamma_f \cap (\Gamma_f + (a,b))|.$$

• The differential uniformity of the function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is $\delta_f = \max_{\substack{a \in \mathbb{F}_2^n \setminus \{0\} \\ b \in \mathbb{F}_2^m}} |\{x \in \mathbb{F}_2^n \mid f(x) + f(x+a) = b\}|.$

 $\delta_f \geq 2.$

If n = m and $\delta_f = 2$, then the function f is called *almost perfect nonlinear (APN)*.

Notation

The graph of the function $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is

$$\Gamma_f = \{ (x, f(x)) \mid x \in \mathbb{F}_2^n \} \subseteq \mathbb{F}_2^{n+m}.$$

Lemma 1

$$\delta_f = \max_{(a,b)\in\mathbb{F}_2^{2n}\setminus\{(0,0)\}} |\Gamma_f \cap (\Gamma_f + (a,b))|.$$

- Carlet (2021) proved a lower bound for $NL_{v}(f)$ in terms of the differential uniformity.
- Carlet's bound has been slightly improved:

Theorem (GN 2022, Ryabov 2023)

For all $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$, we have

$$\mathrm{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{\delta_f} \cdot 2^{n/2} - \frac{1}{2}$$

In particular, for an APN function $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$,

$$NL_{\mathbf{v}}(f) \ge 2^n - \sqrt{2} \cdot 2^{n/2} - \frac{1}{2}$$

- "APN functions are good candidates for approaching the Liu-Mesnager-Chen Conjecture."
- **The trick:** Study the structure of the level sets $f^{-1}(b)$.

Sidon sets and nonlinearity

- Carlet (2021) proved a lower bound for $NL_{v}(f)$ in terms of the differential uniformity.
- Carlet's bound has been slightly improved:

Theorem (GN 2022, Ryabov 2023)

For all $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$, we have $NL_{\mathbf{v}}(f) \ge 2^n - \sqrt{\delta_f} \cdot 2^{n/2} - \frac{1}{2}$. In particular, for an APN function $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$, $NL_{\mathbf{v}}(f) \ge 2^n - \sqrt{2} \cdot 2^{n/2} - \frac{1}{2}$.

- "APN functions are good candidates for approaching the Liu-Mesnager-Chen Conjecture."
- **The trick:** Study the structure of the level sets $f^{-1}(b)$.

Sidon sets and nonlinearity

- Carlet (2021) proved a lower bound for $NL_{v}(f)$ in terms of the differential uniformity.
- Carlet's bound has been slightly improved:

Theorem (GN 2022, Ryabov 2023) For all $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$, we have $NL_{\mathbf{v}}(f) \ge 2^n - \sqrt{\delta_f} \cdot 2^{n/2} - \frac{1}{2}$. In particular, for an APN function $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$, $NL_{\mathbf{v}}(f) \ge 2^n - \sqrt{2} \cdot 2^{n/2} - \frac{1}{2}$.

- "APN functions are good candidates for approaching the Liu-Mesnager-Chen Conjecture."
- **The trick:** Study the structure of the level sets $f^{-1}(b)$.

- Carlet (2021) proved a lower bound for $NL_{v}(f)$ in terms of the differential uniformity.
- Carlet's bound has been slightly improved:

Theorem (GN 2022, Ryabov 2023)

For all $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$, we have

$$\mathrm{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{\delta_f} \cdot 2^{n/2} - \frac{1}{2}$$

In particular, for an APN function $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$,

$$NL_{\mathbf{v}}(f) \ge 2^n - \sqrt{2} \cdot 2^{n/2} - \frac{1}{2}$$

- "APN functions are good candidates for approaching the Liu-Mesnager-Chen Conjecture."
- **The trick:** Study the structure of the level sets $f^{-1}(b)$.

Sidon sets and nonlinearity

- Carlet (2021) proved a lower bound for $NL_{v}(f)$ in terms of the differential uniformity.
- Carlet's bound has been slightly improved:

Theorem (GN 2022, Ryabov 2023)

For all $f : \mathbb{F}_2^n \to \mathbb{F}_2^m$, we have

$$\mathrm{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{\delta_f} \cdot 2^{n/2} - \frac{1}{2}$$

In particular, for an APN function $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$,

$$NL_{\mathbf{v}}(f) \ge 2^n - \sqrt{2} \cdot 2^{n/2} - \frac{1}{2}$$

- "APN functions are good candidates for approaching the Liu-Mesnager-Chen Conjecture."
- **The trick:** Study the structure of the level sets $f^{-1}(b)$.

Sidon sets and nonlinearity

Outline

- 2 Differential uniformity vs vectorial nonlinearity
- 3 Sidon sets in \mathbb{F}_2^n
- 4 Large Sidon sets in \mathbb{F}_2^n
- 5 Computing the vectorial nonlinearity

Sidon sets in abelian groups

Simon Sidon (or Szidon, 1892–1941) Hungarian hobby mathematician

Definition (S. Sidon 1932)

Let A be a finite abelian group. We say that $S \subseteq A$ is a *Sidon set* in A, if for any $x, y, z, w \in S$ of which **at least three are different**,

$x + y \neq z + w$.

Equivalently,

$$x-z\neq W-y.$$

- Sidon sets and sequences are studied since the 1930's.
- Sidon sequences are Sidon sets in \mathbb{Z} .
- Sidon sequences are closely related to Sidon sets in cyclic groups.
- Problems: How large Sidon sets can be? How dense Sidon sequences can be?

