My Favorite Proof on Boolean Functions: Mykkeltveit's proof for Golomb's Conjecture

Tor Helleseth University of Bergen NORWAY

My First Research Group

ERNSTS. SELMER

LINEAR RECURRENCE RELATION: OVER FINITE FIELDS

Provent S. Selmer

DEPARTMENT OF MATHEMATIC UNIVERSITY OF BERGEN, NORWA

• 1969 – I started as master student at UiB

- Ernst S. Selmer become my master supervisor
- My first task reading his lecture notes on linear shift registers
 Linear Recurrence Relations over finite fields
- In 1969/70 lectures on non-linear shift registers by visiting postdoc researchers Harold Fredricksen (former PhD student of Professor Solomon Golomb).
- One PhD student (Johannes Mykkeltveit)
- One PhD student (myself)

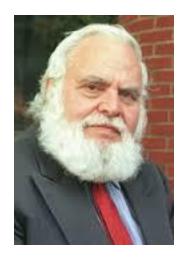
(Some others like (Torleiv Kløve, Kjell Kjeldsen)

Some visitors now and them. Most notable Solomon Golomb

Solomon W. Golomb

- Professor at University of Southern California (1962-2016)
- Fulbright scholar at University of Oslo (1955–1956)
 "Selmer and I (in Oslo) had many interests in common, in prime number theory, sequence generation, combinatorics etc."
- He was another pioneer with publications on shift registers in the 1960s.
 - Solomon Golomb, "Shift Register Sequences" (1967)

- Franklin Medal 2016
- National Medal of Honor 2014
- Hamming Medal 2000
- Shannon Award 1985



Outline

- In 1967 Solomon W. Golomb published a landmark book entitled: Shift Register Sequences
- S. Golomb studied linear and nonlinear shift registers
- Any Boolean function $f: F_2^n \to F_2$ of the form $f(s_0, ..., s_{n-1}) = s_0 + g(s_1, ..., s_{n-1})$ mapping

 $(s_0, ..., s_{n-1}) \rightarrow (s_1, ..., s_{n-1}, s_0 + g(s_1, ..., s_{n-1}))$ permutes the set B_n of all 2ⁿ different binary n-tuples into distinct cycles.

 What is the maximum number of cycles that B_n can be decomposed into for all such Boolean functions f

Golomb's Conjecture

Among all $2^{2^{n-1}}$ nonsingular Boolean functions f the maximum number of cycles occurs for $f = s_0$ (i.e., for g = 0)

Golomb's Conjecture : The maximum number of cycles by any f occurs for g = 0 and equals

$$Z(n) = \frac{1}{n} \sum_{d|n} \varphi(d) 2^{\frac{n}{d}}$$

- Golomb's conjecture was based on computer search for n = 5
- Improvements by Lempel for small cases like n = 6,7,8
- Further improvement Fredricsen and Mykkeltveit n = 9,10,11,12.
- Special cases solved in Fredricksen's thesis.

Finally solved by Mykkeltveit by a wondeful proof.

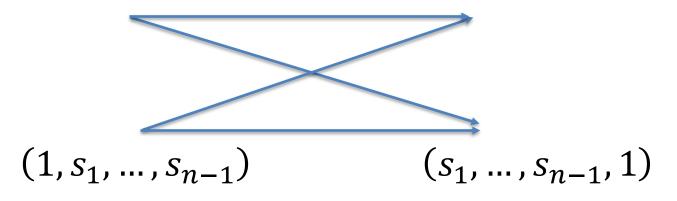
- One year of work.
- Published in Journal of Combinatorial Theory, Series B, 1972 (paper was 6-pages long and Mykkeltveit's 2nd paper as PhD)

