Secondary plateaued Boolean functions through addition of indicators

Dilawar Abbas Khan

Famnit and IAM, University of Primorska

BFA, 2024

 \leftarrow \Box

- Relevant definitions and notations
- **Bent functions**
- Plateaued functions
- Plateauedness of $f \oplus 1_R$ when f is plateaued
- \bullet Optimal plateaued functions in the GMM class

イ何 ト イヨ ト イヨ トー

4 0 8

э

- \bullet \mathbb{F}_2 the finite field with two elements, i.e. take $\{0,1\}$, add mod 2 and multiply as usual, example $1+1=0, 1 \cdot 0=0, ...$
- \mathbb{F}_2^n n-dimensional vector space over \mathbb{F}_2 . ex. $(1, 0, 1) + (1, 0, 0) = (0, 0, 1)$
- A Boolean function is any mapping from $\mathbb{F}_2^n \to \mathbb{F}_2$. (ex. $f(1,0,1) = 0, f(1,0,0) = 1,...$)

• The set of all Boolean functions in *n* variables is denoted by \mathcal{B}_n .

KED KARD KED KED E VOOR

Relevant definitions and notations (II)

Walsh Hadamard transform:

$$
W_f(u) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus u \cdot x}, \quad \text{for every } u \in \mathbb{F}_2^n
$$

• Parseval's Relation: For every *n*-variable Boolean function f , we have

$$
\sum_{v\in\mathbb{F}_2^n}W_f(v)^2=2^{2n}
$$

Walsh Support:

$$
S_f=\{\omega\in\mathbb{F}_2^n:W_f(\omega)\neq 0\}
$$

4 0 8

Bent functions

A Boolean function f in n variables(n is even) s.t $W_f(y)=\pm 2^{n/2}$, for every $y \in \mathbb{F}_2^n$, is called bent function.

Bent functions

- A Boolean function f in n variables(n is even) s.t $W_f(y)=\pm 2^{n/2}$, for every $y \in \mathbb{F}_2^n$, is called bent function.
- \bullet The C class of bent functions contains all the functions of the form

$$
f(x,y)=x\cdot \pi(y)\oplus 1_{L^{\perp}}(x),
$$

where $x, y \in \mathbb{F}_2^n$ and L is linear subspace of \mathbb{F}_2^n and π is permutation on \mathbb{F}_2^n such that $\phi(a+L)$ is a flat, for all $a\in \mathbb{F}_2^n$, where $\phi:=\pi^{-1}.$

Bent functions

- A Boolean function f in n variables(n is even) s.t $W_f(y)=\pm 2^{n/2}$, for every $y \in \mathbb{F}_2^n$, is called bent function.
- \bullet The C class of bent functions contains all the functions of the form

$$
f(x,y)=x\cdot \pi(y)\oplus 1_{L^{\perp}}(x),
$$

where $x, y \in \mathbb{F}_2^n$ and L is linear subspace of \mathbb{F}_2^n and π is permutation on \mathbb{F}_2^n such that $\phi(a+L)$ is a flat, for all $a\in \mathbb{F}_2^n$, where $\phi:=\pi^{-1}.$

 \bullet The class $\mathcal D$ of be bent functions is defined as

$$
f(x,y)=x\cdot \pi(y)\oplus 1_{E_1}(x)1_{E_2}(y),
$$

where π is permutation on \mathbb{F}_2^n and E_1 , E_2 be two linear subspaces of \mathbb{F}_2^n such that $\pi(E_2) = E_1^{\perp}$.

イロト イ母 トイヨ トイヨ トー

Plateaued Functions

A function $f \in \mathcal{B}_n$ is called *Plateaued* if its Walsh spectrum only takes three values 0 and $\pm \lambda$, where λ (amplitude) is some positive.

Plateaued Functions

- A function $f \in \mathcal{B}_n$ is called *Plateaued* if its Walsh spectrum only takes three values 0 and $\pm \lambda$, where λ (amplitude) is some positive.
- A Boolean function $f:\mathbb{F}_2^n\rightarrow\mathbb{F}_2$ is s -plateaued function if

$$
W_f(u) \in \{0, \pm 2^{\frac{n+s}{2}}\}, \text{ for every } u \in \mathbb{F}_2^n,
$$

where $s \geq 1$ if n is odd and $s \geq 2$ if n is even(s and n always have the same parity).

