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Weightwise almost perfectly balanced functions

Weightwise Perfectly Balanced function (WPB) [CMR17]

Let n € N*, fis called WPB if:
e forallk e [1,n—1]:
supp(f) N Ex,nl = |Ek,nl/2,

° £(0) =0, f(1) = 1.
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Weightwise almost perfectly balanced functions

Weightwise Perfectly Balanced function (WPB) [CMR17]

Let n € N*, f is called WPB if:
e forallk e [1,n—1]:
supp(f) N Ex,nl = |Ek,nl/2,

° £(0) =0, f(1) = 1.

Weightwise Almost Perfectly Balanced:
vk €[0,n],  |[supp(f) N Ekn| — [supp(f + 1) N Ex,nl | < 1

Motivations:
e cipher FLIP [MJSC16],

e properties on Boolean functions on restricted sets [CMR17],

¢ link with side channels: leakage of wy(x) and f(x).
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State of the art

Various constructions:
CMR17, LM19, TL19, LS20, MS21, MSL21, Su21, ZS21, GM22b, GS22,
MCL22, MPJDL22, MSLZ22, DM23, YCLXHJZ23, ZS23, ZJZQ23, ZLCQZ23,

DM24, Méa24, ...

Study of cryptographic parameters:
Nonlinearity [GM23a], Weightwise NL [GM22a], Algebraic immunity [GM23b].
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MCL22, MPJDL22, MSLZ22, DM23, YCLXHJZ23, ZS23, ZJZQ23, ZLCQZ23,
DM24, Méa24, ...

Study of cryptographic parameters:
Nonlinearity [GM23a], Weightwise NL [GM22a], Algebraic immunity [GM23b].
Main issues:

e mostly WPB constructions,

e few constructions with proven/good nonlinearity,

e few constructions with proven/good weightwise nonlinearities.

Contributions:
e construction based on group actions,
e proven bound of nonlinearity,

e proven bound of weightwise nonlinearities.
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Group-action based WAPB
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Liu-Mesnager functions

e introduced in 2019, n=2"
e use the field representation Fz», monomial basis {o, o2, ...,a2" '}
° definition'

- f(0) =0, f(1)

- f(x )_1+f(x) forallxe]FQn\{OJ}.
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° definition'

- f(0) =0, f(1)

- f(x )—1+f(x) forallerFQn\{o 1).

WPB
X=(X1,...,Xn)7 X2=(X27"'7XI'I)X1)'

square — rotation by one position

action of p, on the slices
e orbit O(x) = {p/(x)|i € N}
® pp splits each slice of even cardinal in orbits of even size
e for k € [1,n— 1], f is balanced on each orbit = f balanced on each E ,

[LM19]: good NL and NL in practice, and proven bounds
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Group action view

Sn symmetric group on n elements,
™ € Sp, cyclic group < 7 >.
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Group action view

Sn symmetric group on n elements,
™ € Sp, cyclic group < 7 >.

A Boolean function f is 2-7 symmetric (27 S) if and only if for every orbit O € O
with representative element v:

(W) = ), F2() = 1)+ 1 forevery 1 <i< )

LM WPB functions are 2-rotation symmetric: = = pp.

WAPB?
e each even orbit is well spilit,
¢ odd orbits have an extra 0 or extra 1 to be compensated.
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Construction of 27S WAPB Boolean functions

Input: 7 € Sp, orbits’ representatives v p, ;.
Output: A 27S WAPB Boolean function f; € Bp.
1: Initiate supp(fx) = 0.

2: Initiate t = 0.

3: fork=0to ndo

4 for j < 11to gk , do

5 U= Vgnpi €= |Ox (u)].

6 if £ is even then

7: forj < 1to 5 do

8: supp(f-).append(u)
9: u <+ mom(u)
10: end for

11: else

12: forj « 1to [£5!] do
13: supp(f-).append(u)
14: U<+ mom(U)

15: end for

16: Update t < 1 — ¢

17: end if

18: end for

19: end for

20: return f;
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Instanciation with ¢,
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Un

Definition:
® N=M+nNo+---+ Ny,
e n=2%n=2%_..n, =2%,

e 0<g <a< - <ay.

'(/)n = (X1?X27 e 7Xn1)(Xn1+17Xn1+2a e 7XI11+I72) e (annw+17xnfnw+2, e ;Xn)~
Yn(X) = (P (X1, -+ Xn )5 Prp(Xnysts - s Xnyans)s -+ + 5 Py (Xn—pyats - - Xn))-
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Definition:
® N=M+nNo+---+ Ny,
° n=2% n,=2% ... n,=2%,
e 0<g <a< - <ay.
wn = (X13X27 cee 7Xn1)(Xn1+17Xn1+2a s 7Xn1+n2) T (annw+1yxnfnw+2, cee ;Xn)~
Pn(X) = (pny (X1, -5 Xny ), Prp(Xngsts -+ s Xy )s -+« Py (Xn—nyst s - - - Xn)).

