

Shift-invariant functions and almost liftings (joint with Jan Kristian Haugland)

Dubrovnik, Croatia, September 2024 Tron Omland Norwegian National Security Authority (NSM) and University of Oslo

Let $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$ denote the right shift, i.e.,

$$S(x_1, x_2, \ldots, x_n) = (x_n, x_1, \ldots, x_{n-1}).$$

A function $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ is called shift-invariant (or rotation-symmetric) if

 $F \circ S = S \circ F$.

Let $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$ denote the right shift, i.e.,

$$S(x_1, x_2, \ldots, x_n) = (x_n, x_1, \ldots, x_{n-1}).$$

A function $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ is called shift-invariant (or rotation-symmetric) if

 $F \circ S = S \circ F$.

Every shift-invariant function *F* is determined by a Boolean function $f: \mathbb{F}_2^n \to \mathbb{F}_2$ by setting $f(x) = F(x)_1$, so that

 $F(x) = (f(x), f \circ S^{-1}(x), \dots, f \circ S^{-(n-1)}(x)).$

Let $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$ denote the right shift, i.e.,

$$S(x_1, x_2, ..., x_n) = (x_n, x_1, ..., x_{n-1}).$$

A function $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ is called shift-invariant (or rotation-symmetric) if

$$F \circ S = S \circ F.$$

Every shift-invariant function *F* is determined by a Boolean function $f: \mathbb{F}_2^n \to \mathbb{F}_2$ by setting $f(x) = F(x)_1$, so that

$$F(x) = (f(x), f \circ S^{-1}(x), \dots, f \circ S^{-(n-1)}(x)).$$

Moreover, every Boolean function $f \colon \mathbb{F}_2^k \to \mathbb{F}_2$ induces shift-invariant functions $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ for all $n \ge k$ in this way. We often say that F is a lifting of f.

For example, if k = 3 and n = 5, then

$$F(x_1, x_2, x_3, x_4, x_5) = \left(f(x_1, x_2, x_3), f(x_2, x_3, x_4), f(x_3, x_4, x_5), f(x_4, x_5, x_1), f(x_5, x_1, x_2)\right).$$

From a mathematical point of view, there are many hard problems about when the induced *F* is a bijection (=permutation), but we will not focus on these:

- (i) Given $f: \mathbb{F}_2^k \to \mathbb{F}_2$ find the set $\{n \ge k \mid F: \mathbb{F}_2^n \to \mathbb{F}_2^n \text{ is bijective}\}$
- (ii) Given a pair (k, n), find all $f \colon \mathbb{F}_2^k \to \mathbb{F}_2$ that induce bijections $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$.
- (iii) Find all functions $f \colon \mathbb{F}_2^k \to \mathbb{F}_2$ that induce bijections $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ for every $n \ge k$.

📗 NSM

From a mathematical point of view, there are many hard problems about when the induced *F* is a bijection (=permutation), but we will not focus on these:

- (i) Given $f: \mathbb{F}_2^k \to \mathbb{F}_2$ find the set $\{n \ge k \mid F: \mathbb{F}_2^n \to \mathbb{F}_2^n \text{ is bijective}\}$
- (ii) Given a pair (k, n), find all $f \colon \mathbb{F}_2^k \to \mathbb{F}_2$ that induce bijections $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$.
- (iii) Find all functions $f \colon \mathbb{F}_2^k \to \mathbb{F}_2$ that induce bijections $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ for every $n \ge k$.

Our motivation and goal

Using shift-invariant functions as S-boxes can be useful due to symmetry properties, low complexity, flexibility and adaptability, e.g., in lightweight cryptography. From a mathematical point of view, there are many hard problems about when the induced *F* is a bijection (=permutation), but we will not focus on these:

NSM

- (i) Given $f: \mathbb{F}_2^k \to \mathbb{F}_2$ find the set $\{n \ge k \mid F: \mathbb{F}_2^n \to \mathbb{F}_2^n \text{ is bijective}\}$
- (ii) Given a pair (k, n), find all $f: \mathbb{F}_2^k \to \mathbb{F}_2$ that induce bijections $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$.
- (iii) Find all functions $f \colon \mathbb{F}_2^k \to \mathbb{F}_2$ that induce bijections $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ for every $n \ge k$.

