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Shift-invariant vectorial Boolean function

Let S : Fn
2 → Fn

2 denote the right shift, i.e.,

S(x1, x2, . . . , xn) = (xn, x1, . . . , xn−1).

A function F : Fn
2 → Fn

2 is called shift-invariant (or rotation-symmetric) if

F ◦ S = S ◦ F.

Every shift-invariant function F is determined by a Boolean function f : Fn
2 → F2 by setting

f(x) = F(x)1, so that
F(x) =

(
f(x), f ◦ S−1(x), . . . , f ◦ S−(n−1)(x)

)
.

Moreover, every Boolean function f : Fk
2 → F2 induces shift-invariant functions F : Fn

2 → Fn
2

for all n ≥ k in this way. We often say that F is a lifting of f .

For example, if k = 3 and n = 5, then

F(x1, x2, x3, x4, x5) =
(
f(x1, x2, x3), f(x2, x3, x4), f(x3, x4, x5), f(x4, x5, x1), f(x5, x1, x2)

)
.
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Motivation and applications of non-bijections

From a mathematical point of view, there are many hard problems about when the induced
F is a bijection (=permutation), but we will not focus on these:

(i) Given f : Fk
2 → F2 find the set {n ≥ k | F : Fn

2 → Fn
2 is bijective}

(ii) Given a pair (k, n), find all f : Fk
2 → F2 that induce bijections F : Fn

2 → Fn
2.

(iii) Find all functions f : Fk
2 → F2 that induce bijections F : Fn

2 → Fn
2 for every n ≥ k.

Our motivation and goal
▶ Using shift-invariant functions as S-boxes can be useful due to symmetry properties,

low complexity, flexibility and adaptability, e.g., in lightweight cryptography.
▶ We will consider non-bijective shift-invariant S-boxes that are “almost bijective”.
▶ The goal is to find Boolean functions f : Fk

2 → F2 such that the induced functions
F : Fn

2 → Fn
2 are “almost bijective” S-boxes with good cryptographic properties for all

n ≥ k, and find applications in cryptography.
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Desired properties and strategy

Desired properties (for every n)

(1) maxy|F−1(y)| should be low,
(2) (size of the image of F)/(size of the codomain of F) should be high,
(3) the image F(Fn

2) and its complement should be unstructured in Fn
2,

(4) {x ∈ Fn
2 : F(x ⊕ u) = F(x)} should be small for all u ̸= 0.

Our strategy
▶ It turns out that there is a fairly concrete and well-defined class satisfying (1).
▶ The strategy is reducing the search space to this class and find candidates there

with good properties with respect to (2)-(4), differential and linear cryptanalysis, etc.
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Almost liftings

Given f : Fk
2 → F2 and define for n ≥ k the maximal collision number of F : Fn

2 → Fn
2 by

ℓn(f) = max
y∈Fn

2

|F−1(y)|.

Definition
▶ A functon f : Fk

2 → F2 is called a proper lifting if F : Fn
2 → Fn

2 is bijective for all n ≥ k.
▶ A functon f : Fk

2 → F2 is called an almost lifting if supn≥k ℓn(f) < ∞.
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Examples

Example

Let χ(x) = x1 ⊕ (x2 ⊕ 1)x3 be the function used in e.g., Keccak. Then ℓn(χ) = 1 for n odd
and 3 for n even. In particular, supn≥k ℓn(χ) = 3 so χ is an almost lifting.

Example

Define the function p(x) = x2 ⊕ x1(x3 ⊕ 1)x4. This is, up to elementary equivalence, the
only proper lifting for k ≤ 4 (as observed by Patt), i.e., ℓn(p) = 1 for all n.

Example

Define the function f(x) = x1 ⊕ x2(x3 ⊕ x4 ⊕ 1). Then ℓn(f) is an irregular sequence
4, 2, 4, 2, 4, 2, 3, 2, 4, 2, 3, 3, 4, 2, 4, 3, 4 computed for 4 ≤ n ≤ 20, and (it looks like) f is
an almost lifting.
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Elementary equivalence

Definition
Consider the maps c, r : Fk

2 → Fk
2 given by complementing and reflecting, that commute,

and are defined by

c(x1, x2, . . . , xk) = (x1, x2, . . . , xk) and r(x1, x2, . . . , xk) = (xk, . . . , x2, x1).

