Some Classification Results on Maiorana-McFarland Bent Functions

Philippe Langevin¹ and Alexandr Polujan² philippe.langevin@univ-tln.fr alexandr.polujan@gmail.com

> ¹ Imath, Université de Toulon, La Garde, France ²Otto von Guericke University Magdeburg, Germany

BFA 2024

The 9th International Workshop on Boolean Functions and their Applications, 09.09.2024

Boolean Functions

- \blacktriangleright Mappings $f: \mathbb{F}_2^n \to \mathbb{F}_2$ are called Boolean functions
- \blacktriangleright Let \mathcal{B}_n be the set of all Boolean functions in *n* variables
- I Algebraic Normal Form (ANF) of *f* ∈ B*ⁿ*

$$
f(z_1,\ldots,z_n)=\sum_{v\in\mathbb{F}_2^n}c_v\left(\prod_{i=1}^nz_i^{v_i}\right),
$$

where $c_v \in \mathbb{F}_2$ and $v = (z_1, \ldots, z_n) \in \mathbb{F}_2^n$

- \blacktriangleright Algebraic degree $\deg(f)$ is the degree of the ANF of $f \in \mathcal{B}_n$
- ▶ Walsh-Hadamard transform of $f \in \mathcal{B}_n$ at $u \in \mathbb{F}_2^n$ is defined by

$$
\hat{\chi}_f(u) = \sum_{z \in \mathbb{F}_2^n} (-1)^{f(z) + u \cdot z}
$$

Alexandr Polujan (Magdeburg) [Classifying Maiorana-McFarland Bent Functions](#page-0-0) BFA 2024 1 / 16

Boolean Bent Functions

Definition

For $n = 2m$, a function $f \in \mathcal{B}_n$ is called bent if

$$
\hat{\chi}_f(u)=\pm 2^{\frac{n}{2}}\quad\text{for all}\quad u\in\mathbb{F}_2^n
$$

Example

We identify \mathbb{F}_2^n with $\mathbb{F}_2^m\times\mathbb{F}_2^m$. For $x,y\in\mathbb{F}_2^m$, the dot product

$$
f(x,y) = \langle x, y \rangle = \sum_{i=1}^{m} x_i y_i
$$

defines a quadratic bent function f on $\mathbb{F}_2^m \times \mathbb{F}_2^m$

Maiorana-McFarland Bent Functions

Definition

The Maiorana-McFarland class is the set of Boolean bent functions on $\mathbb{F}_2^m \times \mathbb{F}_2^m$ of the form

$$
\mathcal{M} = \{ f_{\pi,g}(x,y) = \langle x, \pi(y) \rangle + g(y) : \pi \text{ permutes } \mathbb{F}_2^m, g \in \mathcal{B}_m \}
$$

Facts

- M is a fundamental primary class of bent functions (along with the partial spread class PS)
- ${\cal M}$ contains many functions on $\mathbb{F}_2^m\times\mathbb{F}_2^m$ of all possible degrees d with $2 \le d \le m$

Equivalence of Boolean Functions

- \blacktriangleright Let $S(\mathbb{F}_2^n)$ be the group of all permutations of \mathbb{F}_2^n
- \blacktriangleright The general affine group

$$
\text{AGL}(n,2) = \left\{ \left[\begin{array}{cc} A & b \\ & 1 \end{array} \right] : A \in \text{GL}(n,2), b \in \mathbb{F}_2^n \right\}
$$

 \blacktriangleright The action of $\mathrm{AGL}(n,2)$ on \mathbb{F}_2^n is given by

$$
\begin{bmatrix} A & b \\ & 1 \end{bmatrix} (x) = Ax + b \quad \text{for } x \in \mathbb{F}_2^n
$$

Definition (EA-Equivalence)

Functions $f, f' \in \mathcal{B}_n$ are equivalent if $f'(x) = f(A(x)) + a(x)$ holds for all $x \in \mathbb{F}_2^n$, where $A \in \text{AGL}(n, 2)$ and $a \in \mathcal{B}_n$ is affine

Classification of Maiorana-McFarland Bent Functions

In Let $f_{\pi,q}(x,y) := \langle x, \pi(y) \rangle + g(y)$ be a Maiorana-McFarland bent function on B_{2m}

Essential Question

How to select permutations $\pi, \pi' \in S\left(\mathbb{F}^{m}_2\right)$ and Boolean functions $g,g'\in\mathcal{B}_m$, s.t. $f_{\pi,g}$ and $f_{\pi',g'}$ are (in)equivalent?

