Weightwise Almost Perfectly Balanced Functions, Construction From A Permutation Group Action View

Deepak Kumar DALAI, Krishna MALLICK, Pierrick MÉAUX

Luxembourg University, Luxembourg

Dubrovnik — Croatia Tuesday September 10th

Introduction

Group-action based WAPB

Instanciation with ψ_n

Conclusion

Balanced and weightwise perfectly balanced functions

Balanced and weightwise perfectly balanced functions

Balanced and weightwise perfectly balanced functions

 $\mathsf{E}_{k,n} = \{ x \in \mathbb{F}_2^n \, | \, \mathsf{w}_\mathsf{H}(x) = k \}$

Weightwise almost perfectly balanced functions

Weightwise Perfectly Balanced function (WPB) [CMR17]

Let $n \in \mathbb{N}^*$, *f* is called WPB if:

• for all *k* ∈ [1, *n* − 1]:

 $|\operatorname{supp}(f) \cap \mathsf{E}_{k,n}| = |\mathsf{E}_{k,n}|/2,$

• $f(\mathbf{0}) = 0, f(\mathbf{1}) = 1.$

Weightwise almost perfectly balanced functions

Weightwise Perfectly Balanced function (WPB) [CMR17]

Let $n \in \mathbb{N}^*$, *f* is called WPB if:

• for all
$$k \in [1, n-1]$$
:

 $|\operatorname{supp}(f) \cap \mathsf{E}_{k,n}| = |\mathsf{E}_{k,n}|/2,$

• $f(\mathbf{0}) = 0, f(\mathbf{1}) = 1.$

Weightwise Almost Perfectly Balanced:

 $\forall k \in [0, n], \quad \left| |\operatorname{supp}(f) \cap \mathsf{E}_{k, n}| - |\operatorname{supp}(f + 1) \cap \mathsf{E}_{k, n}| \right| \leq 1$

Weightwise almost perfectly balanced functions

Weightwise Perfectly Balanced function (WPB) [CMR17]

Let $n \in \mathbb{N}^*$, *f* is called WPB if:

• for all
$$k \in [1, n-1]$$
:

 $|\operatorname{supp}(f) \cap \mathsf{E}_{k,n}| = |\mathsf{E}_{k,n}|/2,$

• $f(\mathbf{0}) = 0, f(\mathbf{1}) = 1.$

Weightwise Almost Perfectly Balanced:

$$\forall k \in [0, n], \quad \left| |\operatorname{supp}(f) \cap \mathsf{E}_{k, n}| - |\operatorname{supp}(f + 1) \cap \mathsf{E}_{k, n}| \right| \leq 1$$

Motivations:

- cipher FLIP [MJSC16],
- properties on Boolean functions on restricted sets [CMR17],
- link with side channels: leakage of $w_H(x)$ and f(x).

State of the art

Various constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, Su21, ZS21, GM22b, GS22, MCL22, MPJDL22, MSLZ22, DM23, YCLXHJZ23, ZS23, ZJZQ23, ZLCQZ23, DM24, Méa24, ...

Study of cryptographic parameters:

Nonlinearity [GM23a], Weightwise NL [GM22a], Algebraic immunity [GM23b].

State of the art

Various constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, Su21, ZS21, GM22b, GS22, MCL22, MPJDL22, MSLZ22, DM23, YCLXHJZ23, ZS23, ZJZQ23, ZLCQZ23, DM24, Méa24, ...

Study of cryptographic parameters:

Nonlinearity [GM23a], Weightwise NL [GM22a], Algebraic immunity [GM23b].

Main issues:

- mostly WPB constructions,
- few constructions with proven/good nonlinearity,
- few constructions with proven/good weightwise nonlinearities.

State of the art

Various constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, Su21, ZS21, GM22b, GS22, MCL22, MPJDL22, MSLZ22, DM23, YCLXHJZ23, ZS23, ZJZQ23, ZLCQZ23, DM24, Méa24, ...

Study of cryptographic parameters:

Nonlinearity [GM23a], Weightwise NL [GM22a], Algebraic immunity [GM23b].

Main issues:

- mostly WPB constructions,
- few constructions with proven/good nonlinearity,
- few constructions with proven/good weightwise nonlinearities.

Contributions:

- construction based on group actions,
- proven bound of nonlinearity,
- proven bound of weightwise nonlinearities.