イロト イ押 トイヨ トイヨ トー

Plateaued Functions

- A function $f \in \mathcal{B}_n$ is called *Plateaued* if its Walsh spectrum only takes three values 0 and $\pm \lambda$, where λ (amplitude) is some positive.
- A Boolean function $f:\mathbb{F}_2^n\rightarrow\mathbb{F}_2$ is s -plateaued function if

$$
W_f(u) \in \{0, \pm 2^{\frac{n+s}{2}}\}, \text{ for every } u \in \mathbb{F}_2^n,
$$

where $s \geq 1$ if n is odd and $s \geq 2$ if n is even(s and n always have the same parity).

The $\#S_f$ of any s -plateaued function is 2^{n-s} .

• Semibent function: 1-plateaued or 2-plateaued function are semibent.

KONKAPRA BRADE

Addition of indicator to any f

The indicator of $R \subset \mathbb{F}_2^n$: $1_R(x) = 1$ IFF $x \in R$

Addition of indicator of R to $f : \mathbb{F}_2^n \to \mathbb{F}_2$, then WHT of $f \oplus 1_R$:

$$
W_{f \oplus 1_R}(u) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus 1_R(x) \oplus u \cdot x} \\
= \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus u \cdot x} + \sum_{x \in R} (-1)^{f(x) \oplus 1_R(x) \oplus u \cdot x} \\
= \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus u \cdot x} - 2 \sum_{x \in R} (-1)^{f(x) \oplus u \cdot x} \\
= W_f(u) - 2 \sum_{x \in R} (-1)^{f(x) \oplus u \cdot x} = W_f(u) - 2U(u). \tag{1}
$$

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Plateauedness of $f \oplus 1_R$

Lemma (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$. Then f is s-plateaued $(1 \leq s \leq n)$ if and only if it holds that $\#S_f=2^{n-s}$ and

$$
\begin{cases}\nW_f(u) = 0, & u \notin S_f, \\
W_f(u) \equiv 2^{\frac{n+s}{2}} \pmod{2^{\frac{n+s}{2}+1}}, & u \in S_f.\n\end{cases}
$$
\n(2)

Plateauedness of $f \oplus 1_R$

Lemma (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$. Then f is s-plateaued $(1 \leq s \leq n)$ if and only if it holds that $\#S_f=2^{n-s}$ and

$$
\begin{cases}\nW_f(u) = 0, & u \notin S_f, \\
W_f(u) \equiv 2^{\frac{n+s}{2}} \pmod{2^{\frac{n+s}{2}+1}}, & u \in S_f.\n\end{cases}
$$
\n(2)

Sketch of proof: If f is s-plateaued, then one can easily verify that (2) holds. Let us now assume that [\(2\)](#page-11-0) holds. By Parsevals' relation

Plateauedness of $f \oplus 1_R$

Lemma (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024)

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$. Then f is s-plateaued $(1 \leq s \leq n)$ if and only if it holds that $\#S_f=2^{n-s}$ and

$$
\begin{cases}\nW_f(u) = 0, & u \notin S_f, \\
W_f(u) \equiv 2^{\frac{n+s}{2}} \pmod{2^{\frac{n+s}{2}+1}}, & u \in S_f.\n\end{cases}
$$
\n(2)

Sketch of proof: If f is s-plateaued, then one can easily verify that (2) holds. Let us now assume that [\(2\)](#page-11-0) holds. By Parsevals' relation

$$
2^{2n} = \sum_{u \in \mathbb{F}_2^n} W_f^2(u) \geq \#S_f \cdot 2^{n+s} = 2^{n-s} \cdot 2^{n+s} = 2^{2n},
$$

i.e. $W_f^2(u) = 2^{n+s}$, or $W_f(u) = \pm 2^{\frac{n+s}{2}}$, $\forall u \in S_f$.

Hence, $f \oplus 1_R$ is s- plateaued function.

$\mathcal{GMM}_{\frac{n}{2}+k}$ Class

The Maiorana-McFarland class M is the set of m-variable $(m = 2n)$ Boolean functions of the form

$$
f(x,y)=x\cdot \pi(y)+g(y),\quad \forall x,y\in \mathbb{F}_2^n,
$$

where π is a permutation on \mathbb{F}_2^n and $g \in \mathcal{B}_n$.