Strategy: Use "Controllable" Invariants

- 1. Algebraic degree
- 2. $\#$ of ${\mathcal M}$ -subspaces of a fixed dimension^{1,2} (a vector space $U\subseteq {\mathbb F}_2^n$ is called an *M*-subspace of $f \in \mathcal{B}_n$ if $D_{a,b}f = 0$, for all $a, b \in U$

¹Alexandr Polujan and Alexander Pott. "Cubic bent functions outside the completed Maiorana-McFarland class". In: Designs, Codes and Cryptography 88.9 (2020), pp. 1701–1722.

²Enes Pasalic, Alexandr Polujan, Sadmir Kudin and Fengrong Zhang. "Design and Analysis of Bent Functions Using M-Subspaces". In: IEEE Transactions on Information Theory 70.6 (2024), pp. 4464–4477.

 \circ $n = 2, 4$: 1 quadratic class

³ John F. Dillon. "A survey of bent functions". In: NSA Technical Journal Special Issue (1972), pp. 191-215.

⁴An Braeken. "Cryptographic Properties of Boolean Functions and S-Boxes". PhD thesis. Katholieke Universiteit Leuven, Mar. 2006.

⁵Philippe Langevin. Classification of Bent Cubics in 8 variables.

⁶Philippe Langevin and Xiang-Dong Hou. "Counting Partial Spread Functions in Eight Variables". In: IEEE Transactions on Information Theory 57 (2011), pp. 2263–2269.

⁷Philippe Langevin and Gregor Leander. "Classification of Boolean Quartic Forms in eight variables". In: Boolean Functions in Cryptology and Information Security. Vol. 18. 2008, pp. 139–147.

 \circ $n = 2, 4$: 1 quadratic class

 \circ $n = 6$: 4 classes = 1 quadratic + 3 cubic³

³ John F. Dillon. "A survey of bent functions". In: NSA Technical Journal Special Issue (1972), pp. 191-215.

⁴An Braeken. "Cryptographic Properties of Boolean Functions and S-Boxes". PhD thesis. Katholieke Universiteit Leuven, Mar. 2006.

⁵Philippe Langevin. Classification of Bent Cubics in 8 variables.

⁶Philippe Langevin and Xiang-Dong Hou. "Counting Partial Spread Functions in Eight Variables". In: IEEE Transactions on Information Theory 57 (2011), pp. 2263–2269.

⁷Philippe Langevin and Gregor Leander. "Classification of Boolean Quartic Forms in eight variables". In: Boolean Functions in Cryptology and Information Security. Vol. 18. 2008, pp. 139–147.

 \circ $n = 2, 4$: 1 quadratic class

 \circ $n = 6$: 4 classes = 1 quadratic + 3 cubic³

 \circ *n* = 8: 1 quadratic + 8 cubic^{4,5} + *X* quartic (looks doable)

³ John F. Dillon. "A survey of bent functions". In: NSA Technical Journal Special Issue (1972), pp. 191-215.

⁴An Braeken. "Cryptographic Properties of Boolean Functions and S-Boxes". PhD thesis. Katholieke Universiteit Leuven, Mar. 2006.

⁵Philippe Langevin. Classification of Bent Cubics in 8 variables.

⁶Philippe Langevin and Xiang-Dong Hou. "Counting Partial Spread Functions in Eight Variables". In: IEEE Transactions on Information Theory 57 (2011), pp. 2263–2269.

⁷Philippe Langevin and Gregor Leander. "Classification of Boolean Quartic Forms in eight variables". In: Boolean Functions in Cryptology and Information Security. Vol. 18. 2008, pp. 139–147.

 \circ $n = 2, 4: 1$ quadratic class

 \circ $n = 6$: 4 classes = 1 quadratic + 3 cubic³

 \circ *n* = 8: 1 quadratic + 8 cubic^{4,5} + *X* quartic (looks doable)

- 1. "Structurally more complicated" partial spread bent functions are classified and enumerated⁶ in dimension 8
- 2. The number of bent functions in dimension 8 equivalent to $\mathcal M$ up to addition of affine terms⁷ is $\leq 2^{72,38}$

³ John F. Dillon. "A survey of bent functions". In: NSA Technical Journal Special Issue (1972), pp. 191-215.

⁴An Braeken. "Cryptographic Properties of Boolean Functions and S-Boxes". PhD thesis. Katholieke Universiteit Leuven, Mar. 2006.

