Secondary plateaued Boolean functions through addition of indicators

Dilawar Abbas Khan

Famnit and IAM, University of Primorska

BFA, 2024

Dilawar Abba	IS
--------------	----

University of Primorska

BFA, 2024

- Relevant definitions and notations
- Bent functions
- Plateaued functions
- Plateauedness of $f \oplus 1_R$ when f is plateaued
- \bullet Optimal plateaued functions in the \mathcal{GMM} class

- 𝔅 𝔅 𝔅 the finite field with two elements, i.e. take {0,1}, add mod 2 and multiply as usual, example 1 + 1 = 0, 1 ⋅ 0 = 0, ...
- \mathbb{F}_2^n *n*-dimensional vector space over \mathbb{F}_2 . ex. (1,0,1) + (1,0,0) = (0,0,1)
- A Boolean function is any mapping from $\mathbb{F}_2^n \to \mathbb{F}_2$. (ex. f(1,0,1) = 0, f(1,0,0) = 1, ...)
- The set of all Boolean functions in *n* variables is denoted by \mathcal{B}_n .

Dilawar	Abbas
---------	-------

3/19

Relevant definitions and notations (II)

• Walsh Hadamard transform:

$$W_f(u) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus u \cdot x}, \quad ext{for every } u \in \mathbb{F}_2^n$$

• Parseval's Relation: For every n-variable Boolean function f, we have

$$\sum_{v\in\mathbb{F}_2^n}W_f(v)^2=2^{2n}$$

Walsh Support:

$$S_f = \{\omega \in \mathbb{F}_2^n : W_f(\omega) \neq 0\}$$

4/19

Bent functions

A Boolean function f in n variables(n is even) s.t W_f(y) = ±2^{n/2}, for every y ∈ ℝ₂ⁿ, is called bent function.

Bent functions

- A Boolean function f in n variables(n is even) s.t W_f(y) = ±2^{n/2}, for every y ∈ ℝ₂ⁿ, is called bent function.
- $\bullet\,$ The ${\cal C}$ class of bent functions contains all the functions of the form

$$f(x,y) = x \cdot \pi(y) \oplus 1_{L^{\perp}}(x),$$

where $x, y \in \mathbb{F}_2^n$ and L is linear subspace of \mathbb{F}_2^n and π is permutation on \mathbb{F}_2^n such that $\phi(a + L)$ is a flat, for all $a \in \mathbb{F}_2^n$, where $\phi := \pi^{-1}$.

5/19

Bent functions

- A Boolean function f in n variables(n is even) s.t W_f(y) = ±2^{n/2}, for every y ∈ ℝ₂ⁿ, is called bent function.
- $\bullet\,$ The ${\cal C}$ class of bent functions contains all the functions of the form

$$f(x,y) = x \cdot \pi(y) \oplus 1_{L^{\perp}}(x),$$

where $x, y \in \mathbb{F}_2^n$ and L is linear subspace of \mathbb{F}_2^n and π is permutation on \mathbb{F}_2^n such that $\phi(a + L)$ is a flat, for all $a \in \mathbb{F}_2^n$, where $\phi := \pi^{-1}$.

• The class \mathcal{D} of be bent functions is defined as

$$f(x,y) = x \cdot \pi(y) \oplus \mathbb{1}_{E_1}(x)\mathbb{1}_{E_2}(y),$$

where π is permutation on \mathbb{F}_2^n and E_1 , E_2 be two linear subspaces of \mathbb{F}_2^n such that $\pi(E_2) = E_1^{\perp}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Plateaued Functions

 A function f ∈ B_n is called *Plateaued* if its Walsh spectrum only takes three values 0 and ±λ, where λ (amplitude) is some positive.

Plateaued Functions

- A function f ∈ B_n is called *Plateaued* if its Walsh spectrum only takes three values 0 and ±λ, where λ (amplitude) is some positive.
- A Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is *s*-plateaued function if

$$W_f(u) \in \{0, \pm 2^{\frac{n+s}{2}}\}, \text{ for every } u \in \mathbb{F}_2^n,$$

where $s \ge 1$ if *n* is odd and $s \ge 2$ if *n* is even(*s* and *n* always have the same parity).