Sidon sets in abelian groups

Simon Sidon (or Szidon, 1892–1941) Hungarian hobby mathematician

Definition (S. Sidon 1932)

Let A be a finite abelian group. We say that $S \subseteq A$ is a *Sidon set* in A, if for any $x, y, z, w \in S$ of which **at least three are different**,

$$x + y \neq z + w$$
.

Equivalently,

$$x-z\neq w-y.$$

- Sidon sets and sequences are studied since the 1930's.
- Sidon sequences are Sidon sets in \mathbb{Z} .
- Sidon sequences are closely related to Sidon sets in cyclic groups.
- Problems: How large Sidon sets can be? How dense Sidon sequences can be?

Sidon sets in abelian groups

Simon Sidon (or Szidon, 1892–1941) Hungarian hobby mathematician

Definition (S. Sidon 1932)

Let A be a finite abelian group. We say that $S \subseteq A$ is a *Sidon set* in A, if for any $x, y, z, w \in S$ of which **at least three are different**,

 $x + y \neq z + w$.

Equivalently,

$$x-z\neq w-y.$$

- Sidon sets and sequences are studied since the 1930's.
- Sidon sequences are Sidon sets in \mathbb{Z} .
- Sidon sequences are closely related to Sidon sets in cyclic groups.
- Problems: How large Sidon sets can be? How dense Sidon sequences can be?

Sidon sets in abelian groups

Simon Sidon (or Szidon, 1892–1941) Hungarian hobby mathematician

Definition (S. Sidon 1932)

Let A be a finite abelian group. We say that $S \subseteq A$ is a *Sidon set* in A, if for any $x, y, z, w \in S$ of which **at least three are different**,

 $x + y \neq z + w$.

Equivalently,

$$x-z\neq w-y.$$

- Sidon sets and sequences are studied since the 1930's.
- Sidon sequences are Sidon sets in \mathbb{Z} .
- Sidon sequences are closely related to Sidon sets in cyclic groups.
- Problems: How large Sidon sets can be? How dense Sidon sequences can be?

Sidon sets in abelian groups

Simon Sidon (or Szidon, 1892–1941) Hungarian hobby mathematician

Definition (S. Sidon 1932)

Let A be a finite abelian group. We say that $S \subseteq A$ is a *Sidon set* in A, if for any $x, y, z, w \in S$ of which **at least three are different**,

 $x + y \neq z + w$.

Equivalently,

$$x-z\neq w-y.$$

- Sidon sets and sequences are studied since the 1930's.
- Sidon sequences are Sidon sets in \mathbb{Z} .
- Sidon sequences are closely related to Sidon sets in cyclic groups.
- Problems: How large Sidon sets can be? How dense Sidon sequences can be?

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \max_{a \in A \setminus \{0\}} |T \cap (T + a)|.$

- In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \le 2$.
- 2 If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

We have

 $|T| \leq \sqrt{t|A|} + \frac{1}{2}.$

Reformulation of Lemma 1

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \max_{a \in A \setminus \{0\}} |T \cap (T + a)|.$

- In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \le 2$.
- 2 If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

We have

 $|T| \leq \sqrt{t|A|} + \frac{1}{2}.$

Reformulation of Lemma 1

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \max_{a \in A \setminus \{0\}} |T \cap (T + a)|.$

- In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \le 2$.
- **2** If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

We have

 $|T| \leq \sqrt{t|A|} + \frac{1}{2}.$

Reformulation of Lemma 1

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \max_{a \in A \setminus \{0\}} |T \cap (T + a)|.$

- In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \le 2$.
- **2** If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

We have

 $|T| \leq \sqrt{t|A|} + \frac{1}{2}.$

Reformulation of Lemma 1

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \max_{a \in A \setminus \{0\}} |T \cap (T + a)|.$

- In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \le 2$.
- **2** If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

We have

 $|T| \leq \sqrt{t|A|} + \frac{1}{2}.$

Reformulation of Lemma 1

Proposition 1

Let A be a finite abelian group, and $T \subseteq A$. Define

 $t = \max_{a \in A \setminus \{0\}} |T \cap (T + a)|.$

- In general, $t = 1 \Rightarrow$ Sidon $\Rightarrow t \le 2$.
- **2** If A has odd order, then Sidon $\Leftrightarrow t = 1$.
- If A has exponent 2, then Sidon $\Leftrightarrow t = 2$.

We have

$$|T| \leq \sqrt{t|A|} + \frac{1}{2}.$$

Reformulation of Lemma 1

Proposition 2 (Obvious upper bound)

Let S be a Sidon set in the abelian group A. Then

$$|S| \leq \sqrt{2|A|} + \frac{1}{2}$$

In particular, for $A = \mathbb{F}_2^n$,

$$|S| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}.$$

The known constructions are far from the upper bound

 $A = \mathbb{F}_2^n$ has Sidon sets of size

$$|S| \ge \begin{cases} 2^{n/2} & \text{if } n \text{ is even} \\ 2^{\frac{n-1}{2}} + 2^{\frac{n-1}{4}} \cong \frac{1}{\sqrt{2}} 2^{n/2} & \text{if } n \text{ is odd.} \end{cases}$$

15/34

Remark. In cyclic groups, the obvious upper bound is asymptoticallysharp. (Erdős, Turán 1941)GP Nagy (Hungary)Sidon sets and nonlinearityBFA 2024

Proposition 2 (Obvious upper bound)

