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Balanced and weightwise perfectly balanced functions

f : F4
2 → F2
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Weightwise almost perfectly balanced functions

Weightwise Perfectly Balanced function (WPB) [CMR17]
Let n ∈ N∗, f is called WPB if:
• for all k ∈ [1,n − 1]:

|supp(f ) ∩ Ek,n| = |Ek,n|/2,
• f (0) = 0, f (1) = 1.

Weightwise Almost Perfectly Balanced:

∀k ∈ [0,n],
∣∣ |supp(f ) ∩ Ek,n| − |supp(f + 1) ∩ Ek,n|

∣∣ ≤ 1

Motivations:
• cipher FLIP [MJSC16],

• properties on Boolean functions on restricted sets [CMR17],

• link with side channels: leakage of wH(x) and f (x).
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State of the art
Various constructions:
CMR17, LM19, TL19, LS20, MS21, MSL21, Su21, ZS21, GM22b, GS22,
MCL22, MPJDL22, MSLZ22, DM23, YCLXHJZ23, ZS23, ZJZQ23, ZLCQZ23,
DM24, Méa24, ...

Study of cryptographic parameters:
Nonlinearity [GM23a], Weightwise NL [GM22a], Algebraic immunity [GM23b].

Main issues:

• mostly WPB constructions,

• few constructions with proven/good nonlinearity,

• few constructions with proven/good weightwise nonlinearities.

Contributions:

• construction based on group actions,

• proven bound of nonlinearity,

• proven bound of weightwise nonlinearities.
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Liu-Mesnager functions

• introduced in 2019, n = 2m

• use the field representation F2n , monomial basis {α, α2, . . . , α2n−1}
• definition:

- f (0) = 0, f (1) = 1,
- f (x) = 1 + f (x2), for all x ∈ F2n \ {0, 1}.

WPB

?

x = (x1, . . . , xn), x2 = (x2, . . . , xn, x1).

square→ rotation by one position

action of ρn on the slices
• orbit O(x) = {ρi

n(x) | i ∈ N}
• ρn splits each slice of even cardinal in orbits of even size
• for k ∈ [1,n − 1], f is balanced on each orbit⇒ f balanced on each Ek,n

[LM19]: good NL and NLk in practice, and proven bounds
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Group action view

Sn symmetric group on n elements,
π ∈ Sn, cyclic group < π >.

2πS functions
A Boolean function f is 2-π symmetric (2πS) if and only if for every orbit O ∈ O
with representative element v :

f (π2i+1(v )) = f (v ), f (π2i (v )) = f (v ) + 1 for every 1 ≤ i ≤ b|O|
2
c.

LM WPB functions are 2-rotation symmetric: π = ρn.

WAPB?
• each even orbit is well split,
• odd orbits have an extra 0 or extra 1 to be compensated.
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Construction of 2πS WAPB Boolean functions

Input: π ∈ Sn, orbits’ representatives vk,n,i .
Output: A 2πS WAPB Boolean function fπ ∈ Bn.
1: Initiate supp(fπ) = ∅.
2: Initiate t = 0.
3: for k = 0 to n do
4: for i ← 1 to gk,n do
5: u = vk,n,i ; ` = |Oπ(u)|.
6: if ` is even then
7: for j ← 1 to `

2 do
8: supp(fπ).append(u)
9: u ← π ◦ π(u)

10: end for
11: else
12: for j ← 1 to d `−t

2 e do
13: supp(fπ).append(u)
14: u ← π ◦ π(u)
15: end for
16: Update t ← 1− t
17: end if
18: end for
19: end for
20: return fπ
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ψn

Definition:
• n = n1 + n2 + · · · + nw ,
• n1 = 2a1 ,n2 = 2a2 , . . . ,nw = 2aw ,
• 0 ≤ a1 < a2 < · · · < aw .

ψn = (x1, x2, . . . , xn1 )(xn1+1, xn1+2, . . . , xn1+n2 ) · · · (xn−nw +1, xn−nw +2, . . . , xn).
ψn(x) = (ρn1 (x1, . . . , xn1 ), ρn2 (xn1+1, . . . , xn1+n2 ), . . . , ρnw (xn−nw +1, . . . , xn)).

First properties:
• ord(ψ) = 2aw = nw ,⇒ orbits with cardinal a power of 2,
• there are 2ω orbits of cardinal 1 where ω = wH(n).
• the number of orbits of weight k and cardinal 1 is 1 if k � n, otherwise 0.

Example: n = 6, ω = wH(110) = 2, orbits of lengths 1:

{000000,110000,001111,111111}.

Proposition: if f (ψ(x)) = 1 + f (x) holds for all x ∈ Fn
2 \ Oo, then f is WAPB.
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Nonlinearity bound

Nonlinearity

NL(f ) = min
g, deg(g)≤1

{dH(f ,g)} = 2n−1 − 1
2

max
a∈Fn

2

|
∑
x∈Fn

2

(−1)f (x)+a·x |.

Theorem:
Let f be any function from Construction 1 with π = ψn:

NL(f ) ≥ 2n−2 − 2ω−1.

Proof intuition:
• split the Walsh transform following the orbits,
• split even and odd orbits,
• bound the contribution from odd orbits,
• on even orbits, rewrite: 2

∑
x∈O(−1)f (x)+a·x as:∑

x∈O

(
(−1)f (x)+a·x + (−1)f (ψ(x))+a·ψ(x)

)
=
∑
x∈O

(−1)f (x)
(

(−1)a·x − (−1)a·ψ(x)
)

• terms cancel when a · (x + ψ(x)) = 0,
• determine |{x ∈ Fn

2 \ Oo : a · (x + ψ(x)) = 1}|.
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Nonlinearity in practice

n ∈ [4,6], exhaustive search.

n 4 5 6
# functions 24 ×

(2
1

)
28 ×

(4
2

)
218 ×

(4
2

)
= 25 = 3× 29 = 3× 219

NL achieved [4] [6,12] [14,26]
% functions 100 4.17, 22.92 0.26, 0.65
Th. bounds [3,4] [6,12] [14,26]

n ∈ [7,10], random search.

n 7 8 9 10
# functions 236 ×

(8
4

)
234 ×

(2
1

)
268 ×

(4
2

)
2138 ×

(4
2

)
= 35× 237 = 235 = 3× 269 = 3× 2139

NL achieved [28,56] [64,116] [192,236] [328,480]
% functions 0.01, 0.30 0.01, 0.01 0.00, 0.07 0.00, 0.01
Th. bounds [28,56] [63,116] [144,240] [254,492]
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Weightwise nonlinearity

Definition:

NLk (f ) = min
g, deg(g)≤1

{dH,Ek,n (f ,g)} =
|Ek,n|

2
− 1

2
max
a∈Fn

2

|
∑

x∈Ek,n

(−1)f (x)+a·x |.

Bound intuition:
• Walsh transform restricted to the slices, use of Krawtchouk polynomials,
• Bound |{x ∈ Ek,n \ Oo : a · (x + ψ(x)) = 1}|.

Theorem:
Let f be any function from Construction 1 with π = ψn, for all k ∈ [2,n − 2]:

NLk (f ) ≥


1
4

((
n
k

)
+ min

2≤`≤n
` even

Kk (`,n)

)
if k 6� n,

1
4

((
n
k

)
+ min

2≤`≤n
` even

Kk (`,n)− 2

)
if k � n.
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Conclusion and open questions

Conclusion:

• Construction of WAPB functions based on group actions,
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• functions with good nonlinearity in practice.
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