We say that two Boolean functions f, g : Fk
2 → F2 are elementary equivalent if there are

i, j, ℓ ∈ {0, 1} such that
g(x) ⊕ ℓ = f ◦ ri ◦ cj(x).

There are at most eight functions in such an equivalence class.

For every n ≥ k, their induced versions then satisfy

G(x) ⊕ (ℓ, . . . , ℓ) = F(ri ◦ cj(x))

and have identical cryptographic properties.
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Bound for number of collisions

For every m ≥ k define F(m) : Fm
2 → Fm−k+1

2 by

F(m)(x1, . . . , xm) =
(

f(x1, x2, . . . , xk), f(x2, . . . , xk+1), . . . , f(xm−k+1, . . . , xm)
)

.

We say that F(m) has uniform distribution (=balanced) if for all y ∈ Fm−k+1
2

|F−1
(m)(y)| = 2k−1.

Theorem
The following are equivalent:

(i) F(m) has uniform distribution for all m ≥ k
(ii) f is an almost lifting (i.e., supn≥k ℓn(f) < ∞, where ℓn(f) = maxy∈Fn

2
|F−1(y)|)

(iii) ℓn(f) ≤ 2k−1 for every n ≥ k
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Searching for almost liftings

Theorem
The following are equivalent:

(i) F(m) has uniform distribution for all m ≥ k
(ii) f is an almost lifting (i.e., supn≥k ℓn(f) < ∞, where ℓn(f) = maxy∈Fn

2
|F−1(y)|)

(iii) ℓn(f) ≤ 2k−1 for every n ≥ k

If F(m) has uniform distribution and k ≤ m′ ≤ m, then F(m′) has uniform distribution, so

{f : Fk
2 → F2 : F(m′) has unif. dist.} ⊇ {f : Fk

2 → F2 : F(m) has unif. dist.}

and thus

{f : Fk
2 → F2 is an almost lifting} =

⋂
m

{f : Fk
2 → F2 : F(m) has unif. dist.}
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Elementary equivalence classes for k = 5

n #unif.dist. # unif.dist. with f(0) ̸= f(1) #bijections, i.e., ℓn(f) = 1
5 75165111 38800984 2815556
6 13316
7 462
8 36080 18072 31
9 18808 9369 52

10 17921 8953 34
11 17885 8940 78
12 17882 8937 8
13 17881 8936 78
14 17881 8936 33
15 17881 8936 43
16 17881 8936 27
17 17881 8936 75
18 17881 8936 14
19 17881 8936 74
20 17881 8936 25



Permutive functions

A Boolean function f : Fk
2 → F2 is called permutive if there exists h : Fk−1

2 → F2 such that
f(x1, . . . , xk) = x1 ⊕ h(x2, . . . , xk) (up to elementary equivalence).

Proposition

Every permutive function is an almost lifting.

Comparison between number of elementary equivalence classes:

k #almost liftings #permutive
3 4 4
4 73 65
5 17881 16416
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Cellular automata

Given a Boolean function f : Fk
2 → F2, consider the induced function on the bi-infinite

bit-strings, i.e.,
F : FZ

2 → FZ
2

given by
F(x)i = f(xi, . . . , xi+k−1).

It is known that F is bijective if and only if f is a proper lifting.

Theorem
The following are equivalent:

(i) f is an almost lifting,(i.e., supn≥k ℓn(f) < ∞, where ℓn(f) = maxy∈Fn
2
|F−1(y)|)

(ii) F : FZ
2 → FZ

2 is surjective
(iii) supy∈FZ

2
|F−1(y)| ≤ 2k−1

(iv) F−1(y) is finite for all y ∈ FZ
2
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Virtual liftings

For every k there are functions f : Fk
2 → F2 with deg(f) = d < k such that for all n ≥ k

∣∣∣{y ∈ Fn
2 : y is not in the image of F}

∣∣∣ = {
d · 2 n

d −1 if d|n,

0 otherwise.