Let S be a Sidon set in the abelian group A. Then

$$|S| \leq \sqrt{2|A|} + \frac{1}{2}$$

In particular, for $A = \mathbb{F}_2^n$,

$$|S| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}.$$

The known constructions are far from the upper bound

 $A = \mathbb{F}_2^n$ has Sidon sets of size

$$S| \ge \begin{cases} 2^{n/2} & \text{if } n \text{ is even} \\ 2^{\frac{n-1}{2}} + 2^{\frac{n-1}{4}} \cong \frac{1}{\sqrt{2}} 2^{n/2} & \text{if } n \text{ is odd.} \end{cases}$$

Remark. In cyclic groups, the obvious upper bound is asymptoticallysharp. (Erdős, Turán 1941)GP Nagy (Hungary)Sidon sets and nonlinearityBFA 2024

15/34

Proposition 2 (Obvious upper bound)

Let S be a Sidon set in the abelian group A. Then

$$|S| \leq \sqrt{2|A|} + \frac{1}{2}$$

In particular, for $A = \mathbb{F}_2^n$,

$$|S| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}.$$

The known constructions are far from the upper bound

 $A = \mathbb{F}_2^n$ has Sidon sets of size

$$S| \ge \begin{cases} 2^{n/2} & \text{if } n \text{ is even} \\ 2^{\frac{n-1}{2}} + 2^{\frac{n-1}{4}} \cong \frac{1}{\sqrt{2}} 2^{n/2} & \text{if } n \text{ is odd.} \end{cases}$$

Remark. In cyclic groups, the obvious upper bound is asymptoticallysharp. (Erdős, Turán 1941)GP Nagy (Hungary)Sidon sets and nonlinearityBFA 2024

15/34

Proposition 2 (Obvious upper bound)

Let S be a Sidon set in the abelian group A. Then

$$|S| \leq \sqrt{2|A|} + \frac{1}{2}$$

In particular, for $A = \mathbb{F}_2^n$,

$$|S| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}.$$

The known constructions are far from the upper bound

 $A = \mathbb{F}_2^n$ has Sidon sets of size

$$S| \ge \begin{cases} 2^{n/2} & \text{if } n \text{ is even} \\ 2^{\frac{n-1}{2}} + 2^{\frac{n-1}{4}} \cong \frac{1}{\sqrt{2}} 2^{n/2} & \text{if } n \text{ is odd.} \end{cases}$$

Remark. In cyclic groups, the obvious upper bound is asymptoticallysharp. (Erdős, Turán 1941)GP Nagy (Hungary)Sidon sets and nonlinearityBFA 2024

Theorem (Lindström 1969)

Let n = 2m even, and identify \mathbb{F}_2^n with $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$.

 $\{(x, x^3) \mid x \in \mathbb{F}_{2^m}\}$

is a Sidon set in $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$.

Theorem (folklore)

The function $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is APN if and only if its graph is Sidon in \mathbb{F}_2^{2n} .

Theorem (Lindström 1969)

Let n = 2m even, and identify \mathbb{F}_2^n with $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$.

 $\{(x, x^3) \mid x \in \mathbb{F}_{2^m}\}$

is a Sidon set in $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$.

Theorem (folklore)

The function $f : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is APN if and only if its graph is Sidon in \mathbb{F}_2^{2n} .

Lemma 3

Let f, α be (n, m)-functions, f APN, α affine.

- The graph Γ_{α} is an affine subspace of dimension *n* in \mathbb{F}_{2}^{n+m} .
- **2** $\Gamma_f \cap \Gamma_\alpha$ is a Sidon set in Γ_α .

Lemma 4

$$\mathrm{NL}_{\mathbf{v}}(f) = 2^n - \max_{\alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2^m)} |\Gamma_f \cap \Gamma_{\alpha}|.$$

The proof of $\operatorname{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{2} \cdot 2^{n/2} - rac{1}{2}$.

It follows from the obvious upper bound

$$|T| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}$$

Lemma 3

Let f, α be (n, m)-functions, f APN, α affine.

- The graph Γ_{α} is an affine subspace of dimension *n* in \mathbb{F}_{2}^{n+m} .
- ② $\Gamma_f \cap \Gamma_\alpha$ is a Sidon set in Γ_α .

_emma 4

$$\mathrm{NL}_{\mathbf{v}}(f) = 2^n - \max_{\alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2^m)} |\Gamma_f \cap \Gamma_{\alpha}|.$$

The proof of $\operatorname{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{2} \cdot 2^{n/2} - rac{1}{2}$.

It follows from the obvious upper bound

$$|T| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}$$

Lemma 3

Let f, α be (n, m)-functions, f APN, α affine.

- The graph Γ_{α} is an affine subspace of dimension *n* in \mathbb{F}_{2}^{n+m} .
- **2** $\Gamma_f \cap \Gamma_\alpha$ is a Sidon set in Γ_α .

_emma 4

$$\mathrm{NL}_{\mathbf{v}}(f) = 2^n - \max_{\alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2^m)} |\Gamma_f \cap \Gamma_{\alpha}|.$$

The proof of $\operatorname{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{2} \cdot 2^{n/2} - rac{1}{2}$.

It follows from the obvious upper bound

$$|T| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}$$

Lemma 3

Let f, α be (n, m)-functions, f APN, α affine.

- The graph Γ_{α} is an affine subspace of dimension *n* in \mathbb{F}_{2}^{n+m} .
- **2** $\Gamma_f \cap \Gamma_\alpha$ is a Sidon set in Γ_α .