$\mathcal{GMM}_{\frac{n}{2}+k}$ Class

The Maiorana-McFarland class M is the set of m-variable $(m = 2n)$ Boolean functions of the form

$$
f(x,y)=x\cdot \pi(y)+g(y),\quad \forall x,y\in \mathbb{F}_2^n,
$$

where π is a permutation on \mathbb{F}_2^n and $g \in \mathcal{B}_n$.

Definition

The set of all Boolean functions
$$
f_{n+k} : \mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}} \to \mathbb{F}_2
$$
, of the form

$$
f_{\frac{n+k}{2}}(x,y)=x\cdot \phi^{(k)}(y)\oplus g_k(y),\;\;x\in \mathbb{F}_2^{\frac{n\pm k}{2}}, y\in \mathbb{F}_2^{\frac{n\mp k}{2}},
$$

is called $\mathcal{GMM}_{\frac{n+k}{2}}$ class, where $\phi^{(k)}:\mathbb{F}_2^{\frac{n\mp k}{2}}\to\mathbb{F}_2^{\frac{n\pm k}{2}}$ and $g_k\in\mathcal{B}_{\frac{n\mp k}{2}}$, for $0 \leq k < n$. For $k = 0$ this class corresponds to the \mathcal{MM} class of bent functions when $\phi^{(0)}$ is a permutation on $\mathbb{F}_2^{\frac{n}{2}}$.

Towards optimal plateaued functions

- Y. Zheng, X. M Zhang. On plateaued functions.
- We provide an explicit way to design optimal plateaued functions.
- Optimal : max. Degree $= \frac{n-k}{2} + 1$

Towards optimal plateaued functions

- Y. Zheng, X. M Zhang. On plateaued functions.
- We provide an explicit way to design optimal plateaued functions.
- Optimal : max. Degree $= \frac{n-k}{2} + 1$

Lemma (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $\phi: \mathbb{F}_2^t \to \mathbb{F}_2^{t+j}$ \mathcal{L}^{t+j}_2 be defined as $\phi = (\pi(y), g_1(y), \ldots, g_j(y))$ so that at least one of \mathcal{g}_j has degree t and π is a permutation on \mathbb{F}_2^t . Then, ϕ is injective and of maximum degree t.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

Towards optimal plateaued functions

- Y. Zheng, X. M Zhang. On plateaued functions.
- We provide an explicit way to design optimal plateaued functions.
- Optimal : max. Degree $= \frac{n-k}{2} + 1$

Lemma (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $\phi: \mathbb{F}_2^t \to \mathbb{F}_2^{t+j}$ \mathcal{L}^{t+j}_2 be defined as $\phi = (\pi(y), g_1(y), \ldots, g_j(y))$ so that at least one of \mathcal{g}_j has degree t and π is a permutation on \mathbb{F}_2^t . Then, ϕ is injective and of maximum degree t.

Sketch of proof:

If for some $y \neq y' \in \mathbb{F}_2^t$, we have $\phi(y) = \phi(y')$, $\implies \pi(y) = \pi(y')$. A contradiction as π is a permutation, Hence, ϕ is injective.

• At least one of g_i has maximum algebraic degree t, so does ϕ .

Let
$$
f(x, y) = x \cdot \phi(y) + h(y)
$$
, where $x \in \mathbb{F}_2^{\frac{n+k}{2}}$, $y \in \mathbb{F}_2^{\frac{n-k}{2}}$, for $0 < k < n$.
\nLet $\phi(y) = (\pi(y), g_1(y), \dots, g_k(y))$, where
\n• π is permutation on $\mathbb{F}_2^{\frac{n-k}{2}}$,
\n• $g_1, \dots, g_k \in \mathcal{B}_{\frac{n-k}{2}}$ be such that $\max_i \deg(g_i) = \frac{n-k}{2}$,
\n• $h \in \mathcal{B}_{\frac{n-k}{2}}$ is arbitrary.
\nThen, $f(x, y) = x \cdot \phi(y) + h(y)$ is an optimal k-plateaud function.

э

化重新润滑脂

4 D F

●▶

 299

An element $a \in F_2^n$ is called a linear structure of $f \in \mathcal{B}_n$, if

$$
D_{a}f = f(x+a) + f(x) = constant \quad \forall x \in \mathbb{F}_{2}^{n}.
$$

 $f \in \mathcal{B}_n$ has no linear structures, if 0_n is the only linear structure of f.