⁵Philippe Langevin. Classification of Bent Cubics in 8 variables.

⁶Philippe Langevin and Xiang-Dong Hou. "Counting Partial Spread Functions in Eight Variables". In: IEEE Transactions on Information Theory 57 (2011), pp. 2263–2269.

⁷Philippe Langevin and Gregor Leander. "Classification of Boolean Quartic Forms in eight variables". In: Boolean Functions in Cryptology and Information Security. Vol. 18. 2008, pp. 139–147.

Problem and Main Results

Open Problem

Classify and enumerate all bent functions from M in dimension 8.

Open Problem

Classify and enumerate all bent functions from M in dimension 8.

Main Result 1 [\(Langevin and Polujan 2024\)](#page-43-0)

Let $\mathcal{CM}(2m, 2)$ denote the $\#$ of equivalence classes of Maiorana-McFarland bent functions on $\mathbb{F}_2^m\times\mathbb{F}_2^m$. Then, $\mathcal{CM}(8,2)=325$.

Open Problem

Classify and enumerate all bent functions from M in dimension 8.

Main Result 1 [\(Langevin and Polujan 2024\)](#page-43-0)

Let $\mathcal{CM}(2m, 2)$ denote the $\#$ of equivalence classes of Maiorana-McFarland bent functions on $\mathbb{F}_2^m\times\mathbb{F}_2^m$. Then, $\mathcal{CM}(8,2)=325$.

Main Result 2 [\(Langevin and Polujan 2024\)](#page-43-0)

The number of bent functions on \mathbb{F}_2^8 that are equivalent to the $\mathcal M$ class (up to addition of affine terms) is equal to

 $537611571837677338624 \approx 2^{68,86}$.

Methodology

$$
\mathcal{M} = \{ f_{\pi,g}(x, y) = \langle x, \pi(y) \rangle + g(y) : \ \pi \in \mathcal{S}(\mathbb{F}_2^m), \ g \in \mathcal{B}_m \}
$$

▶ Brute force works for $n \leq 6$, but not for $n = 2m = 8$

$$
\frac{(2^m)!}{2^m} \cdot \frac{2^{2^m}}{2^{m+1}} \stackrel{m=4}{=} 2\,678\,117\,105\,664\,000 \approx 2^{51}
$$

Methodology

$$
\mathcal{M} = \{ f_{\pi,g}(x, y) = \langle x, \pi(y) \rangle + g(y) : \ \pi \in \mathcal{S}(\mathbb{F}_2^m), \ g \in \mathcal{B}_m \}
$$

▶ Brute force works for $n \leq 6$, but not for $n = 2m = 8$

$$
\frac{(2^m)!}{2^m} \cdot \frac{2^{2^m}}{2^{m+1}} \stackrel{m=4}{=} 2\,678\,117\,105\,664\,000 \approx 2^{51}
$$

Main Steps

- I. Complexity reduction
- II. Classification
	- Preclassification (to avoid the need for invariants)
	- Refinement (classify preclasses)
- III. Invariants (sanity check)

Alexandr Polujan (Magdeburg) [Classifying Maiorana-McFarland Bent Functions](#page-0-0) BFA 2024 8 / 16

Step I: Complexity Reduction — The Main Idea

 \blacktriangleright Let $\pi \in S(\mathbb{F}_2^m)$ and $g \in \mathcal{B}_m$ be arbitrary

Step I: Complexity Reduction — The Main Idea

 \blacktriangleright Let $\pi \in S(\mathbb{F}_2^m)$ and $g \in \mathcal{B}_m$ be arbitrary

1. The action of (A, R) with $A \in GL(m, 2)$ and $R \in \text{AGL}(m, 2)$ on $f_{\pi,q} \in \mathcal{B}_{2m}$ is given by

$$
f_{\pi,g}(x,y) \circ (A,R) = \langle A(x), \pi(R(y)) \rangle + g(R(y))
$$

= $\langle x, A^* \circ \pi \circ R(y) \rangle + g(R(y)),$

where *A*[∗] is the adjoint of *A*

Step I: Complexity Reduction — The Main Idea

 \blacktriangleright Let $\pi \in S(\mathbb{F}_2^m)$ and $g \in \mathcal{B}_m$ be arbitrary