Our motivation and goal

- Using shift-invariant functions as S-boxes can be useful due to symmetry properties, low complexity, flexibility and adaptability, e.g., in lightweight cryptography.
- We will consider non-bijective shift-invariant S-boxes that are "almost bijective".

From a mathematical point of view, there are many hard problems about when the induced *F* is a bijection (=permutation), but we will not focus on these:

NSM

- (i) Given $f: \mathbb{F}_2^k \to \mathbb{F}_2$ find the set $\{n \ge k \mid F: \mathbb{F}_2^n \to \mathbb{F}_2^n \text{ is bijective}\}$
- (ii) Given a pair (k, n), find all $f: \mathbb{F}_2^k \to \mathbb{F}_2$ that induce bijections $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$.
- (iii) Find all functions $f \colon \mathbb{F}_2^k \to \mathbb{F}_2$ that induce bijections $F \colon \mathbb{F}_2^n \to \mathbb{F}_2^n$ for every $n \ge k$.

Our motivation and goal

- Using shift-invariant functions as S-boxes can be useful due to symmetry properties, low complexity, flexibility and adaptability, e.g., in lightweight cryptography.
- ▶ We will consider non-bijective shift-invariant S-boxes that are "almost bijective".
- ▶ The goal is to find Boolean functions $f: \mathbb{F}_2^k \to \mathbb{F}_2$ such that the induced functions $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ are "almost bijective" S-boxes with good cryptographic properties for all $n \ge k$, and find applications in cryptography.

📗 NSM

Desired properties (for every *n*)

- (1) $\max_{y}|F^{-1}(y)|$ should be low,
- (2) (size of the image of F)/(size of the codomain of F) should be high,
- (3) the image $F(\mathbb{F}_2^n)$ and its complement should be unstructured in \mathbb{F}_2^n ,
- (4) $\{x \in \mathbb{F}_2^n : F(x \oplus u) = F(x)\}$ should be small for all $u \neq 0$.

Desired properties (for every *n*)

- (1) $\max_{y}|F^{-1}(y)|$ should be low,
- (2) (size of the image of *F*)/(size of the codomain of *F*) should be high,
- (3) the image $F(\mathbb{F}_2^n)$ and its complement should be unstructured in \mathbb{F}_2^n ,
- (4) $\{x \in \mathbb{F}_2^n : F(x \oplus u) = F(x)\}$ should be small for all $u \neq 0$.

Our strategy

- ▶ It turns out that there is a fairly concrete and well-defined class satisfying (1).
- The strategy is reducing the search space to this class and find candidates there with good properties with respect to (2)-(4), differential and linear cryptanalysis, etc.

Given $f: \mathbb{F}_2^k \to \mathbb{F}_2$ and define for $n \ge k$ the maximal collision number of $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ by

$$\ell_n(f) = \max_{y \in \mathbb{F}_2^n} |F^{-1}(y)|.$$

Given $f: \mathbb{F}_2^k \to \mathbb{F}_2$ and define for $n \ge k$ the maximal collision number of $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ by

$$\ell_n(f) = \max_{y \in \mathbb{F}_2^n} |F^{-1}(y)|.$$

Definition

▶ A functon $f: \mathbb{F}_2^k \to \mathbb{F}_2$ is called a *proper lifting* if $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is bijective for all $n \ge k$. ▶ A functon $f: \mathbb{F}_2^k \to \mathbb{F}_2$ is called an *almost lifting* if $\sup_{n \ge k} \ell_n(f) < \infty$.

Example

Let $\chi(x) = x_1 \oplus (x_2 \oplus 1)x_3$ be the function used in e.g., Keccak. Then $\ell_n(\chi) = 1$ for *n* odd and 3 for *n* even. In particular, $\sup_{n>k} \ell_n(\chi) = 3$ so χ is an almost lifting.

Example

Let $\chi(x) = x_1 \oplus (x_2 \oplus 1)x_3$ be the function used in e.g., Keccak. Then $\ell_n(\chi) = 1$ for n odd and 3 for n even. In particular, $\sup_{n>k} \ell_n(\chi) = 3$ so χ is an almost lifting.