6/19

Plateaued Functions

- A function f ∈ B_n is called *Plateaued* if its Walsh spectrum only takes three values 0 and ±λ, where λ (amplitude) is some positive.
- A Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is *s*-plateaued function if

$$W_f(u) \in \{0, \pm 2^{\frac{n+s}{2}}\}, \text{ for every } u \in \mathbb{F}_2^n,$$

where $s \ge 1$ if *n* is odd and $s \ge 2$ if *n* is even(*s* and *n* always have the same parity).

• The $\#S_f$ of any *s* -plateaued function is 2^{n-s} .

• Semibent function: 1-plateaued or 2-plateaued function are semibent.

D:	DUNDE	Λh	hac
	awar	AD	Das

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Addition of indicator to any f

The indicator of $R \subset \mathbb{F}_2^n$: $\mathbf{1}_R(x) = 1$ **IFF** $x \in R$

Addition of indicator of *R* to $f : \mathbb{F}_2^n \to \mathbb{F}_2$, then WHT of $f \oplus 1_R$:

$$\begin{split} W_{f \oplus 1_{R}}(u) &= \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{f(x) \oplus 1_{R}(x) \oplus u \cdot x} \\ &= \sum_{x \in \mathbb{F}_{2}^{n} \setminus R} (-1)^{f(x) \oplus u \cdot x} + \sum_{x \in R} (-1)^{f(x) \oplus 1_{R}(x) \oplus u \cdot x} \\ &= \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{f(x) \oplus u \cdot x} - 2 \sum_{x \in R} (-1)^{f(x) \oplus u \cdot x} \\ &= W_{f}(u) - 2 \sum_{x \in R} (-1)^{f(x) \oplus u \cdot x} = W_{f}(u) - 2 U(u). \end{split}$$
(1)

7/19

イロト 不得 トイヨト イヨト 二日

Plateauedness of $f \oplus 1_R$

Lemma (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$. Then f is s-plateaued $(1 \le s \le n)$ if and only if it holds that $\#S_f = 2^{n-s}$ and

$$\begin{pmatrix} W_f(u) = 0, & u \notin S_f, \\ W_f(u) \equiv 2^{\frac{n+s}{2}} \pmod{2^{\frac{n+s}{2}+1}}, & u \in S_f. \end{cases}$$

$$(2)$$

) 4 (
Dilawar Abbas	University of Primorska	BFA, 2024	8 / 19

Plateauedness of $f \oplus 1_R$

Lemma (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$. Then f is s-plateaued $(1 \le s \le n)$ if and only if it holds that $\#S_f = 2^{n-s}$ and

$$\begin{pmatrix} W_f(u) = 0, & u \notin S_f, \\ W_f(u) \equiv 2^{\frac{n+s}{2}} \pmod{2^{\frac{n+s}{2}+1}}, & u \in S_f. \end{cases}$$

$$(2)$$

Sketch of proof: If f is s-plateaued, then one can easily verify that (2) holds. Let us now assume that (2) holds. By Parsevals' relation

Plateauedness of $f \oplus 1_R$

Lemma (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$. Then f is s-plateaued $(1 \le s \le n)$ if and only if it holds that $\#S_f = 2^{n-s}$ and

$$\begin{pmatrix} W_f(u) = 0, & u \notin S_f, \\ W_f(u) \equiv 2^{\frac{n+s}{2}} \pmod{2^{\frac{n+s}{2}+1}}, & u \in S_f. \end{cases}$$

$$(2)$$

Sketch of proof: If f is *s*-plateaued, then one can easily verify that (2) holds. Let us now assume that (2) holds. By Parsevals' relation

$$2^{2n} = \sum_{u \in \mathbb{F}_2^n} W_f^2(u) \ge \#S_f \cdot 2^{n+s} = 2^{n-s} \cdot 2^{n+s} = 2^{2n},$$

i.e. $W_f^2(u) = 2^{n+s}$, or $W_f(u) = \pm 2^{\frac{n+s}{2}}$, $\forall u \in S_f$.

Hence, $f \oplus 1_R$ is *s*- plateaued function.