These are the non-bijections that have largest image, and are bijective except when n = dm.
Note that χ is such a function.

Question

If f induces bijections for infinitely many n, does it do so in a periodic way?

Summary(?)

proper lifting ⇐⇒ cellular automata is bijective
virtual lifting ⇐⇒ CA surjective + induce bijections (periodically) for infintely many n
almost lifting ⇐⇒ CA surjective
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Selected candidates of almost liftings

After some searching, we now consider a few candidates more closely:
(A) f(x) = x1 ⊕ x2(x3 ⊕ 1)

(B1) f(x) = x1 ⊕ x2(x3 ⊕ x4)
(B2) f(x) = x1 ⊕ x2(1 ⊕ x3 ⊕ x4)
(B3) f(x) = x1 ⊕ x4(x2 ⊕ x3 ⊕ 1)
(C1) f(x) = x2 ⊕ x3 ⊕ x4(x1 ⊕ x2)(x3 ⊕ 1)
(C2) f(x) = x1 ⊕ x4 ⊕ x3(x2 ⊕ x4 ⊕ x2x4)
(D1) f(x) = x2 ⊕ x3((x1 ⊕ x2)(x4 ⊕ 1) ⊕ x4x5 ⊕ 1)
(D2) f(x) = x2 ⊕ x4(x5 ⊕ 1)(x1 ⊕ x3)

(E) f(x) = x2 ⊕ x1(x4(x3 ⊕ 1) ⊕ (x4 ⊕ 1)x5(x2 ⊕ x3 ⊕ 1))
(F) f(x) = x5 ⊕ x1x3 ⊕ x4(x1 ⊕ x2 ⊕ x3)
(G) f(x) = long expression, degree 4



Differential and linear uniformity

The differential probability uniformity of F is defined by

DU(F) = 1
2n max

a,b∈Fn
2, a ̸=0

|{x ∈ Fn
2 : F(x ⊕ a) ⊕ F(x) = b}|.

Define the correlation for a, b ∈ Fn
2 by

CF(a, b) = 1
2n

∑
x∈Fn

2

(−1)a·x+b·F(x)

The linear potential uniformity

LU(F) = max{CF(a, b)2 : a, b ∈ Fn
2, b ̸= 0} =

(
1 − NL(F)

2n−1

)2

.

We want both DU and LU to be small.
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Properties

k deg DU LU size of image n = 10 type
(A) 3 2 1/4 = 16/64 1/4 = 16/64 .97 χ, virtual

(B1) 4 2 1/8 = 8/64 1/4 = 16/64 .84
(B2) 4 2 1/8 = 8/64 1/4 = 16/64 .86
(B3) 4 2 1/8 = 8/64 1/4 = 16/64 .83
(C1) 4 3 5/16 = 20/64 9/16 = 36/64 .90
(C2) 4 3 5/16 = 20/64 9/16 = 36/64 .71
(D1) 5 3 7/32 = 14/64 1/4 = 16/64 .95 virtual
(D2) 5 3 9/32 = 18/64 9/16 = 36/64 .95 virtual
(E) 5 4 1/4 = 16/64 25/64 1 pure
(F) 5 2 1/16 = 4/64 1/4 = 16/64 .76
(G) 5 4 5/64 9/64 .90

Collisions of differences: maxu̸=0{x ∈ Fn
2 : F(x ⊕ u) = F(x)} is 2−n/2 for A when n is even,

and for the three B functions it is approximately 2−2n/3 for all n.



Sumary and further work

Summary: we have described a class of Boolean function called almost liftings.

Further work
Do a more comprehensive search for almost liftings that induce non-bijective S-boxes
with good cryptographic properties, and find applications in “almost-permutation-based
cryptography”.

(it could also be interesting to get theoretical proofs of various desired properties for
families of almost liftings)

Expand to nonbinary fields

The concept of almost liftings, and the equivalence with surjective CA, can be extended
to Fk

p → Fp for all fields of characteristic p > 2, i.e., supn ℓn(f) ≤ pk−1 or infinite
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