Example

Define the function $p(x) = x_2 \oplus x_1(x_3 \oplus 1)x_4$. This is, up to elementary equivalence, the only proper lifting for $k \le 4$ (as observed by Patt), i.e., $\ell_n(p) = 1$ for all n.

Example

Let $\chi(x) = x_1 \oplus (x_2 \oplus 1)x_3$ be the function used in e.g., Keccak. Then $\ell_n(\chi) = 1$ for n odd and 3 for n even. In particular, $\sup_{n>k} \ell_n(\chi) = 3$ so χ is an almost lifting.

Example

Define the function $p(x) = x_2 \oplus x_1(x_3 \oplus 1)x_4$. This is, up to elementary equivalence, the only proper lifting for $k \le 4$ (as observed by Patt), i.e., $\ell_n(p) = 1$ for all n.

Example

Define the function $f(x) = x_1 \oplus x_2(x_3 \oplus x_4 \oplus 1)$. Then $\ell_n(f)$ is an irregular sequence 4, 2, 4, 2, 4, 2, 3, 2, 4, 2, 3, 3, 4, 2, 4, 3, 4 computed for $4 \le n \le 20$, and (it looks like) f is an almost lifting.

Definition

Consider the maps $c, r \colon \mathbb{F}_2^k \to \mathbb{F}_2^k$ given by complementing and reflecting, that commute, and are defined by

 $c(x_1, x_2, \ldots, x_k) = (\overline{x_1}, \overline{x_2}, \ldots, \overline{x_k})$ and $r(x_1, x_2, \ldots, x_k) = (x_k, \ldots, x_2, x_1)$.

We say that two Boolean functions $f, g: \mathbb{F}_2^k \to \mathbb{F}_2$ are *elementary equivalent* if there are $i, j, \ell \in \{0, 1\}$ such that

 $g(x) \oplus \ell = f \circ r^i \circ c^j(x).$

There are at most eight functions in such an equivalence class.

Definition

Consider the maps $c, r \colon \mathbb{F}_2^k \to \mathbb{F}_2^k$ given by complementing and reflecting, that commute, and are defined by

 $c(x_1, x_2, \ldots, x_k) = (\overline{x_1}, \overline{x_2}, \ldots, \overline{x_k})$ and $r(x_1, x_2, \ldots, x_k) = (x_k, \ldots, x_2, x_1)$.

We say that two Boolean functions $f, g: \mathbb{F}_2^k \to \mathbb{F}_2$ are *elementary equivalent* if there are $i, j, \ell \in \{0, 1\}$ such that

$$g(x) \oplus \ell = f \circ r^i \circ c^j(x)$$

There are at most eight functions in such an equivalence class.

For every $n \ge k$, their induced versions then satisfy

 $G(x) \oplus (\ell, \ldots, \ell) = F(r^i \circ c^j(x))$

and have identical cryptographic properties.

For every $m \ge k$ define $F_{(m)}$: $\mathbb{F}_2^m \to \mathbb{F}_2^{m-k+1}$ by

$$F_{(m)}(x_1,...,x_m) = (f(x_1,x_2,...,x_k), f(x_2,...,x_{k+1}),...,f(x_{m-k+1},...,x_m)).$$

We say that $F_{(m)}$ has uniform distribution (=balanced) if for all $y \in \mathbb{F}_2^{m-k+1}$

 $|F_{(m)}^{-1}(y)| = 2^{k-1}.$

For every $m \ge k$ define $F_{(m)}$: $\mathbb{F}_2^m \to \mathbb{F}_2^{m-k+1}$ by

$$F_{(m)}(x_1,\ldots,x_m) = \left(f(x_1,x_2,\ldots,x_k), f(x_2,\ldots,x_{k+1}),\ldots,f(x_{m-k+1},\ldots,x_m)\right).$$

We say that $F_{(m)}$ has uniform distribution (=balanced) if for all $y \in \mathbb{F}_2^{m-k+1}$

 $|F_{(m)}^{-1}(y)| = 2^{k-1}.$

Theorem

The following are equivalent:

- (i) $F_{(m)}$ has uniform distribution for all $m \ge k$
- (ii) *f* is an almost lifting (i.e., $\sup_{n \ge k} \ell_n(f) < \infty$, where $\ell_n(f) = \max_{y \in \mathbb{F}_2^n} |F^{-1}(y)|$)
- (iii) $\ell_n(f) \leq 2^{k-1}$ for every $n \geq k$