Theorem 2 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let f be defined as in Theorem [1](#page-19-0) and assume that $D_b\phi(y) \neq 0_{n/2+k}$ and $a \cdot \phi(y) \neq 0$. Then, f has no linear structures.

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

Sketch of proof

 \bullet The function f has no linear structures if

 $D_{a,b}f(x,y) \neq \text{constant}, \quad \text{where} \quad (a,b) \in \mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}}.$

 \bullet The function f has no linear structures if

 $D_{a,b}f(x,y) \neq \text{constant}, \quad \text{where} \quad (a,b) \in \mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}}.$

• The derivative of $f(x, y)$ is given as:

$$
D_{(a,b)}f(x,y) = x \cdot D_b\phi(y) + a \cdot \phi(y+b) + D_bh(y)
$$

 \bullet The function f has no linear structures if

 $D_{a,b}f(x,y) \neq \text{constant}, \quad \text{where} \quad (a,b) \in \mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}}.$

• The derivative of $f(x, y)$ is given as:

$$
D_{(a,b)}f(x,y)=x\cdot D_b\phi(y)+a\cdot\phi(y+b)+D_bh(y)
$$

- **If** $b=0$ then, $D_{(a,b)}f(x,y)\neq 0 \iff a\cdot \phi(y)\neq 0$
- **If** $b \neq 0$ then, sufficient condition for $D_{(a,b)}f(x,y) \neq 0$ is $D_b\phi(y) \neq 0.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ 『 콘 』 K) Q Q Q

Theorem (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $\pi : \mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ $2^{n/2}$ be a permutation, with *n* even. Suppose that $\mathcal{A}=$ a $+$ E be an affine subspace of $\mathbb{F}_2^{n/2}$ $\binom{n/2}{2}$, dim $(A) = n/2 - 1$, and $B \subset \mathbb{F}_2^{n/2}$ 2 with $\#B = 2$. For $g(x, y) = x \cdot \pi(y) \oplus 1_{A \times B}(x, y)$ it holds that:

Theorem (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $\pi : \mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ $2^{n/2}$ be a permutation, with *n* even. Suppose that $\mathcal{A}=$ a $+$ E be an affine subspace of $\mathbb{F}_2^{n/2}$ $\binom{n/2}{2}$, dim $(A) = n/2 - 1$, and $B \subset \mathbb{F}_2^{n/2}$ 2 with $\#B = 2$. For $g(x, y) = x \cdot \pi(y) \oplus 1_{A \times B}(x, y)$ it holds that: $\textbf{D} \quad \text{If } \#(B \cap \pi^{-1}(u \oplus E^\perp)) \in \{0,2\} \text{ for all } u \in \mathbb{F}_2^{n/2}$ $\frac{n}{2}$, then g is bent.

KID KA KID KID KID KOQO

Theorem (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $\pi : \mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ $2^{n/2}$ be a permutation, with *n* even. Suppose that $\mathcal{A}=$ a $+$ E be an affine subspace of $\mathbb{F}_2^{n/2}$ $\binom{n/2}{2}$, dim $(A) = n/2 - 1$, and $B \subset \mathbb{F}_2^{n/2}$ 2 with $\#B = 2$. For $g(x, y) = x \cdot \pi(y) \oplus 1_{A \times B}(x, y)$ it holds that: $\textbf{D} \quad \text{If } \#(B \cap \pi^{-1}(u \oplus E^\perp)) \in \{0,2\} \text{ for all } u \in \mathbb{F}_2^{n/2}$ $\frac{n}{2}$, then g is bent. $\textbf{\textcircled{\char'13em 1}}\ \text{if $\#(B\cap \pi^{-1}({u}\oplus E^\perp))\in \{0,1\}$ for all $u\in\mathbb{F}_2^{n/2}$}.$ $2^{n/2}$, then g is semi-bent.