Introduction

Group-action based WAPB

Instanciation with ψ_n

Conclusion

- introduced in 2019, $n = 2^m$
- use the field representation \mathbb{F}_{2^n} , monomial basis $\{\alpha, \alpha^2, \dots, \alpha^{2^{n-1}}\}$
- definition:
 - $f(\mathbf{0}) = 0, f(\mathbf{1}) = 1,$
 - $f(x) = 1 + f(x^2)$, for all $x \in \mathbb{F}_{2^n} \setminus \{\mathbf{0}, \mathbf{1}\}$.

- introduced in 2019, $n = 2^m$
- use the field representation \mathbb{F}_{2^n} , monomial basis $\{\alpha, \alpha^2, \dots, \alpha^{2^{n-1}}\}$
- definition:

-
$$f(\mathbf{0}) = 0, f(\mathbf{1}) = 1,$$

- $f(x) = 1 + f(x^2)$, for all $x \in \mathbb{F}_{2^n} \setminus {\mathbf{0}, \mathbf{1}}.$

WPB?

$$x=(x_1,\ldots,x_n),\quad x^2=(x_2,\ldots,x_n,x_1).$$

square \rightarrow rotation by one position

- introduced in 2019, $n = 2^m$
- use the field representation \mathbb{F}_{2^n} , monomial basis $\{\alpha, \alpha^2, \ldots, \alpha^{2^{n-1}}\}$
- definition:

-
$$f(\mathbf{0}) = 0, f(\mathbf{1}) = 1,$$

- $f(x) = 1 + f(x^2)$, for all $x \in \mathbb{F}_{2^n} \setminus {\mathbf{0}, \mathbf{1}}.$

WPB?

$$x = (x_1, \ldots, x_n), \quad x^2 = (x_2, \ldots, x_n, x_1).$$

square \rightarrow rotation by one position

action of ρ_n on the slices

- orbit $O(x) = \{\rho_n^i(x) \mid i \in \mathbb{N}\}$
- ρ_n splits each slice of even cardinal in orbits of even size
- for $k \in [1, n-1]$, f is balanced on each orbit \Rightarrow f balanced on each $E_{k,n}$

- introduced in 2019, $n = 2^m$
- use the field representation \mathbb{F}_{2^n} , monomial basis $\{\alpha, \alpha^2, \ldots, \alpha^{2^{n-1}}\}$
- definition:

-
$$f(\mathbf{0}) = 0, f(\mathbf{1}) = 1,$$

- $f(x) = 1 + f(x^2)$, for all $x \in \mathbb{F}_{2^n} \setminus {\mathbf{0}, \mathbf{1}}.$

WPB

$$x = (x_1, ..., x_n), \quad x^2 = (x_2, ..., x_n, x_1).$$

square \rightarrow rotation by one position

action of ρ_n on the slices

- orbit $O(x) = \{\rho_n^i(x) \mid i \in \mathbb{N}\}$
- ρ_n splits each slice of even cardinal in orbits of even size
- for $k \in [1, n-1]$, *f* is balanced on each orbit \Rightarrow *f* balanced on each $E_{k,n}$

[LM19]: good NL and NL_k in practice, and proven bounds

Group action view

 \mathbb{S}_n symmetric group on *n* elements, $\pi \in \mathbb{S}_n$, cyclic group $< \pi >$.

Group action view

 \mathbb{S}_n symmetric group on *n* elements, $\pi \in \mathbb{S}_n$, cyclic group $< \pi >$.

$2\pi S$ functions

A Boolean function *f* is 2- π symmetric (2 π *S*) if and only if for every orbit O $\in O$ with representative element *v*:

$$f(\pi^{2i+1}(v)) = f(v), \quad f(\pi^{2i}(v)) = f(v) + 1 \quad \text{ for every } 1 \le i \le \lfloor \frac{|\mathsf{O}|}{2} \rfloor.$$

Group action view

 \mathbb{S}_n symmetric group on *n* elements, $\pi \in \mathbb{S}_n$, cyclic group $< \pi >$.

$2\pi S$ functions

A Boolean function *f* is 2- π symmetric (2 π *S*) if and only if for every orbit O $\in O$ with representative element *v*:

$$f(\pi^{2i+1}(v)) = f(v), \quad f(\pi^{2i}(v)) = f(v) + 1 \quad \text{ for every } 1 \le i \le \lfloor \frac{|\mathsf{O}|}{2} \rfloor.$$

LM WPB functions are 2-rotation symmetric: $\pi = \rho_n$.

WAPB?

- each even orbit is well split,
- odd orbits have an extra 0 or extra 1 to be compensated.