Theorem

The following are equivalent:

- (i) $F_{(m)}$ has uniform distribution for all $m \ge k$
- (ii) *f* is an almost lifting (i.e., $\sup_{n \ge k} \ell_n(f) < \infty$, where $\ell_n(f) = \max_{y \in \mathbb{F}_2^n} |F^{-1}(y)|$)
- (iii) $\ell_n(f) \leq 2^{k-1}$ for every $n \geq k$

If $F_{(m)}$ has uniform distribution and $k \leq m' \leq m$, then $F_{(m')}$ has uniform distribution, so

 $\{f \colon \mathbb{F}_2^k \to \mathbb{F}_2 \colon F_{(m')} \text{ has unif. dist.}\} \supseteq \{f \colon \mathbb{F}_2^k \to \mathbb{F}_2 \colon F_{(m)} \text{ has unif. dist.}\}$

Theorem

The following are equivalent:

- (i) $F_{(m)}$ has uniform distribution for all $m \ge k$
- (ii) *f* is an almost lifting (i.e., $\sup_{n \ge k} \ell_n(f) < \infty$, where $\ell_n(f) = \max_{y \in \mathbb{F}_2^n} |F^{-1}(y)|$)
- (iii) $\ell_n(f) \leq 2^{k-1}$ for every $n \geq k$

If $F_{(m)}$ has uniform distribution and $k \leq m' \leq m$, then $F_{(m')}$ has uniform distribution, so

$$\{f\colon \mathbb{F}_2^k o\mathbb{F}_2:\ F_{(m')} ext{ has unif. dist.}\}\supseteq \{f\colon \mathbb{F}_2^k o\mathbb{F}_2:\ F_{(m)} ext{ has unif. dist.}\}$$

and thus

$$\{f \colon \mathbb{F}_2^k \to \mathbb{F}_2 \text{ is an almost lifting}\} = \bigcap_m \{f \colon \mathbb{F}_2^k \to \mathbb{F}_2 \colon F_{(m)} \text{ has unif. dist.}\}$$

Elementary equivalence classes for k = 5

n	# unif.dist.	# unif.dist. with $f(0) \neq f(1)$	# bijections, i.e., $\ell_n(f) = 1$	
5	75165111	38800984	2815556	
6			13316	
7			462	
8	36080	18072	31	
9	18808	9369	52	
10	17921	8953	34	
11	17885	8940	78	
12	17882	8937	8	
13	17881	8936	78	
14	17881	8936	33	
15	17881	8936	43	
16	17881	8936	27	
17	17881	8936	75	
18	17881	8936	14	
19	17881	8936	74	
20	17881	8936	25	

A Boolean function $f: \mathbb{F}_2^k \to \mathbb{F}_2$ is called permutive if there exists $h: \mathbb{F}_2^{k-1} \to \mathbb{F}_2$ such that $f(x_1, \ldots, x_k) = x_1 \oplus h(x_2, \ldots, x_k)$ (up to elementary equivalence).

Proposition

Every permutive function is an almost lifting.

A Boolean function $f: \mathbb{F}_2^k \to \mathbb{F}_2$ is called permutive if there exists $h: \mathbb{F}_2^{k-1} \to \mathbb{F}_2$ such that $f(x_1, \ldots, x_k) = x_1 \oplus h(x_2, \ldots, x_k)$ (up to elementary equivalence).

Proposition

Every permutive function is an almost lifting.

Comparison between number of elementary equivalence classes:

k	# almost liftings	# permutive
3	4	4
4	73	65
5	17881	16416

Cellular automata

Given a Boolean function $f \colon \mathbb{F}_2^k \to \mathbb{F}_2$, consider the induced function on the bi-infinite bit-strings, i.e.,

$$F \colon \mathbb{F}_2^{\mathbb{Z}} \to \mathbb{F}_2^{\mathbb{Z}}$$

given by

$$F(x)_i = f(x_i, \ldots, x_{i+k-1}).$$

It is known that *F* is bijective if and only if *f* is a proper lifting.