Lemma 4

$$\mathrm{NL}_{\mathbf{v}}(f) = 2^n - \max_{\alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2^m)} |\Gamma_f \cap \Gamma_{\alpha}|.$$

The proof of $\operatorname{NL}_{\mathbf{v}}(f) \geq 2^n - \sqrt{2} \cdot 2^{n/2} - rac{1}{2}$.

It follows from the obvious upper bound

$$|T| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}$$

Lemma 3

Let f, α be (n, m)-functions, f APN, α affine.

- The graph Γ_{α} is an affine subspace of dimension *n* in \mathbb{F}_{2}^{n+m} .
- **2** $\Gamma_f \cap \Gamma_\alpha$ is a Sidon set in Γ_α .

Lemma 4

$$\mathrm{NL}_{\mathbf{v}}(f) = 2^n - \max_{\alpha \in \mathrm{Aff}(\mathbb{F}_2^n, \mathbb{F}_2^m)} |\Gamma_f \cap \Gamma_{\alpha}|.$$

The proof of $NL_{v}(f) \ge 2^{n} - \sqrt{2} \cdot 2^{n/2} - \frac{1}{2}$.

It follows from the obvious upper bound

$$|T| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}$$

on the size of a Sidon set T in \mathbb{F}_2^n .

Challenge 1

Prove or disprove the Liu-Mesnager-Chen Conjecture

$$NL_{\mathbf{v}}(f) \leq \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right).$$

Challenge 2

Use the Liu-Mesnager-Chen Conjecture to produce **large Sidon sets** in odd dimension.

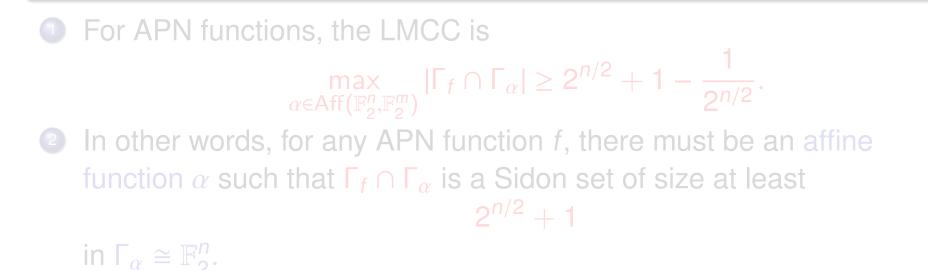
Challenge 1

Prove or disprove the Liu-Mesnager-Chen Conjecture

$$NL_{\mathbf{v}}(f) \leq \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right).$$

Challenge 2

Use the Liu-Mesnager-Chen Conjecture to produce **large Sidon sets** in odd dimension.



Challenge 1

Prove or disprove the Liu-Mesnager-Chen Conjecture

$$NL_{\mathbf{v}}(f) \leq \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right).$$

Challenge 2

Use the Liu-Mesnager-Chen Conjecture to produce **large Sidon sets** in odd dimension.

Challenge 1

Prove or disprove the Liu-Mesnager-Chen Conjecture

$$NL_{\mathbf{v}}(f) \leq \left(1 - \frac{1}{2^m}\right) \left(2^n - 2^{n/2}\right).$$

Challenge 2

Use the Liu-Mesnager-Chen Conjecture to produce **large Sidon sets** in odd dimension.

In other words, for any APN function *f*, there must be an affine function α such that $\Gamma_f \cap \Gamma_{\alpha}$ is a Sidon set of size at least $2^{n/2} + 1$

in $\Gamma_{\alpha} \cong \mathbb{F}_{2}^{n}$.

The obvious upper bound for Sidon sets is

$$|S| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}.$$

No Sidon sets of this size are known.

Challenge 3

- Brouwer, Tolhuizen (1993) sharpened the obvious upper bound by 2 for Sidon sets in odd dimension.
- Partial results by Czerwinski, Pott (2023) for even dimension.

$$|S| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}.$$

No Sidon sets of this size are known.

Challenge 3

- Brouwer, Tolhuizen (1993) sharpened the obvious upper bound by 2 for Sidon sets in odd dimension.
- Partial results by Czerwinski, Pott (2023) for even dimension.

$$|S| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}.$$

No Sidon sets of this size are known.

Challenge 3

- Brouwer, Tolhuizen (1993) sharpened the obvious upper bound by 2 for Sidon sets in odd dimension.
- Partial results by Czerwinski, Pott (2023) for even dimension.

$$|S| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}.$$

Output: No Sidon sets of this size are known.

Challenge 3

- Brouwer, Tolhuizen (1993) sharpened the obvious upper bound by 2 for Sidon sets in odd dimension.
- Partial results by Czerwinski, Pott (2023) for even dimension.

$$|S| \leq \sqrt{2} \cdot 2^{n/2} + \frac{1}{2}.$$

No Sidon sets of this size are known.

Challenge 3

- Brouwer, Tolhuizen (1993) sharpened the obvious upper bound by 2 for Sidon sets in odd dimension.
- Partial results by Czerwinski, Pott (2023) for even dimension.

Outline

- 2 Differential uniformity vs vectorial nonlinearity
- 3 Sidon sets in \mathbb{F}_2^n
- 4 Large Sidon sets in \mathbb{F}_2^n
- 5 Computing the vectorial nonlinearity

Definition: Large

We say that the Sidon set S in \mathbb{F}_2^n is *large*, if $|S| > 2^{n/2}$.