DeBruijn Graph B_n

- Nodes = Set of all 2ⁿ binary n-tuples
- Directed edge iff

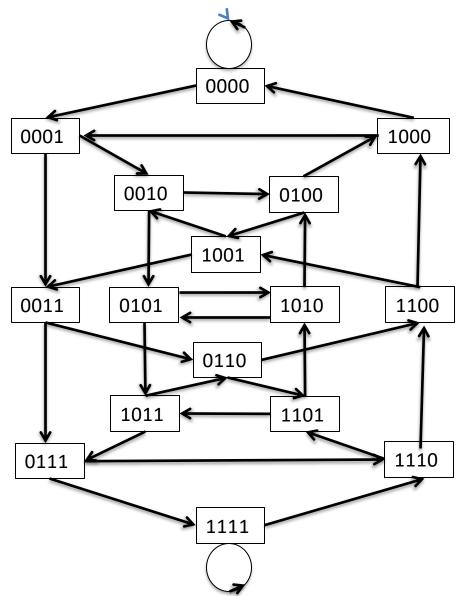
$$(s_0, s_1, \dots, s_{n-1}) \to (s_1, \dots, s_{n-1}, s_n)$$

Each node has two successors and two predecessors



DeBruijn Graphs (B₂ and B₃) B₂ **B**₃

DeBruijn graph B₄



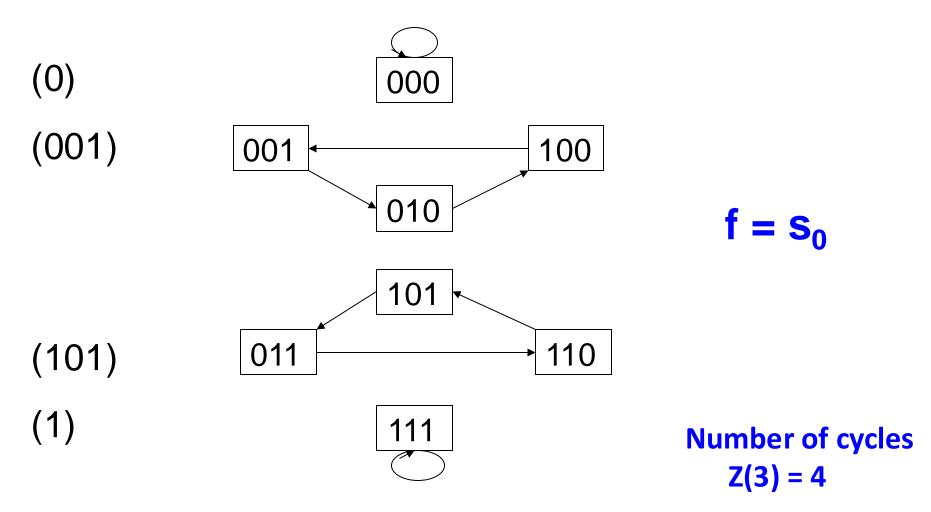
Pure Cycling Register (PCR_n)

- Let $f(s_0, s_1, ..., s_{n-1}) = s_0$ i.e., g = 0 (since $f=s_0 + g(s_1, ..., s_n)$)
 - Weight of truth table of g is 0
 - Cycle structure (PCR_n)
 - n=3 (0), (1), (001), (011) n=4 (0), (1), (01), (0001), (0011), (0111)
- Number of cycles of B_n is well known to be

$$Z(n) = \frac{1}{n} \sum_{d|n} \varphi(d) 2^{\frac{n}{d}}$$

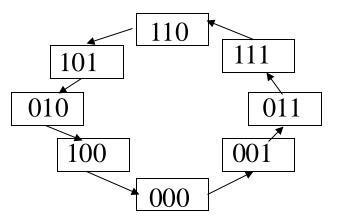
Pure Cycling Register (PCR_3) : (f = s_0)