Dilawar Abbas

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

$\mathcal{GMM}_{rac{n}{2}+k}$ Class

The Maiorana-McFarland class M is the set of *m*-variable (m = 2n) Boolean functions of the form

$$f(x,y) = x \cdot \pi(y) + g(y), \quad \forall x, y \in \mathbb{F}_2^n,$$

where π is a permutation on \mathbb{F}_2^n and $g \in \mathcal{B}_n$.

			0 / 10
Dilawar Abbas	University of Primorska	BFA, 2024	9/19

$\mathcal{GMM}_{rac{n}{2}+k}$ Class

The Maiorana-McFarland class M is the set of *m*-variable (m = 2n) Boolean functions of the form

$$f(x,y) = x \cdot \pi(y) + g(y), \quad \forall x, y \in \mathbb{F}_2^n,$$

where π is a permutation on \mathbb{F}_2^n and $g \in \mathcal{B}_n$.

Definition

The set of all Boolean functions $f_{\frac{n+k}{2}}: \mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}} \to \mathbb{F}_2$, of the form

$$f_{\frac{n+k}{2}}(x,y)=x\cdot\phi^{(k)}(y)\oplus g_k(y), \ x\in\mathbb{F}_2^{\frac{n\pm k}{2}}, y\in\mathbb{F}_2^{\frac{n\mp k}{2}},$$

is called $\mathcal{GMM}_{\frac{n+k}{2}}$ class, where $\phi^{(k)}: \mathbb{F}_2^{\frac{n\pm k}{2}} \to \mathbb{F}_2^{\frac{n\pm k}{2}}$ and $g_k \in \mathcal{B}_{\frac{n\pm k}{2}}$, for $0 \leq k < n$. For k = 0 this class corresponds to the \mathcal{MM} class of bent functions when $\phi^{(0)}$ is a permutation on $\mathbb{F}_2^{\frac{n}{2}}$.

Towards optimal plateaued functions

- Y. Zheng, X. M Zhang. On plateaued functions.
- We provide an explicit way to design optimal plateaued functions.
- Optimal : max. Degree = $\frac{n-k}{2} + 1$

			= *) ((*
Dilawar Abbas	University of Primorska	BFA, 2024	10 / 19

Towards optimal plateaued functions

- Y. Zheng, X. M Zhang. On plateaued functions.
- We provide an explicit way to design optimal plateaued functions.
- Optimal : max. Degree $= \frac{n-k}{2} + 1$

Lemma (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $\phi: \mathbb{F}_2^t o \mathbb{F}_2^{t+j}$ be defined as $\phi = (\pi(y), g_1(y), \dots, g_j(y))$ so that

at least one of g_j has degree t and π is a permutation on \mathbb{F}_2^t . Then, ϕ is

injective and of maximum degree t.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Towards optimal plateaued functions

- Y. Zheng, X. M Zhang. On plateaued functions.
- We provide an explicit way to design optimal plateaued functions.
- Optimal : max. Degree = $\frac{n-k}{2} + 1$

Lemma (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $\phi : \mathbb{F}_2^t \to \mathbb{F}_2^{t+j}$ be defined as $\phi = (\pi(y), g_1(y), \dots, g_j(y))$ so that

at least one of g_i has degree t and π is a permutation on \mathbb{F}_2^t . Then, ϕ is injective and of maximum degree t.

Sketch of proof:

• If for some $y \neq y' \in \mathbb{F}_2^t$, we have $\phi(y) = \phi(y')$, $\implies \pi(y) = \pi(y')$. A contradiction as π is a permutation, Hence, ϕ is injective.

• At least one of g_i has maximum algebraic degree t, so does ϕ .

Optimal plateaued functions in $\mathcal{GMM}_{\frac{n}{2}+k}$ class

Theorem 1 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let
$$f(x, y) = x \cdot \phi(y) + h(y)$$
, where $x \in \mathbb{F}_2^{\frac{n+k}{2}}$, $y \in \mathbb{F}_2^{\frac{n-k}{2}}$, for $0 < k < n$.
Let $\phi(y) = (\pi(y), g_1(y), \dots, g_k(y))$, where
• π is permutation on $\mathbb{F}_2^{\frac{n-k}{2}}$,
• $g_1, \dots, g_k \in \mathcal{B}_{\frac{n-k}{2}}$ be such that $\max_i \deg(g_i) = \frac{n-k}{2}$,
• $h \in \mathcal{B}_{\frac{n-k}{2}}$ is arbitrary.
Then, $f(x, y) = x \cdot \phi(y) + h(y)$ is an optimal k-plateaued function.