Construction of $2\pi S$ WAPB Boolean functions

```
Input: \pi \in \mathbb{S}_n, orbits' representatives v_{k,n,i}.
Output: A 2\piS WAPB Boolean function f_{\pi} \in \mathcal{B}_n.
 1: Initiate supp(f_{\pi}) = \emptyset.
 2: Initiate t = 0.
 3: for k = 0 to n do
          for i \leftarrow 1 to g_{k,n} do
 4:
 5:
                u = v_{k,n,i}; \ell = |O_{\pi}(u)|.
               if l is even then
 6:
                     for j \leftarrow 1 to \frac{\ell}{2} do
 7:
 8:
                          supp(f_{\pi}).\overline{a}ppend(u)
 9:
                          u \leftarrow \pi \circ \pi(u)
10:
                     end for
11:
                else
                     for j \leftarrow 1 to \left\lceil \frac{\ell-t}{2} \right\rceil do
12:
13:
                          supp(f_{\pi}).append(u)
14:
                           u \leftarrow \pi \circ \pi(u)
15:
                     end for
16:
                     Update t \leftarrow 1 - t
17:
                end if
18:
           end for
19: end for
20: return f<sub>π</sub>
```

Introduction

Group-action based WAPB

Instanciation with ψ_n

Conclusion

 ψ_{n}

Definition:

•
$$n = n_1 + n_2 + \dots + n_w$$
,
• $n_1 = 2^{a_1}, n_2 = 2^{a_2}, \dots, n_w = 2^{a_w}$,
• $0 \le a_1 < a_2 < \dots < a_w$.
 $\psi_n = (x_1, x_2, \dots, x_{n_1})(x_{n_1+1}, x_{n_1+2}, \dots, x_{n_1+n_2}) \cdots (x_{n-n_w+1}, x_{n-n_w+2}, \dots, x_n)$.
 $\psi_n(x) = (\rho_{n_1}(x_1, \dots, x_{n_1}), \rho_{n_2}(x_{n_1+1}, \dots, x_{n_1+n_2}), \dots, \rho_{n_w}(x_{n-n_w+1}, \dots, x_n))$.

$$\psi_{\mathsf{n}}$$

Definition:

•
$$n = n_1 + n_2 + \dots + n_w$$
,
• $n_1 = 2^{a_1}, n_2 = 2^{a_2}, \dots, n_w = 2^{a_w}$,
• $0 \le a_1 < a_2 < \dots < a_w$.
 $\psi_n = (x_1, x_2, \dots, x_{n_1})(x_{n_1+1}, x_{n_1+2}, \dots, x_{n_1+n_2}) \cdots (x_{n-n_w+1}, x_{n-n_w+2}, \dots, x_n)$.
 $\psi_n(x) = (\rho_{n_1}(x_1, \dots, x_{n_1}), \rho_{n_2}(x_{n_1+1}, \dots, x_{n_1+n_2}), \dots, \rho_{n_w}(x_{n-n_w+1}, \dots, x_n))$.

First properties:

- $ord(\psi) = 2^{a_w} = n_w$, \Rightarrow orbits with cardinal a power of 2,
- there are 2^{ω} orbits of cardinal 1 where $\omega = w_H(n)$.
- the number of orbits of weight k and cardinal 1 is 1 if $k \leq n$, otherwise 0.

Example: n = 6, $\omega = w_H(110) = 2$, orbits of lengths 1:

 $\{000000, 110000, 001111, 111111\}.$

$$\psi_{\mathsf{n}}$$

Definition:

•
$$n = n_1 + n_2 + \dots + n_w$$
,
• $n_1 = 2^{a_1}, n_2 = 2^{a_2}, \dots, n_w = 2^{a_w}$,
• $0 \le a_1 < a_2 < \dots < a_w$.
 $\psi_n = (x_1, x_2, \dots, x_{n_1})(x_{n_1+1}, x_{n_1+2}, \dots, x_{n_1+n_2}) \cdots (x_{n-n_w+1}, x_{n-n_w+2}, \dots, x_n)$.
 $\psi_n(x) = (\rho_{n_1}(x_1, \dots, x_{n_1}), \rho_{n_2}(x_{n_1+1}, \dots, x_{n_1+n_2}), \dots, \rho_{n_w}(x_{n-n_w+1}, \dots, x_n))$.

First properties:

- $ord(\psi) = 2^{a_w} = n_w$, \Rightarrow orbits with cardinal a power of 2,
- there are 2^{ω} orbits of cardinal 1 where $\omega = w_H(n)$.
- the number of orbits of weight k and cardinal 1 is 1 if $k \leq n$, otherwise 0.