• Decomposition of B_3 for Boolean function $f=s_0$



Example – de Bruijn Sequence

• Let $f(s_0, s_1, s_2) = 1 + s_0 + s_1 + s_1 s_2$



• This gives a maximal sequence of length 2ⁿ

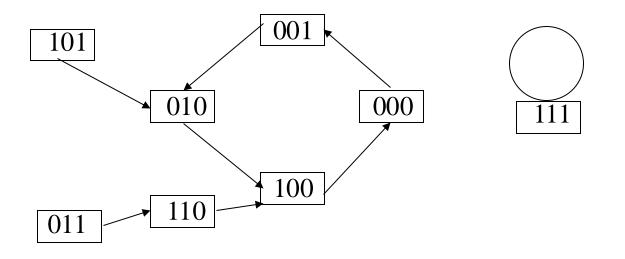
... 11010001 ...

and is called a de Bruijn sequence

• Number of de Bruijn sequences of period 2ⁿ are 2^{2ⁿ⁻¹-n}

Example – Singular f

• Let $f(s_0, s_1, s_2) = 1 + s_0 + s_1 + s_2 + s_0 s_1 + s_0 s_2 + s_1 s_2$



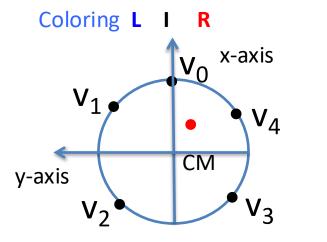
- Contains "branch point" and such an f is called singular
- f is nonsingular if and only if $f = s_0 + g(s_1, ..., s_{n-1})$
- Then $(s_0, s_1, \dots, s_{n-1}) \rightarrow (s_1, s_2, \dots, s_{n-1}, f(s_0, s_1, \dots, s_{n-1}))$ is a permutation of B_n

Mykkeltveit's Proof – Overview

- **1.** Color all the nodes in B_n
- 2. Select one node on each of the Z(n) PCR_n cycle
- **3.** Show that each cycle in B_n contains at least one selected node

Coloring deBruijn graph B₄ •

- Any cycle in B₄ contains at least one of the Z(4)=6selected green colored nodes
- Coloring due to Mykkeltveit
- How to select these nodes with green color ?



How to for example color the node $(v_0 v_1 v_2 v_3 v_4)$?

Compute center of mass CM for an n-tuple located around the unit circle **0** = 0 kg and **1** = 1 kg

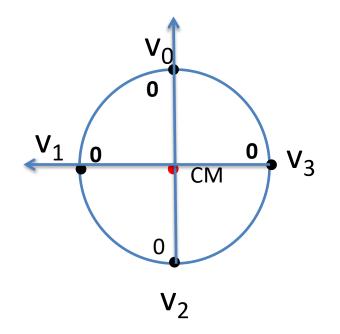
1. Color all the nodes in B_n

All nodes are colored L, I, or R according to whether the center of mass CM is Left , In or Right of x-axis

Coloring B₄

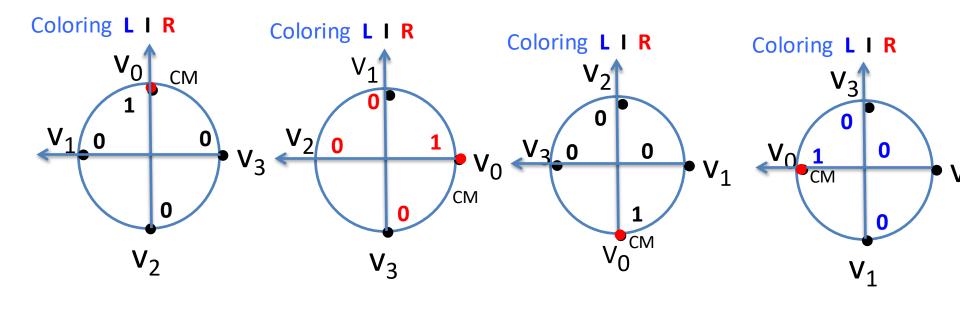
Coloring L I R

How to color node $(v_0 v_1 v_2 v_3) = (0 0 0 0)$?