An element $a \in F_2^n$ is called a linear structure of $f \in \mathcal{B}_n$, if

$$D_a f = f(x + a) + f(x) = constant \quad \forall x \in \mathbb{F}_2^n.$$

 $f \in \mathcal{B}_n$ has no linear structures, if 0_n is the only linear structure of f.

Theorem 2 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let f be defined as in Theorem 1 and assume that $D_b\phi(y) \neq 0_{n/2+k}$ and $a \cdot \phi(y) \neq 0$. Then, f has no linear structures.

12/19

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sketch of proof

• The function f has no linear structures if

 $D_{a,b}f(x,y) \neq constant$, where $(a,b) \in \mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}}$.

				-	10 (10
Dilawar Abbas	University of Primorska		BFA, 2024		13/19

• The function f has no linear structures if

 $D_{a,b}f(x,y) \neq constant$, where $(a,b) \in \mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}}$.

• The derivative of f(x, y) is given as:

$$D_{(a,b)}f(x,y) = x \cdot D_b\phi(y) + a \cdot \phi(y+b) + D_bh(y)$$

イロト 不得 トイヨト イヨト 二日

• The function f has no linear structures if

 $D_{a,b}f(x,y) \neq constant$, where $(a,b) \in \mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}}$.

• The derivative of f(x, y) is given as:

$$D_{(a,b)}f(x,y) = x \cdot D_b\phi(y) + a \cdot \phi(y+b) + D_bh(y)$$

- If b = 0 then, $D_{(a,b)}f(x,y) \neq 0 \iff a \cdot \phi(y) \neq 0$
- If $b \neq 0$ then, sufficient condition for $D_{(a,b)}f(x,y) \neq 0$ is $D_b\phi(y) \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Theorem (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $\pi: \mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ be a permutation, with *n* even. Suppose that A = a + E be an affine subspace of $\mathbb{F}_2^{n/2}$, dim(A) = n/2 - 1, and $B \subset \mathbb{F}_2^{n/2}$ with #B = 2. For $g(x, y) = x \cdot \pi(y) \oplus 1_{A \times B}(x, y)$ it holds that:

Dilawar Abbas	University of Primorska	BFA, 2024	14 / 19

Theorem (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $\pi : \mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ be a permutation, with *n* even. Suppose that A = a + E be an affine subspace of $\mathbb{F}_2^{n/2}$, dim(A) = n/2 - 1, and $B \subset \mathbb{F}_2^{n/2}$ with #B = 2. For $g(x, y) = x \cdot \pi(y) \oplus 1_{A \times B}(x, y)$ it holds that: If $\#(B \cap \pi^{-1}(u \oplus E^{\perp})) \in \{0, 2\}$ for all $u \in \mathbb{F}_2^{n/2}$, then *g* is bent.

- ロ ト - (周 ト - (日 ト - (日 ト -)日

BFA. 2024

Theorem (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $\pi: \mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ be a permutation, with *n* even. Suppose that A = a + E be an affine subspace of $\mathbb{F}_2^{n/2}$, dim(A) = n/2 - 1, and $B \subset \mathbb{F}_2^{n/2}$ with #B = 2. For $g(x, y) = x \cdot \pi(y) \oplus 1_{A \times B}(x, y)$ it holds that: If $\#(B \cap \pi^{-1}(u \oplus E^{\perp})) \in \{0, 2\}$ for all $u \in \mathbb{F}_2^{n/2}$, then g is bent. If $\#(B \cap \pi^{-1}(u \oplus E^{\perp})) \in \{0, 1\}$ for all $u \in \mathbb{F}_2^{n/2}$, then g is semi-bent.