Proposition: if $f(\psi(x)) = 1 + f(x)$ holds for all $x \in \mathbb{F}_2^n \setminus \mathcal{O}_o$, then *f* is WAPB.

Nonlinearity

$$\mathsf{NL}(f) = \min_{g, \deg(g) \le 1} \{ \mathsf{d}_{\mathsf{H}}(f, g) \} = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} |\sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + a \cdot x} |.$$

Nonlinearity

$$\mathsf{NL}(f) = \min_{g, \deg(g) \le 1} \{ \mathsf{d}_{\mathsf{H}}(f, g) \} = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} |\sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + a \cdot x} |.$$

Theorem:

Let *f* be any function from Construction 1 with $\pi = \psi_n$:

$$\mathsf{NL}(f) \geq 2^{n-2} - 2^{\omega-1}.$$

Nonlinearity

$$\mathsf{NL}(f) = \min_{g, \deg(g) \le 1} \{ \mathsf{d}_{\mathsf{H}}(f, g) \} = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_{2}^{n}} |\sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{f(x) + a \cdot x} |.$$

Theorem:

Let *f* be any function from Construction 1 with $\pi = \psi_n$:

$$\mathsf{NL}(f) \geq 2^{n-2} - 2^{\omega-1}.$$

Proof intuition:

split the Walsh transform following the orbits,

Nonlinearity

$$\mathsf{NL}(f) = \min_{g, \deg(g) \le 1} \{ \mathsf{d}_{\mathsf{H}}(f, g) \} = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_{2}^{n}} |\sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{f(x) + a \cdot x} |.$$

Theorem:

Let *f* be any function from Construction 1 with $\pi = \psi_n$:

$$\mathsf{NL}(f) \geq 2^{n-2} - 2^{\omega-1}.$$

Proof intuition:

- split the Walsh transform following the orbits,
- split even and odd orbits,
- bound the contribution from odd orbits,

Nonlinearity

$$\mathsf{NL}(f) = \min_{g, \deg(g) \le 1} \{ \mathsf{d}_{\mathsf{H}}(f, g) \} = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} |\sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + a \cdot x} |.$$

Theorem:

Let *f* be any function from Construction 1 with $\pi = \psi_n$:

$$\mathsf{NL}(f) \geq 2^{n-2} - 2^{\omega-1}.$$

Proof intuition:

- split the Walsh transform following the orbits,
- split even and odd orbits,
- bound the contribution from odd orbits,
- on even orbits, rewrite: $2\sum_{x \in O} (-1)^{f(x)+a \cdot x}$ as:

$$\sum_{x \in O} \left((-1)^{f(x) + a \cdot x} + (-1)^{f(\psi(x)) + a \cdot \psi(x)} \right) = \sum_{x \in O} (-1)^{f(x)} \left((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)} \right)$$

Nonlinearity

$$\mathsf{NL}(f) = \min_{g, \deg(g) \le 1} \{ \mathsf{d}_{\mathsf{H}}(f, g) \} = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_2^n} |\sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) + a \cdot x} |.$$

Theorem:

Let f be any function from Construction 1 with $\pi = \psi_n$:

$$\mathsf{NL}(f) \geq 2^{n-2} - 2^{\omega-1}.$$

Proof intuition:

.

- split the Walsh transform following the orbits.
- split even and odd orbits,
- bound the contribution from odd orbits.
- on even orbits, rewrite: $2\sum_{x \in O} (-1)^{f(x)+a \cdot x}$ as:

$$\sum_{x \in O} \left((-1)^{f(x) + a \cdot x} + (-1)^{f(\psi(x)) + a \cdot \psi(x)} \right) = \sum_{x \in O} (-1)^{f(x)} \left((-1)^{a \cdot x} - (-1)^{a \cdot \psi(x)} \right)$$

- terms cancel when $a \cdot (x + \psi(x)) = 0$,
- determine $|\{x \in \mathbb{F}_2^n \setminus \mathcal{O}_o : a \cdot (x + \psi(x)) = 1\}|.$

Nonlinearity in practice

$n \in [4, 6]$, exhaustive search.

