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Complementary Sequences :

Background



Correlation of Discrete-time Signals

Suppose two length-L sequences a = {a(t)} and b = {b(t)}. The
aperiodic correlation function of a and b for time-shift τ is

defined as
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Correlation of Discrete-time Signals

Suppose two length-L sequences a = {a(t)} and b = {b(t)}. The
aperiodic correlation function of a and b for time-shift τ is

defined as

ρa,b(τ) =
L−1∑
t=0

a(t)b(t + τ)∗

where a(t), b(t) = 0 for t ̸∈ {0, 1, . . . , L− 1}

Auto-correlation: a = b
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Perfect Complementary Sequences

A sequence is called perfect aperiodic/periodic complementary

sequence if it’s correlation function is zero for all non-zero time

shifts.

▶ There is no binary sequence a, where ρa(τ) = 0 ∀ τ ̸= 0.

▶ Although there exist a perfect binary sequence, a = (0001),

with respect to periodic correlation function, i.e.,

ρa(τ) + ρ∗(a)(L− τ) = 0 ∀ τ ̸= 0.
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Golay Complementary Pair (GCP)

A pair of sequences (a,b) is said to be a GCP if

ρa(τ) + ρb(τ) = 0, 0 < |τ | < L.

a = (0000001101100101) and b = (0101011000110000)
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Figure 1: Auto-correlation Sum Plot of a and b

τ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ρa(τ) 16 1 0 5 0 −5 0 −1 0 1 0 1 0 −1 0 −1

ρb(τ) 16 −1 0 −5 0 5 0 1 0 −1 0 −1 0 1 0 1

ρa(τ) + ρb(τ) 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 / 38



Complementary Set (CS)

A set containing more than two length-L sequences with aperiodic

auto-correlation sum equating zero is called a CS.
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Figure 2: Plot of the sum of AACFs of a0, a1, a2, and a3.

Let a0 = [0010], a1 = [0011], a2 = [0110], and a3 = [0000].

τ −3 −2 −1 0 1 2 3

A(a0)(τ) −1 2 −3 4 −3 2 −1

A(a1)(τ) −1 −2 1 4 1 −2 −1

A(a2)(τ) 1 −2 −1 4 −1 −2 1

A(a3)(τ) 1 2 3 4 3 2 1
3∑

i=0

A(ai )(τ) 0 0 0 16 0 0 0
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Historical Background of Complementary Sequences

▶ GCPs were first introduced

by Marcel Golay in 19491

▶ Golay used them in infrared

multislit spectrometry.

▶ Later they have been

applied to OFDM.

▶ Binary Golay Sequences are

known to exist for the

lengths 2a10b26c 2.

▶ The idea of GCPs were

extended to CSs by Tseng

and Liu 3.
1
M. J. E. Golay, Multislit spectroscopy,Journal of the Optical Society of America, vol. 39, pp. 437-444, 1949.

2
R. Turyn,“ Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface

wave encodings”, in Journal of Combinatorial Theory, Series A,vol. 16, pp. 313–333, 1974.
3
C.C. Tseng and C. Liu, “Complementary sets of sequences,” IEEE Transactions on Information Theory, vol.

IT-18, no. 5, pp. 644–652, Sep. 1972.
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Complementary Sequences in

OFDM System



PAPR Control with Code/Sequences Design

▶ a = {a(t)}L−1
t=0 over Zq is modulated:

a(t) → ξ
a(t)
q , ξq = e(2π

√
−1/q)

▶ the corresponding transmitted signal is the real part of

s(t) =
L−1∑
i=0

ξ
a(i)+qfi t
q ,

where fi is the frequency of the i-th carrier, with envelop

power Pa(t) = |s(t)|2 given by

Pa(t) = L+ 2ℜ

(
L−1∑
τ=1

ρa(τ)ξ
−qτ∆ft
q

)
, 0 ≤ ∆ft ≤ 1

▶ the PAPR of the signal or a sequence a is given by

PAPR(a) := 1 +

2 sup
0≤θ≤1

ℜ
(∑L−1

τ=1 ρa(τ)ξ
−τθ
)

L
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▶ given M sequences ai ’s, their PAPR sum is given by

∑
i

PAPR(ai ) = M +

2 sup
0≤θ≤1

ℜ
(∑L−1

τ=1

(∑M−1
i=1 ρai (τ)

)
ξ−τθ

)
L

(1)

Therefore, if ∑
i

ρai (τ) = 0 ∀ τ ̸= 0,

then

PAPR(ai ) ≤ M ∀ i = 1, . . . ,M
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Complementary Sequences Sets in

MC-CDMA Systems



Multicarrier systems: single sequences set (SS) extended to
multiple SSs

C =


c1

.