• If *n* is even, then graphs of APN functions $\mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ are Sidon sets of size $2^{n/2}$.

Definition

The Sidon set *S* is *complete (or maximal)*, if for any $a \in A \setminus S$, $S \cup \{a\}$ is not a Sidon set.

Definition: Large

We say that the Sidon set S in \mathbb{F}_2^n is *large*, if $|S| > 2^{n/2}$.

• If *n* is even, then graphs of APN functions $\mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ are Sidon sets of size $2^{n/2}$.

Definition

The Sidon set S is *complete (or maximal),* if for any $a \in A \setminus S$, $S \cup \{a\}$ is not a Sidon set.

Definition: Large

We say that the Sidon set S in \mathbb{F}_2^n is *large*, if $|S| > 2^{n/2}$.

• If *n* is even, then graphs of APN functions $\mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ are Sidon sets of size $2^{n/2}$.

Definition

The Sidon set S is *complete (or maximal)*, if for any $a \in A \setminus S$, $S \cup \{a\}$ is not a Sidon set.

- Redman (2021) and Carlet (2022) investigated the completeness of those Sidon sets, that can be obtained as graphs of APN functions.
- Carlet (2022) observed that the incompleteness of the graph of the APN function *f* is equivalent with the existence of another APN function *g* such that their Hamming distance is $d_H(f,g) = 1$.
- Budaghyan, Carlet, Helleseth, Li and Sun (2018) conjectured that $d_H(f,g) = 1$ is impossible for two APN functions f, g.

Theorem (Carlet 2022?)

- Redman (2021) and Carlet (2022) investigated the completeness of those Sidon sets, that can be obtained as graphs of APN functions.
- Carlet (2022) observed that the incompleteness of the graph of the APN function *f* is equivalent with the existence of another APN function *g* such that their Hamming distance is $d_H(f,g) = 1$.
- Budaghyan, Carlet, Helleseth, Li and Sun (2018) conjectured that $d_H(f,g) = 1$ is impossible for two APN functions f, g.

Theorem (Carlet 2022?)

- Redman (2021) and Carlet (2022) investigated the completeness of those Sidon sets, that can be obtained as graphs of APN functions.
- Carlet (2022) observed that the incompleteness of the graph of the APN function *f* is equivalent with the existence of another APN function *g* such that their Hamming distance is $d_H(f,g) = 1$.
- Budaghyan, Carlet, Helleseth, Li and Sun (2018) conjectured that $d_H(f,g) = 1$ is impossible for two APN functions f, g.

Theorem (Carlet 2022?)

- Redman (2021) and Carlet (2022) investigated the completeness of those Sidon sets, that can be obtained as graphs of APN functions.
- Carlet (2022) observed that the incompleteness of the graph of the APN function *f* is equivalent with the existence of another APN function *g* such that their Hamming distance is $d_H(f,g) = 1$.
- Budaghyan, Carlet, Helleseth, Li and Sun (2018) conjectured that $d_H(f,g) = 1$ is impossible for two APN functions f, g.

Theorem (Carlet 2022?)

Let $q = 2^m$, n = 2m, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order q + 1.

• G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if $4 \mid n$.
 - These are large Sidon sets of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
 - We can interpret them as **conics** in the affine plane.

Let $q = 2^m$, n = 2m, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order q+1.

• G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if $4 \mid n$.
 - These are large Sidon sets of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
 - We can interpret them as **conics** in the affine plane.

Let $q = 2^m$, n = 2m, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order q + 1.

• G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if $4 \mid n$.
 - These are large Sidon sets of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
 - We can interpret them as **conics** in the affine plane.

Let $q = 2^m$, n = 2m, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order q+1.

• G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if $4 \mid n$.
 - These are large Sidon sets of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
 - We can interpret them as **conics** in the affine plane.

Let $q = 2^m$, n = 2m, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order q + 1.

• G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if $4 \mid n$.
- These are large Sidon sets of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
- We can interpret them as **conics** in the affine plane.

Let $q = 2^m$, n = 2m, and G_{q+1} be the cyclic subgroup of \mathbb{F}_{q^2} of order q + 1.

• G_{q+1} is a Sidon sets in the additive group of \mathbb{F}_{q^2} .

- In other words, $G_{q+1} \cup \{0\}$ is Sidon if and only if $4 \mid n$.
- These are large Sidon sets of size $2^{n/2} + 1$ and $2^{n/2} + 2$.
- We can interpret them as **conics** in the affine plane.

• $q = 2^m$.

- $\gamma \in \mathbb{F}_q$ such that $X^2 + \gamma X + 1$ is irreducible in \mathbb{F}_{q^2} .
- Affine conics are:

hyperbola:	H: XY = 1,
parabola:	$P: Y = X^2,$
ellipse:	$E: X^2 + \gamma XY + Y^2 = 1.$

• |H| = q - 1, |P| = q, |E| = q + 1.

• Nucleus of H and E is (0, 0).

• $q = 2^m$.

- $\gamma \in \mathbb{F}_q$ such that $X^2 + \gamma X + 1$ is irreducible in \mathbb{F}_{q^2} .
- Affine conics are:

hyperbola:	H:XY=1,
parabola:	$P: Y = X^2,$
ellipse:	$E: X^2 + \gamma XY + Y^2 = 1.$

• |H| = q - 1, |P| = q, |E| = q + 1.

• Nucleus of H and E is (0, 0).

• $q = 2^m$.