п	4	5	6
# functions	$2^4 \times \binom{2}{1}$	$2^8 \times \binom{4}{2}$	$2^{18} \times \binom{4}{2}$
	= 2 ⁵	$=3\times\overline{2}^{9}$	$=3\times2^{\overline{19}}$
NL achieved	[4]	[6, 12]	[14, 26]
% functions	100	4.17, 22.92	0.26, 0.65
Th. bounds	[3,4]	[6, 12]	[14, 26]

$n \in [7, 10]$, random search.

п	7	8	9	10
# functions	$2^{36} imes {\binom{8}{4}}$	$2^{34} \times \binom{2}{1}$	$2^{68} \times \binom{4}{2}$	$2^{138} \times \binom{4}{2}$
	$=35 imes2^{37}$	= 2 ³⁵	$= 3 \times 2^{\overline{69}}$	$= 3 \times 2^{139}$
NL achieved	[28 , 56]	[64 , 116]	[192, 236]	[328, 480]
% functions	0.01, 0.30	0.01, 0.01	0.00, 0.07	0.00, 0.01
Th. bounds	[28 , 56]	[63 , 116]	[144, 240]	[254, 492]

Weightwise nonlinearity

Definition:

$$\mathsf{NL}_{k}(f) = \min_{g, \deg(g) \le 1} \{ \mathsf{d}_{\mathsf{H},\mathsf{E}_{k,n}}(f,g) \} = \frac{|\mathsf{E}_{k,n}|}{2} - \frac{1}{2} \max_{a \in \mathbb{F}_{2}^{n}} |\sum_{x \in \mathsf{E}_{k,n}} (-1)^{f(x)+a \cdot x} |.$$

Weightwise nonlinearity

Definition:

$$\mathsf{NL}_{k}(f) = \min_{g, \deg(g) \le 1} \{ \mathsf{d}_{\mathsf{H}, \mathsf{E}_{k, n}}(f, g) \} = \frac{|\mathsf{E}_{k, n}|}{2} - \frac{1}{2} \max_{a \in \mathbb{F}_{2}^{n}} |\sum_{x \in \mathsf{E}_{k, n}} (-1)^{f(x) + a \cdot x} |.$$

Bound intuition:

- · Walsh transform restricted to the slices, use of Krawtchouk polynomials,
- Bound $|\{x \in \mathsf{E}_{k,n} \setminus \mathcal{O}_o : a \cdot (x + \psi(x)) = 1\}|.$

Weightwise nonlinearity

Definition:

$$\mathsf{NL}_{k}(f) = \min_{g, \deg(g) \le 1} \{\mathsf{d}_{\mathsf{H},\mathsf{E}_{\mathsf{k},\mathsf{n}}}(f,g)\} = \frac{|\mathsf{E}_{k,n}|}{2} - \frac{1}{2} \max_{a \in \mathbb{F}_{2}^{n}} |\sum_{x \in \mathsf{E}_{k,\mathsf{n}}} (-1)^{f(x)+a \cdot x}|.$$

Bound intuition:

· Walsh transform restricted to the slices, use of Krawtchouk polynomials,

Bound
$$|\{x \in \mathsf{E}_{k,n} \setminus \mathcal{O}_o : a \cdot (x + \psi(x)) = 1\}|.$$

Theorem:

.

Let *f* be any function from Construction 1 with $\pi = \psi_n$, for all $k \in [2, n-2]$:

$$\mathsf{NL}_{k}(f) \geq \begin{cases} \frac{1}{4} \left(\binom{n}{k} + \min_{\substack{2 \leq \ell \leq n \\ \ell \text{ even}}} \mathsf{K}_{k}(\ell, n) \right) & \text{if } k \not\leq n, \\ \frac{1}{4} \left(\binom{n}{k} + \min_{\substack{2 \leq \ell \leq n \\ \ell \text{ even}}} \mathsf{K}_{k}(\ell, n) - 2 \right) & \text{if } k \leq n. \end{cases}$$

Introduction

Group-action based WAPB

Instanciation with ψ_n

Conclusion

Conclusion:

- Construction of WAPB functions based on group actions,
- proven lower bounds of nonlinearity and NLk,
- functions with good nonlinearity in practice.

Conclusion:

- Construction of WAPB functions based on group actions,
- proven lower bounds of nonlinearity and NLk,
- functions with good nonlinearity in practice.

Open questions:

- improve the NLk bounds,
- generalize the NL and NLk results for all π .

Conclusion:

- Construction of WAPB functions based on group actions,
- proven lower bounds of nonlinearity and NLk,
- functions with good nonlinearity in practice.

Open questions:

- improve the NLk bounds,
- generalize the NL and NLk results for all π .

Thank you!