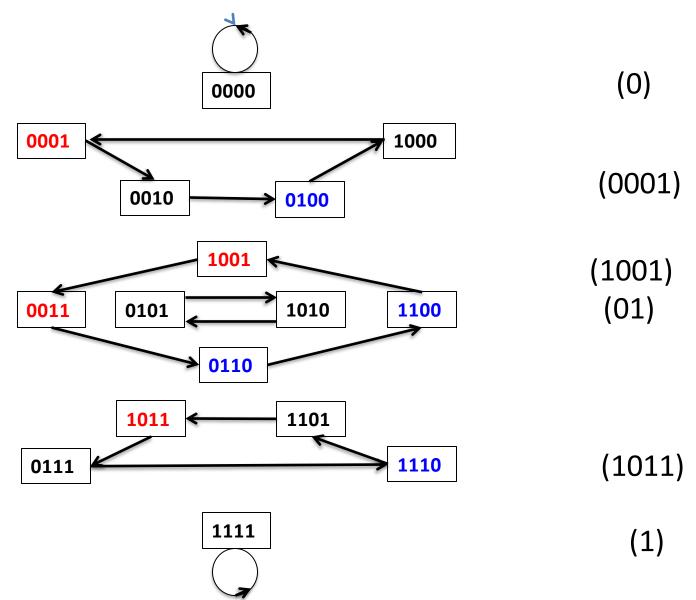


Coloring B₄

How to color nodes PCR_n cycles ($v_o v_1 v_2 v_3$) = (**1000**) ?



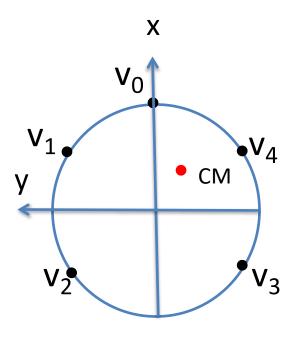
Pure Cycling Register (PCR₄) : f = s_0



Coloring of PCR_n cycles

Note that there are essentially only two possible ways of coloring all of the Z(n) PCR_n cycles

CM of an n-tuple



Let $V_0 = (v_0, v_1, v_2, v_3, v_4)$, (n=5) Place v_t in coordinate position

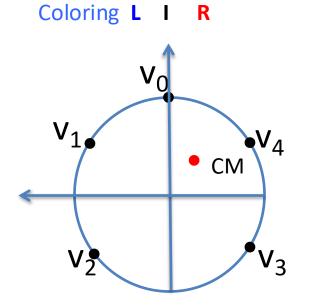
$$(x, y) = \mathop{\mathbb{C}}_{\Theta} \cos \frac{2\rho it}{n}, \sin \frac{2\rho it}{n} \overset{"}{\stackrel{\circ}{\stackrel{\circ}{\rightarrow}}}$$

Compute CM=Center of mass Moment y = $m_{V_0} = \mathop{\bigotimes}_{t=0}^{n-1} v_t \sin \frac{2\rho it}{n}$

Color a vector (v_0 , v_1 , ..., v_{n-1})

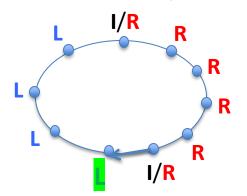
- L = If CM on the **left** of the x-axis (y > 0)
- $I = If CM on the x-axis \qquad (y = 0)$
- \mathbf{R} = If CM on the **right** of the x-axis (y < 0)

Coloring the PCR_n Cycles



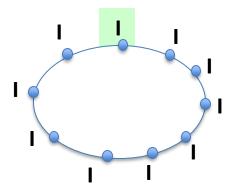
Type 1: (CM not in center of PCR cycle)

• Select unique node L with predecessor not L)



Type 2: (CM in the center of PCR cycle)