First properties:
* ord(y) = 2% = n,,, = orbits with cardinal a power of 2,
¢ there are 2¢ orbits of cardinal 1 where w = wy(n).
e the number of orbits of weight k and cardinal 1 is 1 if kK < n, otherwise 0.
Example: n =6, w = wy(110) = 2, orbits of lengths 1:
{000000,110000,001111,111111}.
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Definition:
® N=M+nNo+---+ Ny,
° n=2% n,=2% ... n,=2%,
e 0<g <a< - <ay.
wn = (X13X27 cee 7Xn1)(Xn1+17Xn1+2a s 7Xn1+n2) T (annw+1yxnfnw+2, cee ;Xn)~
Pn(X) = (pny (X1, -5 Xny ), Prp(Xngsts -+ s Xy )s -+« Py (Xn—nyst s - - - Xn)).

First properties:
* ord(y) = 2% = n,,, = orbits with cardinal a power of 2,
¢ there are 2¢ orbits of cardinal 1 where w = wy(n).
e the number of orbits of weight k and cardinal 1 is 1 if kK < n, otherwise 0.

Proposition: if f(1(x)) = 1 + f(x) holds for all x € FJ \ O,, then f is WAPB.
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Nonlinearity bound

Nonlinearity

]
i —_on-1_ _ -1 f(x)+a-x )
NL() = min_{du(f,@)} =2 — S max| }_ (~1)"*]

" g.de
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Nonlinearity bound

Nonlinearity

]
. _on-1__ 1 _1\f(x)+a-x
NL() = min_{du(f, @)} =2"" — 5 max| 3 (—1)""*]

" g.de

Theorem:
Let f be any function from Construction 1 with 7 = ¢

NL(f) > 2"2 —2«~1,
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Nonlinearity bound

Nonlinearity
1
NL(f)= min {dn(f,g)} =2"" — = max —1)fxrax),
(fy=_ min_{du(f,0)} 236@';”( e
2
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Proof intuition:
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Nonlinearity bound

Nonlinearity

’
= n—1 _ _q)fx+ax)
NL{f) =  min | {du(f,g)} =2 22‘6%%"5 (=1) |

Theorem:
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Nonlinearity bound

Nonlinearity

’
= n—1 _ _q)fx+ax)
NL{f) =  min | {du(f,g)} =2 22‘6%%"5 (=1) |

Theorem:
Let f be any function from Construction 1 with 7 = ¢

NL(f) > 2"2 —2«~1,

Proof intuition:

split the Walsh transform following the orbits,
split even and odd orbits,

bound the contribution from odd orbits,

on even orbits, rewrite: 23", _(—1)¥+@~ as:

D ()09 () Iavt) - H 7)1 (1) = (1))

xe0 xe0
e terms cancel when a- (x + ¢(x)) = 0,
e determine [{x € FJ\ O : @- (x + ¢(x)) = 1}].
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Nonlinearity in practice

n € [4, 6], exhaustive search.

n 4 5 6
#functions | 2 x (§) | 28 x (3) 218 (‘%‘)
=2° =3x2° =3 x21°
NL achieved [4] [6,12] [14,26]
% functions 100 417,22.92 | 0.26, 0.65
Th. bounds [3,4] [6,12] [14,26]
n € [7,10], random search.
n 7 8 9 10
#functions | 2% x (§) | 2% x () | 2% x (3) | 2™ x (3)
=35 x 237 = 2% =83x2%0 | =3 x 21
NL achieved [28,56] [64,116] | [192,236] | [328,480]
% functions | 0.01,0.30 | 0.01, 0.01 | 0.00, 0.07 | 0.00, 0.01
Th. bounds [28,56] [63,116] | [144,240] | [254,492]
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Weightwise nonlinearity

Definition:
NL(f) = min _{dug,,(f,0)} = |Ek"|—1max|z )
g.cealg<1 22k &
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Weightwise nonlinearity

Definition:
NL(f) = min _{dug,,(f,0)} = |Ek"|—1max|z )
g.cealg<1 22k &

Bound intuition:
e Walsh transform restricted to the slices use of Krawtchouk polynomials,
e Bound [{x € Exn\ Op :a- (x+¢(x)) =1}

Theorem:
Let f be any function from Construction 1 with = = 1), for all k € [2, n — 2]:

<Z> + min Kyl )) if k £ n,

2even

NLk(f) >
<Z> + min Ke(t, n) — 2) if k < n.

TN PN

2<e<n
£ even
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¢ Construction of WAPB functions based on group actions,
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¢ functions with good nonlinearity in practice.
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Conclusion and open questions

Conclusion:
¢ Construction of WAPB functions based on group actions,
e proven lower bounds of nonlinearity and NLKk,

¢ functions with good nonlinearity in practice.

Open questions:
¢ improve the NLk bounds,

¢ generalize the NL and NLk results for all 7.

Thank you!
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