.

.

cM

 =⇒ C(k) =


c
(k)
1

.

.

.

c
(k)
M

 , 1 ≤ k ≤ K

▶ For 1 ≤ k1, k2 ≤ K , ρCk1 ,Ck2 (τ) =
∑M

j=1 ρck1j ,c
k2
j

(τ).

▶ θauto = max{|ρCk (τ)| : k = 1, . . . ,K , 0 < |τ | < L},
θcross = max{|ρCk1 ,Ck2 (τ)| : 1 ≤ k1 ̸= k2 ≤ K , 0 ≤ |τ | < L}, and
θ = max{θauto, θcross}.

▶ When θ = 0, and K = M, C is called complete complementary

codes (CCCs) [Suehiro-Hatori 1998, Rathinakumar and Chaturvedi

2008, Liu-Guan-Parampalli 2014]

▶ entire period to partial zone: ZCZ-CCCs (K = M⌊L/Z⌋)
[Sarkar-Majhi-Liu 2019]

▶ entire period with θ ̸= 0: quasi-complementary sequence sets

(QCSSs)
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Main Approaches

▶ generalized Boolean functions (GBFs)

▶ many important contributions from Fan, Liu, Majhi,

Sarkar,Yang, Zhou, ....

▶ paraunitary (PU) matrices [Das-Budisin-Majhi-Liu-Guan 2018,

Wang-Ma-Gong-Xue 20211]

1Many known GBF-based constructions of CSSs and CCCs literature can be

explained from this approach
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Generalized Boolean functions and Graph

A quadratic q-ary function from Zm
p to Zq, where p | q, can be

expressed as

f =
∑

0≤i ,j<m

qi ,jxixj +
∑

0≤j<m

cjxj + c

Let each variable xi be a vertex, and label an edge between two

vertices xi , xj if qi ,j ̸= 0.

x0 2 x2 2 x1

Figure 3: Graph of the function 2x0x2 + 2x2x1 + x2 + 1
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Generalized Boolean functions and Sequences

For a q-ary function f : Zm
p → Zq, we define the corresponding

sequence as

ψ(f ) = (ξf0q , ξ
f1
q , . . . , ξ

fpm−1
q ),

where fi = f (i0, i1, . . . , im−1), (i0, i1, . . . , im−1) ∈ Zm
p is the p-ary

vector representation of i ∈ Zpm , and ξq = e2π
√
−1/q
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GBF Based Construction of Complementary Sequences

▶ Generalized Boolean functions: Zm
p → Zq

▶ GCPs can be extended in terms of generalized Boolean

functions from Zm
2 to Z2h [Davis-Jedwab 1999]:

(ψ(f ), ψ(f + 2h−1xπ(1) + c)

where f is given by the function

f (x0, . . . , xm−1) = 2h−1
m−1∑
k=1

xπ(k)xπ(k+1) +
m∑

k=1

ckxk + c
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▶ Paterson later extended the construction with parameters

from 2h to even q. Moreover, he introduced an important

method to restriction, which allows us to study

higher-degree functions in terms of special quadratic

functions. [Paterson 2000]

▶ Paterson’s idea has been largely adopted to construct CCCs

[Rathinakumar and Chaturvedi 2008].
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Quasi-complementary sequences sets

It is desirable to construct QCSSs with

▶ large set size K

▶ low correlation magnitude θ

▶ flexible choices of M and sequence lengths L

▶ small alphabet q
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New Bounds and Construction of

QCSSs



Bounds on QCSSs

Consider a QCSS with parameters (K ,M, L) where

▶ K : the number of sequence sets,

▶ M: the number of sequences in each set

▶ L: the sequence length

What would be its largest aperiodic correlation (sum) magnitude?

θ = max{θauto, θcross}
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▶ A classic bound K ≥ M [Welch, 1976]

θ≥ ML

√
K
M − 1

K (2L− 1)− 1

▶ An improved bound for K
M ≥ 3 [Liu-Guan-Mow, 2013]

θ≥

√√√√ML

(
1− 2

√
M

3K

)

by extending the idea of Levenshtein bound (M = 1) proposed

in 1999.
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CCC-based QCSSs

Recently several constructions of QCSSs are a collection of CCCs

for increasing set size K .