• Select any node colored I



2. Mark one node on each of the Z(n) PCR cycles

- **1.** Color all the nodes in B_n
- 2. Select one node on each of the Z(n) PCR cycles
- **3.** Show that each cycle in B_n contains at least one selected node

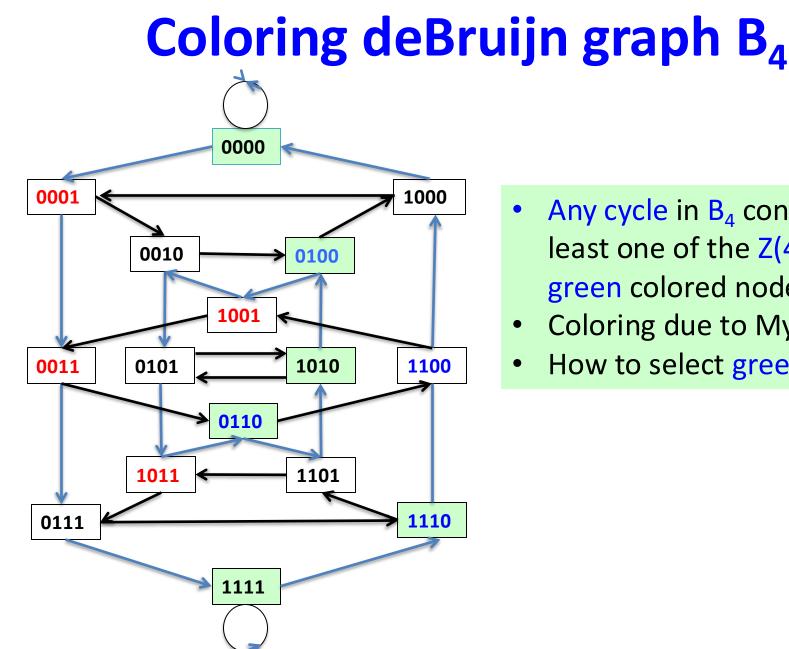
Mark one node on each PCR_n cycle

Case 1:

If all nodes on a PCR_n cycle have color I (i.e. CM in center) then select any node arbitrarily from cycle.

Case 2:

If a PCR_n has CM not in the center (i.e., has nodes of colors both L and R), then select the UNIQUE node L on the PCR_n cycle with a predecessor **not** colored L.



- Any cycle in B₄ contains at least one of the Z(4)=6 green colored nodes
- Coloring due to Mykkeltveit
- How to select green color?

Properties of the coloring of the deBruijn graph B_n

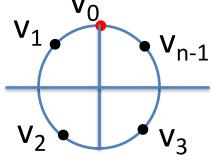
This is important to prove that the coloring method works (surprising and very trivial properties)

The two predecessors of a node have the same color

Lemma

 $(v_0, v_1, ..., v_{n-1})$ and $(v_0+1, v_1, ..., v_{n-1})$ have the same color.

Proof. The two n-vectors only differ in the red point on the x-axis that do not affect the y-coordinate of CM.



Corollary

The two predecessors of any node $(v_1, v_2, ..., v_n)$ in the deBruijn graph have the same color.

The two successors of any node cannot both have color I

Lemma

The two successors of a node $(v_{0,}v_1, ..., v_{n-1})$ cannot have the same color I.

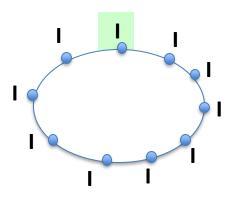
Proof. The two successors of $(v_0, v_1, \dots, v_{n-1})$ are the two nodes $(v_1, v_2, \dots, v_{n-1}, 0)$ and $(v_1, v_2, \dots, v_{n-1}, 1)$.

Since they only differ in the last coordinate (red point), they cannot both have CM on the x-axis and thus cannot have same color I.