1. The action of (A, R) with $A \in GL(m, 2)$ and $R \in \text{AGL}(m, 2)$ on $f_{\pi,q} \in \mathcal{B}_{2m}$ is given by

$$
f_{\pi,g}(x,y) \circ (A,R) = \langle A(x), \pi(R(y)) \rangle + g(R(y))
$$

= $\langle x, A^* \circ \pi \circ R(y) \rangle + g(R(y)),$

where *A*[∗] is the adjoint of *A*

2. Addition of $\langle x, v \rangle$ to $f_{\pi,g}(x, y)$ does not change equivalence class:

$$
f_{\pi,g}(x,y) \equiv \langle x, L \circ \pi \circ R(y) \rangle + g \circ R(y) = f_{\pi',g'}(x,y),
$$

where $\pi' := L \circ \pi \circ R$, $g' := g \circ R$, L is the composition of A^* by the translation $x \mapsto x + v$, for $v \in \mathbb{F}_2^m$

Step I: Complexity Reduction — Double Cosets in *S* (F *m* $\binom{m}{2}$

$$
f_{\pi,g}(x,y) \equiv \langle x, \underbrace{L \circ \pi \circ R}_{\pi'}(y) \rangle + \underbrace{g \circ R}_{g'}(y) = f_{\pi',g'}(x,y)
$$

 $\Rightarrow L \circ \pi \circ R$ is the action of $(L, R) \in \mathrm{AGL}(m, 2)^2$ on $\pi \in S(\mathbb{F}_2^m)$

 \Rightarrow Orbits are $(\mathrm{AGL}(m,2), \mathrm{AGL}(m,2))$ -double cosets in $S(\mathbb{F}_2^m)$

Step I: Complexity Reduction — Double Cosets in *S* (F *m* $\binom{m}{2}$

$$
f_{\pi,g}(x,y) \equiv \langle x, \underbrace{L \circ \pi \circ R}_{\pi'}(y) \rangle + \underbrace{g \circ R}_{g'}(y) = f_{\pi',g'}(x,y)
$$

 $\Rightarrow L \circ \pi \circ R$ is the action of $(L, R) \in \mathrm{AGL}(m, 2)^2$ on $\pi \in S(\mathbb{F}_2^m)$

 \Rightarrow Orbits are $(\mathrm{AGL}(m,2), \mathrm{AGL}(m,2))$ -double cosets in $S(\mathbb{F}_2^m)$

Conclusion

- 1. π' runs through the representatives double cosets in $S\left(\mathbb{F}_{2}^{m}\right)$
- 2. g' runs through the orbit determined by the action of stab(π') on the set of Boolean functions \mathcal{B}_m without affine terms $B(2, m, m)$

Step I: Complexity Reduction — Double Cosets in *S* (F *m* $\binom{m}{2}$

$$
f_{\pi,g}(x,y) \equiv \langle x, \underbrace{L \circ \pi \circ R}_{\pi'}(y) \rangle + \underbrace{g \circ R}_{g'}(y) = f_{\pi',g'}(x,y)
$$

 $\Rightarrow L \circ \pi \circ R$ is the action of $(L, R) \in \mathrm{AGL}(m, 2)^2$ on $\pi \in S(\mathbb{F}_2^m)$

 \Rightarrow Orbits are $(\mathrm{AGL}(m,2), \mathrm{AGL}(m,2))$ -double cosets in $S(\mathbb{F}_2^m)$

Conclusion

- 1. π' runs through the representatives double cosets in $S\left(\mathbb{F}_{2}^{m}\right)$
- 2. g' runs through the orbit determined by the action of stab(π') on the set of Boolean functions \mathcal{B}_m without affine terms $B(2, m, m)$
- \blacktriangleright Classification of permutations of \mathbb{F}_2^m is a well-studied topic, especially for $m = 4$!

Step I: Complexity Reduction — The Result

- The number of $(AGL(m, 2), AGL(m, 2))$ -double cosets in $S(\mathbb{F}_2^m)$ is denoted by $\mathfrak{N}(m, 2)$
- \blacktriangleright For $m = 4$, it is well-known⁸ that $\mathfrak{N}(4, 2) = 302$
- All 302 representatives π_i are known⁹

Alexandr Polujan (Magdeburg) [Classifying Maiorana-McFarland Bent Functions](#page-0-0) BFA 2024 11 / 16

 8 Xiang-Dong Hou. "Affinity of permutations of \mathbb{F}_2^n ". In: *Discrete Applied Mathematics* 154.2 (2006), pp. 313–325.