Theorem (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $\pi: \mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ be a permutation, with *n* even. Suppose that A = a + E be an affine subspace of $\mathbb{F}_2^{n/2}$, dim(A) = n/2 - 1, and $B \subset \mathbb{F}_2^{n/2}$ with #B = 2. For $g(x, y) = x \cdot \pi(y) \oplus 1_{A \times B}(x, y)$ it holds that: If $\#(B \cap \pi^{-1}(u \oplus E^{\perp})) \in \{0, 2\}$ for all $u \in \mathbb{F}_2^{n/2}$, then g is bent. If $\#(B \cap \pi^{-1}(u \oplus E^{\perp})) \in \{0, 1\}$ for all $u \in \mathbb{F}_2^{n/2}$, then g is semi-bent. If $\#(B \cap \pi^{-1}(u \oplus E^{\perp})) \in \{0, 1, 2\}$ for all $u \in \mathbb{F}_2^{n/2}$, then g is 5-valued spectra function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Lemma 3 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$ be a k-plateaued function, $0 \le k \le n$, $n \equiv k \pmod{2}$,

and let V be a subspace of \mathbb{F}_2^n with dim $(V) = \frac{n+k}{2}$.

• If
$$f(v) = 0$$
, for all $v \in V$, then $W_f(w) = 2^{\frac{n+k}{2}}$, for all $w \in V^{\perp}$.

• If f(v) = 1, for all $v \in V$, then $W_f(w) = -2^{\frac{n+k}{2}}$, for all $w \in V^{\perp}$.

Di	lawar	Ab	bas

15/19

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem 4 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be a k-plateaued function, $0 \le k \le n$, $n \equiv k \pmod{2}$, and let V be a subspace of \mathbb{F}_2^n , dim $(V) = \frac{n+k}{2}$, such that g is constant on V. Then, the function $f = g + 1_V$ is also a k-plateaued function.

Dilawar Akkas	University of Driverseles	REA 2024	16 / 10
Dilawar Abbas	University of Primorska	DFA, 2024	10/19

Theorem 4 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be a k-plateaued function, $0 \le k \le n$, $n \equiv k \pmod{2}$,

and let V be a subspace of \mathbb{F}_2^n , dim $(V) = \frac{n+k}{2}$, such that g is constant on

V. Then, the function $f = g + 1_V$ is also a k-plateaued function.

Sketch of proof:

•
$$g(v) = 0$$
, for all $v \in V$,

			= .040
Dilawar Abbas	University of Primorska	BFA, 2024	16 / 19

Theorem 4 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be a k-plateaued function, $0 \le k \le n$, $n \equiv k \pmod{2}$,

and let V be a subspace of \mathbb{F}_2^n , dim $(V) = \frac{n+k}{2}$, such that g is constant on

V. Then, the function $f = g + 1_V$ is also a k-plateaued function.

Sketch of proof:

• g(v) = 0, for all $v \in V$, (Proof is analogous: g(v) = 1).

Dilawar Abbas	University of Primorska		BFA, 2024	16 / 19

Theorem 4 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be a k-plateaued function, $0 \le k \le n$, $n \equiv k \pmod{2}$,

and let V be a subspace of \mathbb{F}_2^n , dim $(V) = \frac{n+k}{2}$, such that g is constant on

V. Then, the function $f = g + 1_V$ is also a k-plateaued function.

Sketch of proof:

• g(v) = 0, for all $v \in V$, (Proof is analogous: g(v) = 1).

$$W_{f}(a) = \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{f(x)+x \cdot a} = \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{g(x)+x \cdot a} - 2 \sum_{v \in V} (-1)^{g(v)+v \cdot a}$$
$$= W_{g}(a) - 2 \sum_{v \in V} (-1)^{v \cdot a} = W_{g}(a) - 2(2^{\frac{n+k}{2}}) 1_{V^{\perp}}(a).$$
(3)

16/19

• For
$$a \in \mathbb{F}_2^n \setminus V^{\perp}$$
, we have $1_{V^{\perp}}(a) = 0 \implies W_f(a) \in \left\{0, \pm 2^{\frac{n+k}{2}}\right\}$

	•	< ₫ >	★ 差 ▶ ★ 差)	- E	$\mathcal{O}\mathcal{A}\mathcal{O}$
Dilawar Abbas	University of Primorska		BFA, 2024		17 / 19