KOD KAP KED KED E VAA

Theorem (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $\pi : \mathbb{F}_2^{n/2} \to \mathbb{F}_2^{n/2}$ $2^{n/2}$ be a permutation, with *n* even. Suppose that $\mathcal{A}=$ a $+$ E be an affine subspace of $\mathbb{F}_2^{n/2}$ $\binom{n/2}{2}$, dim $(A) = n/2 - 1$, and $B \subset \mathbb{F}_2^{n/2}$ 2 with $\#B = 2$. For $g(x, y) = x \cdot \pi(y) \oplus 1_{A \times B}(x, y)$ it holds that: $\textbf{D} \quad \text{If } \#(B \cap \pi^{-1}(u \oplus E^\perp)) \in \{0,2\} \text{ for all } u \in \mathbb{F}_2^{n/2}$ $\frac{n}{2}$, then g is bent. $\textbf{\textcircled{\char'13em 1}}\ \text{if $\#(B\cap \pi^{-1}({u}\oplus E^\perp))\in \{0,1\}$ for all $u\in\mathbb{F}_2^{n/2}$}.$ $2^{n/2}$, then g is semi-bent. $\quad \ \ \oplus \ \ \mathsf{If} \ \#(B \cap \pi^{-1}(u \oplus E^\perp)) \in \{0,1,2\} \ \mathsf{for} \ \mathsf{all} \ \ u \in \mathbb{F}_2^{n/2}$ $\frac{n}{2}$, then g is 5-valued spectra function.

イロト イ母 トイミト イヨト ニヨー りんぴ

Let $f: \mathbb{F}_2^n \to \mathbb{F}_2$ be a k-plateaued function, $0 \le k \le n$, $n \equiv k \pmod{2}$,

and let V be a subspace of \mathbb{F}_2^n with $\dim(V) = \frac{n+k}{2}$.

• If
$$
f(v) = 0
$$
, for all $v \in V$, then $W_f(w) = 2^{\frac{n+k}{2}}$, for all $w \in V^{\perp}$.

If $f(v) = 1$, for all $v \in V$, then $W_f(w) = -2^{\frac{n+k}{2}}$, for all $w \in V^{\perp}$.

K □ ▶ K @ ▶ K 글 X K 글 X _ 글 → 9 Q Q

Let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be a k-plateaued function, $0 \le k \le n$, $n \equiv k \pmod{2}$,

and let V be a subspace of \mathbb{F}_{2}^{n} , $\dim(V)=\frac{n+k}{2}$, such that g is constant on

V. Then, the function $f = g + 1_V$ is also a k-plateaued function.

Let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be a k-plateaued function, $0 \le k \le n$, $n \equiv k \pmod{2}$,

and let V be a subspace of \mathbb{F}_{2}^{n} , $\dim(V)=\frac{n+k}{2}$, such that g is constant on

V. Then, the function $f = g + 1_V$ is also a k-plateaued function.

Sketch of proof:

•
$$
g(v) = 0
$$
, for all $v \in V$,

Let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be a k-plateaued function, $0 \le k \le n$, $n \equiv k \pmod{2}$,

and let V be a subspace of \mathbb{F}_{2}^{n} , $\dim(V)=\frac{n+k}{2}$, such that g is constant on

V. Then, the function $f = g + 1_V$ is also a k-plateaued function.

Sketch of proof:

 $g(v) = 0$, for all $v \in V$, (Proof is analogous: $g(v) = 1$).

Let $g : \mathbb{F}_2^n \to \mathbb{F}_2$ be a k-plateaued function, $0 \le k \le n$, $n \equiv k \pmod{2}$,

and let V be a subspace of \mathbb{F}_{2}^{n} , $\dim(V)=\frac{n+k}{2}$, such that g is constant on

V. Then, the function $f = g + 1_V$ is also a k-plateaued function.

Sketch of proof:

 $g(v) = 0$, for all $v \in V$, (Proof is analogous: $g(v) = 1$).

$$
W_f(a) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x)+x \cdot a} = \sum_{x \in \mathbb{F}_2^n} (-1)^{g(x)+x \cdot a} - 2 \sum_{v \in V} (-1)^{g(v)+v \cdot a}
$$

= $W_g(a) - 2 \sum_{v \in V} (-1)^{v \cdot a} = W_g(a) - 2(2^{\frac{n+k}{2}})1_{V^{\perp}}(a).$ (3)