⁹ Christophe De Cannière. "Analysis And Design of Symmetric Encryption Algorithms". PhD thesis. Katholieke Universiteit Leuven, May 2007.

Step I: Complexity Reduction — The Result

- The number of $(AGL(m, 2), AGL(m, 2))$ -double cosets in $S(\mathbb{F}_2^m)$ is denoted by $\mathfrak{N}(m, 2)$
- \blacktriangleright For $m = 4$, it is well-known⁸ that $\mathfrak{N}(4, 2) = 302$
- All 302 representatives π_i are known⁹
- Computing the action of $stab(\pi_i)$ on the space $B(2, 2, 4)$, we get

$$
\frac{(2^m)!}{2^m} \cdot \frac{2^{2^m}}{2^{m+1}} \longrightarrow \sum_{i=1}^{\mathfrak{N}(m,2)} |O(\operatorname{stab}(\pi_i), B(2,m,m))|
$$

2 678 117 105 664 000 $\approx 2^{51} \stackrel{m=4}{\longrightarrow} 417 914 \approx 2^{18}$

 8 Xiang-Dong Hou. "Affinity of permutations of \mathbb{F}_2^n ". In: *Discrete Applied Mathematics* 154.2 (2006), pp. 313–325.

9 Christophe De Cannière. "Analysis And Design of Symmetric Encryption Algorithms". PhD thesis. Katholieke Universiteit Leuven, May 2007.

Alexandr Polujan (Magdeburg) [Classifying Maiorana-McFarland Bent Functions](#page-0-0) BFA 2024 11 / 16

Step II: Classification — Intuition

- \blacktriangleright We have a set *S* containing 417914 bent functions in M
- \blacktriangleright How to write $S = S_1 \sqcup \cdots \sqcup S_k$ s.t. classification in each S_i is easy?
- \blacktriangleright Use the observations from the $n = 2m = 6$ case

Step II: Classification — Intuition

- \blacktriangleright We have a set *S* containing 417914 bent functions in M
- \blacktriangleright How to write $S = S_1 \sqcup \cdots \sqcup S_k$ s.t. classification in each S_i is easy?
- If Use the observations from the $n = 2m = 6$ case
	- 1. There are $\mathfrak{N}(3,2)=4$ equivalence classes of bent functions
	- 2. A possible system of representatives is given by the functions

$$
f_{\pi_i,0}(x,y) = \langle x, \pi_i(y) \rangle,
$$

 $\pi_i \in \mathcal{S}\left(\mathbb{F}_2^3\right)$ runs through the representatives of the double cosets

3. The functions $f_{\pi_i,g}$ and $f_{\pi_j,g'}$ might be equivalent

Step II: Classification — Intuition

- \blacktriangleright We have a set *S* containing 417914 bent functions in M
- \blacktriangleright How to write $S = S_1 \sqcup \cdots \sqcup S_k$ s.t. classification in each S_i is easy?
- If Use the observations from the $n = 2m = 6$ case
	- 1. There are $\mathfrak{N}(3,2)=4$ equivalence classes of bent functions
	- 2. A possible system of representatives is given by the functions

$$
f_{\pi_i,0}(x,y) = \langle x, \pi_i(y) \rangle,
$$

 $\pi_i \in \mathcal{S}\left(\mathbb{F}_2^3\right)$ runs through the representatives of the double cosets

3. The functions $f_{\pi_i,g}$ and $f_{\pi_j,g'}$ might be equivalent

$$
\Rightarrow S_i = \{ f_{\pi_i, g} \colon g \in O(\text{stab}(\pi_i), B(2, 4, 4)) \}, \text{ for } 1 \le i \le 302
$$

Alexandr Polujan (Magdeburg) [Classifying Maiorana-McFarland Bent Functions](#page-0-0) BFA 2024 12 / 16

Step II: Classification — Results

Preclassification

- 1. Classify with Magma each set S_i with $1 \leq i \leq 302$
- 2. With this approach, we get 335 "preclasses"

Step II: Classification — Results

Preclassification

- 1. Classify with Magma each set S_i with $1 \leq i \leq 302$
- 2. With this approach, we get 335 "preclasses"

Refinment

Classify the "preclasses". We get 325 equivalence classes

Step II: Classification — Results

Preclassification

- 1. Classify with Magma each set S_i with $1 \leq i \leq 302$
- 2. With this approach, we get 335 "preclasses"