• For
$$a \in \mathbb{F}_2^n \setminus V^{\perp}$$
, we have $1_{V^{\perp}}(a) = 0 \implies W_f(a) \in \left\{0, \pm 2^{\frac{n+k}{2}}
ight\}$

• For $a \in V^{\perp}$, from Lemma 3, we have $W_g(a) = 2^{rac{n+k}{2}}$, and from Equation (3) we get

$$W_f(a) = 2^{\frac{n+k}{2}} - 2^{\frac{n+k}{2}+1} = -2^{\frac{n+k}{2}}.$$

Dilawar Abbas	University of Primorska		BFA, 2024		17 / 19
		< □ →	▲御 ▶ ★ 臣 ▶ ★ 臣 ▶	æ	996

• For
$$a \in \mathbb{F}_2^n \setminus V^{\perp}$$
, we have $1_{V^{\perp}}(a) = 0 \implies W_f(a) \in \left\{0, \pm 2^{\frac{n+k}{2}}\right\}$

• For $a \in V^{\perp}$, from Lemma 3, we have $W_g(a) = 2^{\frac{n+k}{2}}$, and from Equation (3) we get

$$W_f(a) = 2^{\frac{n+k}{2}} - 2^{\frac{n+k}{2}+1} = -2^{\frac{n+k}{2}}.$$

• We conclude that $W_f(a) \in \left\{0, \pm 2^{\frac{n+k}{2}}\right\}$, for all $a \in \mathbb{F}_2^n$, hence f is a k-plateaued function.

Di	lawa	r Ab	bas
<u> </u>	avva		-bus

17/19

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Class $\ensuremath{\mathcal{D}}$ of plateaued functions

Corollary 1 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $g(x, y) = x \cdot \phi(y)$ be any k-plateaued function in $\mathcal{GMM}_{\frac{n+k}{2}}$ class, where $x \in \mathbb{F}_2^{\frac{n+k}{2}}$, $y \in \mathbb{F}_2^{\frac{n-k}{2}}$ and the mapping $\phi : \mathbb{F}_2^{\frac{n-k}{2}} \to \mathbb{F}_2^{\frac{n+k}{2}}$ for 0 < k < n. Let $E = E_1 \times E_2$ be a linear subspace of $\mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}}$, where E_1 and E_2 are subspaces of $\mathbb{F}_2^{\frac{n+k}{2}}$ and $\mathbb{F}_2^{\frac{n-k}{2}}$ respectively, such that $\phi(E_2) = E_1^{\perp}$ and dim $(E) = \frac{n+k}{2}$. Then, $f(x, y) = x \cdot \phi(y) \oplus 1_{E_1}(x) 1_{E_2}(y)$ is a k-plateaued.

Class $\ensuremath{\mathcal{D}}$ of plateaued functions

Corollary 1 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $g(x, y) = x \cdot \phi(y)$ be any k-plateaued function in $\mathcal{GMM}_{\frac{n+k}{2}}$ class, where $x \in \mathbb{F}_2^{\frac{n+k}{2}}$, $y \in \mathbb{F}_2^{\frac{n-k}{2}}$ and the mapping $\phi : \mathbb{F}_2^{\frac{n-k}{2}} \to \mathbb{F}_2^{\frac{n+k}{2}}$ for 0 < k < n. Let $E = E_1 \times E_2$ be a linear subspace of $\mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}}$, where E_1 and E_2 are subspaces of $\mathbb{F}_2^{\frac{n+k}{2}}$ and $\mathbb{F}_2^{\frac{n-k}{2}}$ respectively, such that $\phi(E_2) = E_1^{\perp}$ and dim $(E) = \frac{n+k}{2}$. Then, $f(x, y) = x \cdot \phi(y) \oplus 1_{E_1}(x) 1_{E_2}(y)$ is a k-plateaued.

Remark:

- \bullet Very similar conditions as for Carlet's class ${\cal D}$ of bent functions.
- Research task is obvious going outside $\mathcal{GMM}_{(n+k)/2}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you

		< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □	ヨー うくぐ
Dilawar Abbas	University of Primorska	BFA, 2024	19 / 19