Cellular automata

Given a Boolean function $f \colon \mathbb{F}_2^k \to \mathbb{F}_2$, consider the induced function on the bi-infinite bit-strings, i.e.,

$$F \colon \mathbb{F}_2^{\mathbb{Z}} \to \mathbb{F}_2^{\mathbb{Z}}$$

given by

$$F(x)_i = f(x_i, \ldots, x_{i+k-1}).$$

It is known that F is bijective if and only if f is a proper lifting.

Theorem

The following are equivalent:

- (i) f is an almost lifting, (i.e., $\sup_{n \ge k} \ell_n(f) < \infty$, where $\ell_n(f) = \max_{y \in \mathbb{F}_2^n} |F^{-1}(y)|$)
- (ii) $F \colon \mathbb{F}_2^{\mathbb{Z}} \to \mathbb{F}_2^{\mathbb{Z}}$ is surjective
- (iii) $\sup_{y \in \mathbb{F}_2^{\mathbb{Z}}} |F^{-1}(y)| \le 2^{k-1}$
- (iv) $F^{-1}(y)$ is finite for all $y \in \mathbb{F}_2^{\mathbb{Z}}$

Virtual liftings

🌐 NSM

For every *k* there are functions $f : \mathbb{F}_2^k \to \mathbb{F}_2$ with deg(f) = d < k such that for all $n \ge k$

$$|\{y \in \mathbb{F}_2^n : y \text{ is not in the image of } F\}| = \begin{cases} d \cdot 2^{\frac{n}{d}-1} & \text{if } d|n, \\ 0 & \text{otherwise.} \end{cases}$$

These are the non-bijections that have largest image, and are bijective except when n = dm. Note that χ is such a function.

Virtual liftings

🌐 NSM

For every *k* there are functions $f : \mathbb{F}_2^k \to \mathbb{F}_2$ with deg(f) = d < k such that for all $n \ge k$

$$|\{y \in \mathbb{F}_2^n : y \text{ is not in the image of } F\}| = \begin{cases} d \cdot 2^{\frac{n}{d}-1} & \text{if } d|n, \\ 0 & \text{otherwise.} \end{cases}$$

These are the non-bijections that have largest image, and are bijective except when n = dm. Note that χ is such a function.

Question

If *f* induces bijections for infinitely many *n*, does it do so in a periodic way?

Summary(?)

proper lifting \iff cellular automata is bijective virtual lifting \iff CA surjective + induce bijections (periodically) for infinitely many *n* almost lifting \iff CA surjective After some searching, we now consider a few candidates more closely:

NSM

- (A) $f(x) = x_1 \oplus x_2(x_3 \oplus 1)$
- (B1) $f(x) = x_1 \oplus x_2(x_3 \oplus x_4)$
- $(\mathsf{B2}) \ f(x) = x_1 \oplus x_2 (1 \oplus x_3 \oplus x_4)$
- (B3) $f(x) = x_1 \oplus x_4(x_2 \oplus x_3 \oplus 1)$
- (C1) $f(x) = x_2 \oplus x_3 \oplus x_4(x_1 \oplus x_2)(x_3 \oplus 1)$
- $(C2) f(x) = x_1 \oplus x_4 \oplus x_3(x_2 \oplus x_4 \oplus x_2x_4)$
- (D1) $f(x) = x_2 \oplus x_3((x_1 \oplus x_2)(x_4 \oplus 1) \oplus x_4x_5 \oplus 1)$
- (D2) $f(x) = x_2 \oplus x_4(x_5 \oplus 1)(x_1 \oplus x_3)$
 - (E) $f(x) = x_2 \oplus x_1(x_4(x_3 \oplus 1) \oplus (x_4 \oplus 1)x_5(x_2 \oplus x_3 \oplus 1))$
 - (F) $f(x) = x_5 \oplus x_1 x_3 \oplus x_4 (x_1 \oplus x_2 \oplus x_3)$
 - (G) f(x) = long expression, degree 4

Differential and linear uniformity

The differential probability uniformity of F is defined by

$$\mathsf{DU}(F) = \frac{1}{2^n} \max_{a,b \in \mathbb{F}_2^n, a \neq 0} |\{x \in \mathbb{F}_2^n : F(x \oplus a) \oplus F(x) = b\}|.$$