Refinment

Classify the "preclasses". We get 325 equivalence classes

Main Tool

Functions $f, f' \in \mathcal{B}_n$ are equivalent iff the codes \mathcal{C}_f and $\mathcal{C}_{f'}$ (defined by generator matrices \mathbf{G}_f and \mathbf{G}_{f^\prime}) are equivalent

$$
\mathbf{G}_f = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_{2^n} \\ f(x_1) & f(x_2) & f(x_3) & \cdots & f(x_{2^n}) \end{pmatrix} \begin{pmatrix} 1 \text{ row} \\ n \text{ rows} \\ 1 \text{ row} \end{pmatrix}
$$

Step III: Invariants

- Find a set of invariants that uniquely labels each equivalence class
- In this case, we need 3 "neighborhood invariants" to distinguish all 325 classes

¹⁰Alexandr Polujan and Alexander Pott. "Towards the classification of quadratic vectorial bent functions in 8 variables". In: The 7th international workshop on Boolean functions and their applications. 2022.

¹¹ Philippe Langevin and Gregor Leander. "Classification of Boolean Quartic Forms in eight variables". In: Boolean Functions in Cryptology and Information Security. Vol. 18. 2008, pp. 139–147.

Step III: Invariants

- Find a set of invariants that uniquely labels each equivalence class
- In this case, we need 3 "neighborhood invariants" to distinguish all 325 classes
- 1. $J_k(f) = \{ *WS(f + g) : \deg(g) = 2 \text{ of rank } k * \}$ a is generalization¹⁰ of the invariant $\Theta(f)$ (takes 313 values)

¹⁰Alexandr Polujan and Alexander Pott. "Towards the classification of quadratic vectorial bent functions in 8 variables". In: The 7th international workshop on Boolean functions and their applications. 2022.

¹¹ Philippe Langevin and Gregor Leander. "Classification of Boolean Quartic Forms in eight variables". In: Boolean Functions in Cryptology and Information Security. Vol. 18. 2008, pp. 139–147.

Step III: Invariants

- \triangleright Find a set of invariants that uniquely labels each equivalence class
- In this case, we need 3 "neighborhood invariants" to distinguish all 325 classes
- 1. $J_k(f) = \{ *WS(f+q): \deg(q) = 2 \text{ of rank } k * \}$ a is generalization¹⁰ of the invariant $\Theta(f)$ (takes 313 values)
- 2. $M(f)$ is a multiplicative version of J_2
- 3. $K(f)$ is the dimension of the kernel of the map¹¹ from $RM(2, 8)$ into $B(4, 6, 8)$ that maps $g \mapsto gf \mod RM(3, 8)$

¹⁰Alexandr Polujan and Alexander Pott. "Towards the classification of quadratic vectorial bent functions in 8 variables". In: The 7th international workshop on Boolean functions and their applications. 2022.

¹¹Philippe Langevin and Gregor Leander. "Classification of Boolean Quartic Forms in eight variables". In: Boolean Functions in Cryptology and Information Security. Vol. 18. 2008, pp. 139–147.

Main Results

Main Result 1 [\(Langevin and Polujan 2024\)](#page-43-0)

Let $\mathcal{CM}(2m, 2)$ denote the $\#$ of equivalence classes of Maiorana-McFarland bent functions on $\mathbb{F}_2^m \times \mathbb{F}_2^m$. Then, $\mathcal{CM}(8,2) = 325$.

Main Results

Main Result 1 [\(Langevin and Polujan 2024\)](#page-43-0)

Let $\mathcal{CM}(2m, 2)$ denote the $\#$ of equivalence classes of Maiorana-McFarland bent functions on $\mathbb{F}_2^m \times \mathbb{F}_2^m$. Then, $\mathcal{CM}(8,2) = 325$.

Main Result 2 [\(Langevin and Polujan 2024\)](#page-43-0)

The number of bent functions on \mathbb{F}_2^8 that are equivalent to the $\mathcal M$ class (up to addition of affine terms) is equal to

 $537\,611\,571\,837\,677\,338\,624 \approx 2^{68,86}.$

Main Results

Main Result 1 [\(Langevin and Polujan 2024\)](#page-43-0)

Let $\mathcal{CM}(2m, 2)$ denote the $\#$ of equivalence classes of Maiorana-McFarland bent functions on $\mathbb{F}_2^m \times \mathbb{F}_2^m$. Then, $\mathcal{CM}(8,2) = 325$.