• $\gamma \in \mathbb{F}_q$ such that $X^2 + \gamma X + 1$ is irreducible in \mathbb{F}_{q^2} .

• Affine conics are:

hyperbola:	H: XY = 1,
parabola:	$P: Y = X^2,$
ellipse:	$E: X^2 + \gamma XY + Y^2 = 1.$

|*H*| = q - 1, |*P*| = q, |*E*| = q + 1.
Nucleus of *H* and *E* is (0, 0).

• $q = 2^m$.

• $\gamma \in \mathbb{F}_q$ such that $X^2 + \gamma X + 1$ is irreducible in \mathbb{F}_{q^2} .

• Affine conics are:

hyperbola:	H: XY = 1,
parabola:	$P: Y = X^2,$
ellipse:	$E: X^2 + \gamma XY + Y^2 = 1.$

•
$$|H| = q - 1$$
, $|P| = q$, $|E| = q + 1$.

• Nucleus of H and E is (0, 0).

• $q = 2^m$.

- $\gamma \in \mathbb{F}_q$ such that $X^2 + \gamma X + 1$ is irreducible in \mathbb{F}_{q^2} .
- Affine conics are:

hyperbola:	H: XY = 1,
parabola:	$P: Y = X^2,$
ellipse:	$E: X^2 + \gamma XY + Y^2 = 1.$

• |H| = q - 1, |P| = q, |E| = q + 1.

• Nucleus of H and E is (0, 0).

- When *m* is even and *C* is a hyperbola, or when *m* is odd and *C* is an ellipse, then *C* is a complete Sidon set in \mathbb{F}_q^2 .
- When *m* is odd and *C* is a hyperbola, or when *m* is even and *C* is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}^2_{α} .
 - If *m* is odd, then $S = H \cup N$ is Sidon of size *q*. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
 - The ellipse *E* is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
 - If *m* is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
 - *E* is also equivalent to the Goppa code Sidon set of size q + 1.

- When *m* is even and *C* is a hyperbola, or when *m* is odd and *C* is an ellipse, then *C* is a complete Sidon set in \mathbb{F}_q^2 .
- When *m* is odd and *C* is a hyperbola, or when *m* is even and *C* is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_q^2 .
 - If *m* is odd, then $S = H \cup N$ is Sidon of size *q*. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
 - The ellipse *E* is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
 - If *m* is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
 - *E* is also equivalent to the Goppa code Sidon set of size q + 1.

- When *m* is even and *C* is a hyperbola, or when *m* is odd and *C* is an ellipse, then *C* is a complete Sidon set in \mathbb{F}_q^2 .
- When *m* is odd and *C* is a hyperbola, or when *m* is even and *C* is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_a^2 .
- If *m* is odd, then $S = H \cup N$ is Sidon of size *q*. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
- The ellipse *E* is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
- If *m* is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
- *E* is also equivalent to the Goppa code Sidon set of size q + 1.

- When *m* is even and *C* is a hyperbola, or when *m* is odd and *C* is an ellipse, then *C* is a complete Sidon set in \mathbb{F}_q^2 .
- When *m* is odd and *C* is a hyperbola, or when *m* is even and *C* is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_q^2 .
- If *m* is odd, then $S = H \cup N$ is Sidon of size *q*. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
- The ellipse *E* is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
- If *m* is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
- *E* is also equivalent to the Goppa code Sidon set of size q + 1.

- When *m* is even and *C* is a hyperbola, or when *m* is odd and *C* is an ellipse, then *C* is a complete Sidon set in \mathbb{F}_q^2 .
- When *m* is odd and *C* is a hyperbola, or when *m* is even and *C* is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_a^2 .
 - If *m* is odd, then $S = H \cup N$ is Sidon of size *q*. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
 - The ellipse *E* is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
 - If *m* is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
 - *E* is also equivalent to the Goppa code Sidon set of size q + 1.

- When *m* is even and *C* is a hyperbola, or when *m* is odd and *C* is an ellipse, then *C* is a complete Sidon set in \mathbb{F}_q^2 .
- When *m* is odd and *C* is a hyperbola, or when *m* is even and *C* is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_a^2 .
 - If *m* is odd, then $S = H \cup N$ is Sidon of size *q*. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
 - The ellipse *E* is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
 - If *m* is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
 - *E* is also equivalent to the Goppa code Sidon set of size q + 1.

- When *m* is even and *C* is a hyperbola, or when *m* is odd and *C* is an ellipse, then *C* is a complete Sidon set in \mathbb{F}_q^2 .
- When *m* is odd and *C* is a hyperbola, or when *m* is even and *C* is an ellipse, then $C \cup \{N\}$ is a complete Sidon set in \mathbb{F}_q^2 .
 - If *m* is odd, then $S = H \cup N$ is Sidon of size *q*. This is the graph of the AES substitution box function $x \mapsto x^{q-2}$.
 - The ellipse *E* is isomorphic to the Carlet-Mesnager Sidon set G_{q+1} .
 - If *m* is even, then $E \cup \{N\}$ is isomorphic to $G_{q+1} \cup \{0\}$.
 - E is also equivalent to the Goppa code Sidon set of size q + 1.

Proposition (folklore)

Sidon sets of size *s* in \mathbb{F}_2^n and $[s - 1, s - 1 - n, \ge 5]$ binary linear codes are essentially the same thing.