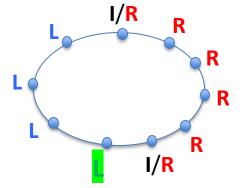
There are two types of cycles on PCR_n

Type 1: All nodes on the PCR_n are I-nodes

(i.e., CM is in the center)



Type 2: All nodes of the PCR_n cycle consist of one block of L-nodes and one block of R-nodes separated by at most one I-node



General cycles on B_n

Colors on a general cycle

Lemma 1

Let $(s_0, s_1, ..., s_{e-1})$ be a cycle of length e on B_n . The nodes (n-tuples) of the cycles are $S_t = (s_t, s_{t+1}, ..., s_{t+n-1})$, t=0,1,...,e-1. Then either

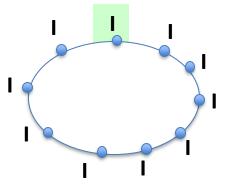
- All nodes on the cycle have the color I
- Cycle contains at least one R and one L

Proof. This follows since the sum of the y-coordinates on the nodes on a cycle is

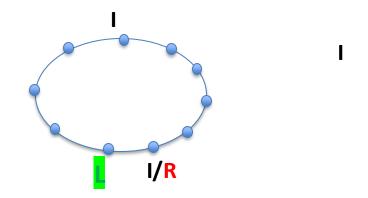
$$\sum_{t=0}^{e-1} m_{S_t} = \sum_{t=0}^{e-1} \sum_{t'=0}^{n-1} s_{t+t'} \sin \frac{2\pi i t'}{n} = \sum_{t=0}^{e-1} s_t \sum_{t'=0}^{n-1} \sin \frac{2\pi i t'}{n} = 0$$

There are two types of (general) cycles in B_n

Type G1: All nodes on the B_n are I-nodes (i.e., CM is in the center)

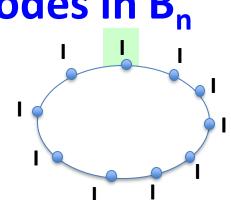


Type G2: The B_n cycle consist of at least one L and one R node



Cycles with only I-nodes in B_n

Lemma: A cycle in B_n with only I-nodes is a PCR_n cycle with CM in center



Proof: Any node in the cycle has an **I**-node as predecessor.

Therefore CM is in center since node is on a PCR_n cycle with at least two consecutive **I**-nodes.

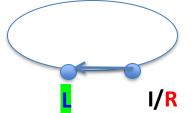
Suppose cycle has I-nodes from two different PCR cycles C_1 and C_2 . Then an I-node on C_1 has successor on C_2

Since I-node $(v_0v_1 \cdots v_{n-1})$ on C_1 has two possible I-node successors $(v_1v_2 \cdots v_{n-1}v_0)$ on C_1 and $(v_1 \cdots v_{n-1}v_0+1)$ on C_2 this is impossible.

Cycles with and L's (and R's)

Lemma

In a cycle with L's and R's let V be a node with color L with predecessor not in L. Then (in PCR_n) V is the first node on a block of L's on the PCR_n .



Proof. Predecessor of V has color $\neq L$ on the cycle. Therefore, both predecessors of V (also the one on PCR_n) have color not being L. Hence, V is first node in a block of L's on PCR_n.

Observation: Each cycle in B_n with the property above contains the first L node in some PCR_n cycle in a block of L's

Final Remarks – Coloring Summary

- Shifting a node cyclically shifts **CM**
- The two predecessors for a node in B_n have the same color (since they only differ in 0-th coordinate on the x-axis).
- The two successors of a node can not both have color I (since they only differ in position n-1).
- A cycle in PCR_n has either:
 - All nodes colored I
 - One R block and one L block separated by at most one I.
- Any cycle S =(s₀,s₁,...,s_{e-1}) in B_n has (average moment = 0), i.e. has either:
 - All nodes colored I
 - At least one $\ensuremath{\mathsf{R}}$ and one $\ensuremath{\mathsf{L}}$ node