Main Result 2 [\(Langevin and Polujan 2024\)](#page-43-0)

The number of bent functions on \mathbb{F}_2^8 that are equivalent to the $\mathcal M$ class (up to addition of affine terms) is equal to

```
537\,611\,571\,837\,677\,338\,624 \approx 2^{68,86}.
```
Proof

Use the orbit-stabilizer theorem

 \sum *fπ,g* | AGL(2*m,* 2)| $\frac{\left|\text{AGL}(2m,2)\right|}{\left|\text{stab}(f_{\pi,g})\right|} = \frac{1\,369\,104\,324\,918\,194\,995\,200}{12\,130\,107\,857\,920}$ 12 130 107 857 920

 \Box

Take-Home Message

- 1. A complete picture of M class (along with PS) in dimension 8
- 2. To decide equivalence of $f_{\pi,g}$ and $f_{\pi',g'}$ is non-trivial
- 3. Find good invariants distinguishing $f_{\pi,g}$ and $f_{\pi',g'}$
- 4. For the functions $f_{\pi,0}$ and $f_{\pi',0}$, there is a hope for classification

Take-Home Message

- 1. A complete picture of M class (along with PS) in dimension 8
- 2. To decide equivalence of $f_{\pi,g}$ and $f_{\pi',g'}$ is non-trivial
- 3. Find good invariants distinguishing $f_{\pi,g}$ and $f_{\pi',g'}$
- 4. For the functions $f_{\pi,0}$ and $f_{\pi',0}$, there is a hope for classification

Conjecture

Bent functions $f_{\pi,0}, f_{\pi',0}$ on $\mathbb{F}_2^m \times \mathbb{F}_2^m$ are equivalent $\iff \pi$ and π' are from the same $(\mathrm{AGL}(m,2), \mathrm{AGL}(m,2))$ -double coset in $S(\mathbb{F}_2^m)$.

Take-Home Message

- 1. A complete picture of M class (along with PS) in dimension 8
- 2. To decide equivalence of $f_{\pi,g}$ and $f_{\pi',g'}$ is non-trivial
- 3. Find good invariants distinguishing $f_{\pi,g}$ and $f_{\pi',g'}$
- 4. For the functions $f_{\pi,0}$ and $f_{\pi',0}$, there is a hope for classification

Conjecture

Bent functions $f_{\pi,0}, f_{\pi',0}$ on $\mathbb{F}_2^m \times \mathbb{F}_2^m$ are equivalent $\iff \pi$ and π' are from the same $(\mathrm{AGL}(m,2), \mathrm{AGL}(m,2))$ -double coset in $S(\mathbb{F}_2^m)$.

 \Rightarrow A lower bound on the $\#$ of eq. classes of $\mathcal M$ on $\mathbb F_2^m\times\mathbb F_2^m$

Take-Home Message

- 1. A complete picture of M class (along with PS) in dimension 8
- 2. To decide equivalence of $f_{\pi,g}$ and $f_{\pi',g'}$ is non-trivial
- 3. Find good invariants distinguishing $f_{\pi,g}$ and $f_{\pi',g'}$
- 4. For the functions $f_{\pi,0}$ and $f_{\pi',0}$, there is a hope for classification

Conjecture

Bent functions $f_{\pi,0}, f_{\pi',0}$ on $\mathbb{F}_2^m \times \mathbb{F}_2^m$ are equivalent $\iff \pi$ and π' are from the same $(\mathrm{AGL}(m,2), \mathrm{AGL}(m,2))$ -double coset in $S(\mathbb{F}_2^m)$.

 \Rightarrow A lower bound on the $\#$ of eq. classes of $\mathcal M$ on $\mathbb F_2^m\times\mathbb F_2^m$

Some Classification Results on Maiorana-McFarland Bent Functions

Philippe Langevin¹ and Alexandr Polujan² philippe.langevin@univ-tln.fr alexandr.polujan@gmail.com

> ¹ Imath, Université de Toulon, La Garde, France ²Otto von Guericke University Magdeburg, Germany

BFA 2024

The 9th International Workshop on Boolean Functions and their Applications, 09.09.2024