- Redman, Rose and Walker (2021)
- In the seminal "CCZ paper" Carlet, Charpin, Zinoviev (1998), for an APN function *F*, the minimum distance 5 linear code

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{N-1}) \end{bmatrix}$$

- Codes from the online database [Grass] yield maximal Sidon sets for n ≤ 10.
- Shortening of BCH codes and full support Goppa codes yield Sidon sets of size $2^{n/2} + 1$, *n* even.

Proposition (folklore)

Sidon sets of size *s* in \mathbb{F}_2^n and $[s - 1, s - 1 - n, \ge 5]$ binary linear codes are essentially the same thing.

• Redman, Rose and Walker (2021)

 In the seminal "CCZ paper" Carlet, Charpin, Zinoviev (1998), for an APN function F, the minimum distance 5 linear code

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{N-1}) \end{bmatrix}$$

- Codes from the online database [Grass] yield maximal Sidon sets for n ≤ 10.
- Shortening of BCH codes and full support Goppa codes yield Sidon sets of size $2^{n/2} + 1$, *n* even.

Proposition (folklore)

Sidon sets of size *s* in \mathbb{F}_2^n and $[s - 1, s - 1 - n, \ge 5]$ binary linear codes are essentially the same thing.

- Redman, Rose and Walker (2021)
- In the seminal "CCZ paper" Carlet, Charpin, Zinoviev (1998), for an APN function F, the minimum distance 5 linear code

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{N-1}) \end{bmatrix}$$

- Codes from the online database [Grassl] yield maximal Sidon sets for n ≤ 10.
- Shortening of BCH codes and full support Goppa codes yield Sidon sets of size $2^{n/2} + 1$, *n* even.

Proposition (folklore)

Sidon sets of size *s* in \mathbb{F}_2^n and $[s - 1, s - 1 - n, \ge 5]$ binary linear codes are essentially the same thing.

- Redman, Rose and Walker (2021)
- In the seminal "CCZ paper" Carlet, Charpin, Zinoviev (1998), for an APN function F, the minimum distance 5 linear code

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{N-1}) \end{bmatrix}$$

- Codes from the online database [Grassl] yield maximal Sidon sets for n ≤ 10.
- Shortening of BCH codes and full support Goppa codes yield Sidon sets of size $2^{n/2} + 1$, *n* even.

Proposition (folklore)

Sidon sets of size *s* in \mathbb{F}_2^n and $[s - 1, s - 1 - n, \ge 5]$ binary linear codes are essentially the same thing.

- Redman, Rose and Walker (2021)
- In the seminal "CCZ paper" Carlet, Charpin, Zinoviev (1998), for an APN function F, the minimum distance 5 linear code

$$H = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{N-1} \\ F(1) & F(\alpha) & F(\alpha^2) & \cdots & F(\alpha^{N-1}) \end{bmatrix}$$

- Codes from the online database [Grassl] yield maximal Sidon sets for n ≤ 10.
- Shortening of BCH codes and full support Goppa codes yield Sidon sets of size $2^{n/2} + 1$, *n* even.

Other known large Sidon sets

n	2 ^{n/2}	known max S	Structure
2	2	3	
3	2.83	4	
4	4	6	
5	5.66	7	
6	8	9	ellipse
7	11.31	12	??
8	16	18	ellipse plus nucleus
9	22.63	24	??
10	32	34	?? (Chen 1991)
11	45.25	48	?? (Chen 1991)

• No infinite class of large Sidon sets in odd dimension is known.

• The best known class has size

$$\frac{1}{\sqrt{2}}2^{n/2}+C\cdot 2^{n/4}.$$

Other known large Sidon sets

n	2 ^{n/2}	known max S	Structure
2	2	3	
3	2.83	4	
4	4	6	
5	5.66	7	
6	8	9	ellipse
7	11.31	12	??
8	16	18	ellipse plus nucleus
9	22.63	24	??
10	32	34	?? (Chen 1991)
11	45.25	48	?? (Chen 1991)

- No infinite class of large Sidon sets in odd dimension is known.
- The best known class has size

$$\frac{1}{\sqrt{2}}2^{n/2}+C\cdot 2^{n/4}.$$

Constructions.

- Automorphisms and isomorphisms using the design of minimum weight codewords.
- The vertex set of the design is *S*, the set of blocks is

$$\mathcal{B} = \{B \subseteq S \mid |B| = 5, 6, \sum_{x \in B} x = 0\}.$$

- Efficient for $n \leq 12$.
- **Classification** of complete Sidon sets up to dimension 8.

Problem

Constructions.

- Automorphisms and isomorphisms using the design of minimum weight codewords.
- The vertex set of the design is S, the set of blocks is

$$\mathcal{B} = \{B \subseteq S \mid |B| = 5, 6, \sum_{x \in B} x = 0\}.$$

- Efficient for $n \leq 12$.
- **Classification** of complete Sidon sets up to dimension 8.

Problem

Constructions.

- Automorphisms and isomorphisms using the design of minimum weight codewords.
- The vertex set of the design is S, the set of blocks is

$$\mathcal{B} = \{B \subseteq S \mid |B| = 5, 6, \sum_{x \in B} x = 0\}.$$

- Efficient for $n \leq 12$.
- Classification of complete Sidon sets up to dimension 8.

Problem

Constructions.

- Automorphisms and isomorphisms using the design of minimum weight codewords.
- The vertex set of the design is S, the set of blocks is

$$\mathcal{B} = \{B \subseteq S \mid |B| = 5, 6, \sum_{x \in B} x = 0\}.$$

- Efficient for $n \leq 12$.
- Classification of complete Sidon sets up to dimension 8.