KED KARD KED KED E VOOR

$$
\bullet\ \ \text{For}\ \ a\in\mathbb{F}_2^n\setminus\ V^{\perp},\ \text{we have}\ 1_{V^{\perp}}(a)=0\ \Longrightarrow\ \ W_f(a)\in\left\{0,\pm 2^{\frac{n+k}{2}}\right\}
$$

• For
$$
a \in \mathbb{F}_2^n \setminus V^{\perp}
$$
, we have $1_{V^{\perp}}(a) = 0 \implies W_f(a) \in \left\{0, \pm 2^{\frac{n+k}{2}}\right\}$

For $a\in V^{\perp}$, from Lemma [3,](#page-28-0) we have $\mathcal{W}_\mathcal{g}(a)=2^{\frac{n+k}{2}}$, and from Equation [\(3\)](#page-29-0) we get

$$
W_f(a)=2^{\frac{n+k}{2}}-2^{\frac{n+k}{2}+1}=-2^{\frac{n+k}{2}}.
$$

• For
$$
a \in \mathbb{F}_2^n \setminus V^{\perp}
$$
, we have $1_{V^{\perp}}(a) = 0 \implies W_f(a) \in \left\{0, \pm 2^{\frac{n+k}{2}}\right\}$

For $a\in V^{\perp}$, from Lemma [3,](#page-28-0) we have $\mathcal{W}_\mathcal{g}(a)=2^{\frac{n+k}{2}}$, and from Equation [\(3\)](#page-29-0) we get

$$
W_f(a) = 2^{\frac{n+k}{2}} - 2^{\frac{n+k}{2}+1} = -2^{\frac{n+k}{2}}.
$$

We conclude that $W_f(a)\in\left\{0,\pm 2^{\frac{n+k}2}\right\}$, for all $a\in\mathbb{F}_2^n$, hence f is a k-plateaued function.

 Ω

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A \Rightarrow A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in A$

Class D of plateaued functions

Corollary 1 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $g(x,y) = x \cdot \phi(y)$ be any *k*-plateaued function in $\mathcal{GMM}_{\frac{n+k}{2}}$ class, where $x\in \mathbb{F}_2^{\frac{n+k}{2}}$, $y\in \mathbb{F}_2^{\frac{n-k}{2}}$ and the mapping $\phi: \mathbb{F}_2^{\frac{n-k}{2}}\to \mathbb{F}_2^{\frac{n+k}{2}}$ for $0 < k < n$. Let $E = E_1 \times E_2$ be a linear subspace of $\mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}}$, where E_1 and E_2 are subspaces of $\mathbb{F}_2^{\frac{n+k}{2}}$ and $\mathbb{F}_2^{\frac{n-k}{2}}$ respectively, such that $\phi(E_2) = E_1^{\perp}$ and $\dim(E) = \frac{n+k}{2}$. Then, $f(x, y) = x \cdot \phi(y) \oplus 1_{E_1}(x) 1_{E_2}(y)$ is a k-plateaued.

Class D of plateaued functions

Corollary 1 (E. Pasalic, S.Hodžic, S. Kudin, D.A.Khan; BFA 2024) Let $g(x,y) = x \cdot \phi(y)$ be any *k*-plateaued function in $\mathcal{GMM}_{\frac{n+k}{2}}$ class, where $x\in \mathbb{F}_2^{\frac{n+k}{2}}$, $y\in \mathbb{F}_2^{\frac{n-k}{2}}$ and the mapping $\phi: \mathbb{F}_2^{\frac{n-k}{2}}\to \mathbb{F}_2^{\frac{n+k}{2}}$ for $0 < k < n$. Let $E = E_1 \times E_2$ be a linear subspace of $\mathbb{F}_2^{\frac{n+k}{2}} \times \mathbb{F}_2^{\frac{n-k}{2}}$, where E_1 and E_2 are subspaces of $\mathbb{F}_2^{\frac{n+k}{2}}$ and $\mathbb{F}_2^{\frac{n-k}{2}}$ respectively, such that $\phi(E_2) = E_1^{\perp}$ and $\dim(E) = \frac{n+k}{2}$. Then, $f(x, y) = x \cdot \phi(y) \oplus 1_{E_1}(x) 1_{E_2}(y)$ is a k-plateaued.

Remark:

- Very similar conditions as for Carlet's class D of bent functions.
- Research task is obvious going outside $\mathcal{GMM}_{(n+k)/2}.$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Thank you