Further Reading I

[Bra06] An Braeken. "Cryptographic Properties of Boolean Functions and S-Boxes". PhD thesis. Katholieke Universiteit Leuven, Mar. 2006. URL: [https:](https://www.esat.kuleuven.be/cosic/publications/thesis-129.pdf) [//www.esat.kuleuven.be/cosic/publications/thesis-](https://www.esat.kuleuven.be/cosic/publications/thesis-129.pdf)[129.pdf](https://www.esat.kuleuven.be/cosic/publications/thesis-129.pdf) (cit. on pp. [7](#page-6-0)[–10\)](#page-9-0). [Can07] Christophe De Cannière. "Analysis And Design of Symmetric Encryption Algorithms". PhD thesis. Katholieke Universiteit Leuven, May 2007. URL: [http://image.sciencenet.cn/olddata/kexue.com.cn/](http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2009/3/20093320521938772.pdf) [upload/blog/file/2009/3/20093320521938772.pdf](http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2009/3/20093320521938772.pdf) (cit. on pp. [22,](#page-21-0) [23\)](#page-22-0).

Further Reading II

[Dil72] John F. Dillon. "A survey of bent functions". In: NSA Technical Journal Special Issue (1972), pp. 191–215. URL: [https://cryptome.org/2015/11/nsa-survey-of-bent](https://cryptome.org/2015/11/nsa-survey-of-bent-functions.pdf)[functions.pdf](https://cryptome.org/2015/11/nsa-survey-of-bent-functions.pdf) (cit. on pp. [7](#page-6-0)[–10\)](#page-9-0).

[Hou06] Xiang-Dong Hou. "Affinity of permutations of \mathbb{F}_2^n ". In: Discrete Applied Mathematics 154.2 (2006), pp. 313–325. doi: [https://doi.org/10.1016/j.dam.2005.03.022](https://doi.org/https://doi.org/10.1016/j.dam.2005.03.022) (cit. on pp. [22,](#page-21-0) [23\)](#page-22-0).

[Lan] Philippe Langevin. Classification of Bent Cubics in 8 variables. URL: [https://langevin.univ](https://langevin.univ-tln.fr/project/bent/bent.html)[tln.fr/project/bent/bent.html](https://langevin.univ-tln.fr/project/bent/bent.html) (cit. on pp. [7](#page-6-0)[–10\)](#page-9-0).

Further Reading III

[LH11] Philippe Langevin and Xiang-Dong Hou. "Counting Partial Spread Functions in Eight Variables". In: IEEE Transactions on Information Theory 57 (2011) , pp. 2263–2269. DOI: [https://doi.org/10.1109/tit.2011.2112230](https://doi.org/https://doi.org/10.1109/tit.2011.2112230) (cit. on pp. [7–](#page-6-0)[10\)](#page-9-0).

[LL08] Philippe Langevin and Gregor Leander. "Classification of Boolean Quartic Forms in eight variables". In: Boolean Functions in Cryptology and Information Security. Vol. 18. 2008, pp. 139-147. DOI: [https://doi.org/10.3233/978-1-58603-878-6-139](https://doi.org/https://doi.org/10.3233/978-1-58603-878-6-139) (cit. on pp. [7–](#page-6-0)[10,](#page-9-0) [30–](#page-29-0)[32\)](#page-31-0).

Further Reading IV

[LP24] Philippe Langevin and Alexandr Polujan. "Some classification results on Maiorana-McFarland bent functions". In: Proceedings of the 9th International Workshop on Boolean Functions and their Applications. 2024, To Appear (cit. on pp. [11–](#page-10-0)[13,](#page-12-0) [33–](#page-32-0)[35\)](#page-34-0).

[Pas+24] Enes Pasalic, Alexandr Polujan, Sadmir Kudin and Fengrong Zhang. "Design and Analysis of Bent Functions Using M-Subspaces". In: IEEE Transactions on Information Theory 70.6 (2024), pp. 4464–4477. DOI: [10.1109/TIT.2024.3352824](https://doi.org/10.1109/TIT.2024.3352824) (cit. on p. [6\)](#page-5-0).

Further Reading V

[PP20] Alexandr Polujan and Alexander Pott. "Cubic bent functions outside the completed Maiorana-McFarland class". In: Designs, Codes and Cryptography 88.9 (2020), pp. 1701-1722. DOI: [10.1007/s10623-019-00712-y](https://doi.org/10.1007/s10623-019-00712-y) (cit. on p. [6\)](#page-5-0).

[PP22] Alexandr Polujan and Alexander Pott. "Towards the classification of quadratic vectorial bent functions in 8 variables". In: The 7th international workshop on Boolean functions and their applications. 2022. URL: <https://boolean.w.uib.no/bfa-2022/> (cit. on pp. [30–](#page-29-0)[32\)](#page-31-0).