Problem

Constructions.

- Automorphisms and isomorphisms using the design of minimum weight codewords.
- The vertex set of the design is S, the set of blocks is

$$\mathcal{B} = \{B \subseteq S \mid |B| = 5, 6, \sum_{x \in B} x = 0\}.$$

- Efficient for $n \leq 12$.
- **Classification** of complete Sidon sets up to dimension 8.

Problem

Constructions.

- Automorphisms and isomorphisms using the design of minimum weight codewords.
- The vertex set of the design is S, the set of blocks is

$$\mathcal{B} = \{B \subseteq S \mid |B| = 5, 6, \sum_{x \in B} x = 0\}.$$

- Efficient for $n \leq 12$.
- **Classification** of complete Sidon sets up to dimension 8.

Problem

Outline

- 1 Nonlinearity vs vectorial nonlinearity
- 2 Differential uniformity vs vectorial nonlinearity
- 3 Sidon sets in \mathbb{F}_2^n
- 4 Large Sidon sets in \mathbb{F}_2^n
- 5 Computing the vectorial nonlinearity

n	max S	APN functions	$NL_{\mathbf{v}}(f)$	LMCC
4	6	2 EA-equivalence classes	$10 = 2^4 - 6$	11.25
5	7	7 EA-equivalence classes	$25 = 2^5 - 7$	25.52

- LMCC holds.
- The vectorial nonlinearity is EA-invariant.

Theorem (Ryabov 2023)
-----------	-------------	---

n	max S	APN functions	$NL_{v}(f)$	LMCC
4	6	2 EA-equivalence classes	$10 = 2^4 - 6$	11.25
5	7	7 EA-equivalence classes	$25 = 2^5 - 7$	25.52

• LMCC holds.

• The vectorial nonlinearity is EA-invariant.

Theorem (Ry	abov 2023)
-------------	------------

n	max S	APN functions	$NL_{\mathbf{v}}(f)$	LMCC
4	6	2 EA-equivalence classes	$10 = 2^4 - 6$	11.25
5	7	7 EA-equivalence classes	$25 = 2^5 - 7$	25.52

- LMCC holds.
- The vectorial nonlinearity is EA-invariant.

n	max S	APN functions	$NL_{\boldsymbol{v}}(f)$	LMCC
6	9	14 CCZ-equivalence classes	$55 = 2^6 - 9$	55.125
7	12	x ³ , x ⁹	$117 = 2^7 - 11$	115.77
		other known 488 functions	$116 = 2^7 - 12$	

• LMCC does not hold for n = 7.

Problem

Is the vectorial nonlinearity CCZ-invariant?

n	max S	APN functions	$NL_{\boldsymbol{v}}(f)$	LMCC
6	9	14 CCZ-equivalence classes	$55 = 2^6 - 9$	55.125
7	12	x ³ , x ⁹	$117 = 2^7 - 11$	115.77
		other known 488 functions	$116 = 2^7 - 12$	

• LMCC does not hold for n = 7.

Problem

Is the vectorial nonlinearity CCZ-invariant?

n	max S	APN functions	$NL_{\mathbf{v}}(f)$	LMCC
6	9	14 CCZ-equivalence classes	$55 = 2^6 - 9$	55.125
7	12	x ³ , x ⁹	$117 = 2^7 - 11$	115.77
		other known 488 functions	$116 = 2^7 - 12$	

• LMCC does not hold for n = 7.

Problem

Is the vectorial nonlinearity CCZ-invariant?

Theorem (GN 2024?)				
n	max S	APN functions	$NL_{\mathbf{v}}(f)$	LMCC
8	18	x ⁹	$238 = 2^8 - 18$	239.06
		x ³ , x ⁵⁷	$\geq 240 = 2^8 - 16$	
9	24	Gold exponents $d = 3, 5, 17, 31, 103, 171$	≥ 491 = 2 ⁹ – 21	488.42

• LMCC does not hold for n = 8, 9.

Theorem (GN 2024?)				
n	max S	APN functions	$NL_{\mathbf{v}}(f)$	LMCC
8	18	x ⁹	$238 = 2^8 - 18$	239.06
		x ³ , x ⁵⁷	$\geq 240 = 2^8 - 16$	
9	24	Gold exponents $d = 3, 5, 17, 31, 103, 171$	≥ 491 = 2 ⁹ – 21	488.42

• LMCC does not hold for n = 8, 9.

Let *n* be divisible by 4, $d = 2^{n/2-1} + 1$ and $f(x) = x^d$ monomial Gold APN function. Then

$$NL_{\mathbf{v}}(f) \le 2^n - 2^{n/2} - 2.$$

In particular, LMCC holds for f.

Proof.

Use the affine function $\alpha(x) = x^{\frac{1}{2}} = x^{2^{n-1}}$.

Let *n* be divisible by 4, $d = 2^{n/2-1} + 1$ and $f(x) = x^d$ monomial Gold APN function. Then

$$NL_{\mathbf{v}}(f) \leq 2^n - 2^{n/2} - 2.$$

In particular, LMCC holds for f.

Proof.

Use the affine function $\alpha(x) = x^{\frac{1}{2}} = x^{2^{n-1}}$.

THANK YOU FOR YOUR ATTENTION!

ÉS BOLDOG 75. SZÜLETÉSNAPOT, KEDVES CLAUDE!!

ÉS BOLDOG 75. SZÜLETÉSNAPOT, KEDVES CLAUDE!!