Differential and linear uniformity

The differential probability uniformity of *F* is defined by

$$\mathsf{DU}(F) = \frac{1}{2^n} \max_{a,b \in \mathbb{F}_2^n, a \neq 0} |\{x \in \mathbb{F}_2^n : F(x \oplus a) \oplus F(x) = b\}|.$$

Define the correlation for $a, b \in \mathbb{F}_2^n$ by

$$C_F(a,b) = \frac{1}{2^n} \sum_{x \in \mathbb{F}_2^n} (-1)^{a \cdot x + b \cdot F(x)}$$

The linear potential uniformity

$$\mathsf{LU}(F) = \max\{\mathsf{C}_F(\alpha, b)^2 : \alpha, b \in \mathbb{F}_2^n, b \neq 0\} = \left(1 - \frac{\mathsf{NL}(F)}{2^{n-1}}\right)^2$$

Differential and linear uniformity

The differential probability uniformity of *F* is defined by

$$\mathsf{DU}(F) = \frac{1}{2^n} \max_{a,b \in \mathbb{F}_2^n, a \neq 0} |\{x \in \mathbb{F}_2^n : F(x \oplus a) \oplus F(x) = b\}|.$$

Define the correlation for $a, b \in \mathbb{F}_2^n$ by

$$C_F(a,b) = \frac{1}{2^n} \sum_{x \in \mathbb{F}_2^n} (-1)^{a \cdot x + b \cdot F(x)}$$

The linear potential uniformity

$$\mathsf{LU}(F) = \max\{\mathsf{C}_F(a,b)^2 : a,b \in \mathbb{F}_2^n, b \neq 0\} = \left(1 - \frac{\mathsf{NL}(F)}{2^{n-1}}\right)^2$$

We want both DU and LU to be small.

Properties

	k	deg	DU	LU	size of image <i>n</i> = 10	type
(A)	3	2	1/4 = 16/64	1/4 = 16/64	.97	χ , virtual
(B1)	4	2	1/8 = 8/64	1/4 = 16/64	.84	
(B2)	4	2	1/8 = 8/64	1/4 = 16/64	.86	
(B3)	4	2	1/8 = 8/64	1/4 = 16/64	.83	
(C1)	4	3	5/16 = 20/64	9/16 = 36/64	.90	
(C2)	4	3	5/16 = 20/64	9/16 = 36/64	.71	
(D1)	5	3	7/32 = 14/64	1/4 = 16/64	.95	virtual
(D2)	5	3	9/32 = 18/64	9/16 = 36/64	.95	virtual
(E)	5	4	1/4 = 16/64	25/64	1	pure
(F)	5	2	1/16 = 4/64	1/4 = 16/64	.76	
(G)	5	4	5/64	9/64	.90	

Collisions of differences: $\max_{u\neq 0} \{x \in \mathbb{F}_2^n : F(x \oplus u) = F(x)\}$ is $2^{-n/2}$ for A when *n* is even, and for the three B functions it is approximately $2^{-2n/3}$ for all *n*.

Summary: we have described a class of Boolean function called almost liftings.

Summary: we have described a class of Boolean function called almost liftings.

Further work

Do a more comprehensive search for almost liftings that induce non-bijective S-boxes with good cryptographic properties, and find applications in "almost-permutation-based cryptography".

(it could also be interesting to get theoretical proofs of various desired properties for families of almost liftings)

Summary: we have described a class of Boolean function called almost liftings.

Further work

Do a more comprehensive search for almost liftings that induce non-bijective S-boxes with good cryptographic properties, and find applications in "almost-permutation-based cryptography".

(it could also be interesting to get theoretical proofs of various desired properties for families of almost liftings)

Expand to nonbinary fields

The concept of almost liftings, and the equivalence with surjective CA, can be extended to $\mathbb{F}_{\rho}^{k} \to \mathbb{F}_{\rho}$ for all fields of characteristic p > 2, i.e., $\sup_{n} \ell_{n}(f) \leq \rho^{k-1}$ or infinite (actually to all functions $\{0, 1, \dots, p-1\}^{k} \to \{0, 1, \dots, p-1\}$ for any integer p > 2)

IIII NSM

Tron Omland

Tlf: 67 86 40 00 nsm.no