Informally we call them CCC-based QCSSs

Research Questions

▶ Can we derive better bounds on correlation magnitude for

such CCC-based QCSSs?

▶ cross-correlation sum for each CCC is zero

▶ Can we construct new/better QCSSs?
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A Powerful Method

▶ introduced by Levenshtein 1999 for M = 1

▶ tailored by Liu-Guan-Mow in 2014 for QCSSs (M ≥ 2)

▶ further adjusted for CCC-based QCSSs
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For two (K ,M, L, θ) QCSSs C and D, define a function

F (C,D) =
1

|C∥D|
∑

X∈C,Y∈D

2L−2∑
u,v=0

|⟨T u (X, 0L−1) ,T
v (Y, 0L−1)⟩|2 wuwv ,

where T is a shift operator and w = (w0, . . . ,w2L−2) satisfying

w0 + w1 + · · ·+ w2L−2 = 0 and wu ≥ 0.
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Lemma (Liu-Guan-Mow 2013)

Let C be a (K ,M, L, θ)-QCSS. Then

F (C, C) ≥
2L−2∑
u,v=0

M(L− τu,v ,L)wuwv ,

where

0 ≤ τu,v ,L = min{|v − u|, 2L− 1− |v − u|} ≤ L− 1.
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Theorem (Main Result 1)

Let C be a collection of N ≥ 2 different (M, L)-CCCs. Then the

maximum correlation magnitude θ of such a (K = NM, L,M)

QCSS satisfies

θ2 ≥
M
(
L− Q

(
w, L

2

N

))
1− 1

N

,

where

Q(w, a) = a
2L−2∑
u=0

w2
u +

2L−2∑
u,v=0

τu,v ,Lwuwv .

and 0 ≤ τu,v ,L = min{|v − u|, 2L− 1− |v − u|} ≤ L− 1.

This result allows us to study the choices of w for better bounds
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Choices of Weight Vectors

The vector w = (w0, . . . ,w2L−2) should satisfy

2L−2∑
u=0

wu = 1 and wu ≥ 0.

Choice 1

Define a step function weight vector as

wj =

1
t , j = 0, 1, . . . , t − 1,

0, j = t, t + 1, . . . , 2L− 2,

where 1 ≤ t ≤ 2L− 1
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Choice 2

Define a positive-cycle-of-a-sine-wave weight vector

wj =

tan π
2t sin

πj
t , j ∈ {0, 1, . . . , t − 1}

0, j ∈ {t, t + 1, 2L− 1}
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Improved Bounds

For a QCSS as a collection of N ≥ 2 (M, L)-CCCs, the lower

bounds on θ are improved as follows:

θ2 ≥


ML2

2L−1 , N = 2, or N = 3, 2 ≤ L ≤ 25,

ML
(
1− L2(2π2+4N−16)−Nπ2

16L2(N−1)

)
, N = 3, L > 25,

ML

(
1− π

√
N(2L2−N)−4L

4(N−1)L

)
, N > 3.

These bounds are tighter than the earlier bounds [Welch 1974,

Liu-Guan-Mow 2013]
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New Constructions of QCSSs

Generalized Boolean functions have been adopted to construct

GCPs, CSs and CCCs

We further develop the idea to construct CCCs with more flexible

parameters, and then gather them to derive asymptotically optimal

QCSSs w.r.t to new bounds
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In order to obtain CCCs with more flexible parameters, we will

consider functions whose restrictions yield Hamiltonian paths

Example

Suppose f : Z5
3 → Z3, given by

f = x0x2 + x2x1 + x3x4x0 + 2x1 + x2 + 1. When considering the

restrictions of f on x3 and x4, we have

▶ f |x3,x4=(0,0) = x0x2 + x2x1 + 2x1 + x2 + 1

▶ f |x3,x4=(1,2) = x0x2 + x2x1 + 2x0 + 2x1 + x2 + 1
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Main Construction

Consider a q-ary function f : Zm
p → Zq such that for each

c ∈ Zn
p, the graph G (f |xJ=c) is a Hamiltonian path over the

vertices xlπ(i)
, i = 0, 1, . . . ,m − n − 1, with edges having identical

weight q/p, where J ⊂ Zm, and

π : {0, 1. . . . ,m − n − 1} → Zm \ J is an one-to-one mapping.
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Let us define the following set of q-ary functions:

C k
t =

{
fd,t = f +

kq

p

(
d · xJ + dnxlπ(0)

)
+

q

p

(
t · xJ + tnxlπ(m−n−1)

)
: 0 ≤ d < pn+1

}
.

where (d, dn) = (d0, d1, . . . , dn) and (t, tn) = (t0, t1, . . . , tn) is the

vector representation of the integer d and t ∈ Zpn+1 .

Define a code as

ψ(C k
t ) =

{
ψ(fd ,t) | fd ,t ∈ C k

t

}

29 / 38
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vector representation of the integer d and t ∈ Zpn+1 .

Define a code as

ψ(C k
t ) =

{
ψ(fd ,t) | fd ,t ∈ C k

t

}
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Theorem

For each 1 ≤ k < p, the set

Ck =
{
ψ(C k

t ) | t = 0, 1, . . . , pn+1 − 1
}
.

forms a (pn+1, pm)-CCC over Zq
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Example

▶ take m = 3, p = 3, and q = 6 and consider

f (x0, x1, x2) = x0x2 + 2x2x1 + x1x0 + x0 + 2x1 + x2 + 1.

▶ f |x0=0 = 2x1x2 +2x1 + x2 +1, f |x0=1 = 2x1x2 +3x1 +2x2 +2,

and f |x0=2 = 2x1x2 + 4x1 + 3x2 + 1

▶ from this function we can obtain several CCCs
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C1 : (9, 27)− CCCs C2 : (9, 27)− CCCs

ψ(C 1
0 ) = {ψ(f + 2(d0x0 + d1x1)) : 0 ≤ d < 9} ψ(C 2

0 ) = {ψ(f + 4(d0x0 + d1x1)) : 0 ≤ d < 9}
ψ(C 1

1 ) = {ψ(f + 2(d0x0 + d1x1) + 2x1) : 0 ≤ d < 9} ψ(C 2
1 ) = {ψ(f + 4(d0x0 + d1x1) + 2x1) : 0 ≤ d < 9}

ψ(C 1
2 ) = {ψ(f + 2(d0x0 + d1x1) + 4x1) : 0 ≤ d < 9} ψ(C 2

2 ) = {ψ(f + 4(d0x0 + d1x1) + 4x1) : 0 ≤ d < 9}
ψ(C 1

3 ) = {ψ(f + 2(d0x0 + d1x1) + 2x0) : 0 ≤ d < 9} ψ(C 2
3 ) = {ψ(f + 4(d0x0 + d1x1) + 2x0) : 0 ≤ d < 9}

ψ(C 1
4 ) = {ψ(f + 2(d0x0 + d1x1) + 2(x0 + x1)) : 0 ≤ d < 9} ψ(C 2

4 ) = {ψ(f + 4(d0x0 + d1x1) + 2(x0 + x1)) : 0 ≤ d < 9}
ψ(C 1

5 ) = {ψ(f + 2(d0x0 + d1x1) + 2(x0 + 2x1)) : 0 ≤ d < 9} ψ(C 2
5 ) = {ψ(f + 4(d0x0 + d1x1) + 2(x0 + 2x1)) : 0 ≤ d < 9}

ψ(C 1
6 ) = {ψ(f + 2(d0x0 + d1x1) + 4x0) : 0 ≤ d < 9} ψ(C 2

6 ) = {ψ(f + 4(d0x0 + d1x1) + 4x0) : 0 ≤ d < 9}
ψ(C 1

7 ) = {ψ(f + 2(d0x0 + d1x1) + 2(2x0 + x1)) : 0 ≤ d < 9} ψ(C 2
7 ) = {ψ(f + 4(d0x0 + d1x1) + 2(2x0 + x1)) : 0 ≤ d < 9}

ψ(C 1
8 ) = {ψ(f + 2(d0x0 + d1x1) + 2(2x0 + 2x1)) : 0 ≤ d < 9} ψ(C 2

8 ) = {ψ(f + 4(d0x0 + d1x1) + 2(2x0 + 2x1)) : 0 ≤ d < 9}
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Figure 4: Correlation plot for Ck
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Theorem

Let C1, . . . , Cp−1 be as previously defined. Then for

J = {0, . . . , n − 1} and lπ(0) = n, the union

C1 ∪ C2 ∪ · · · ∪ Cp−1

forms a (K ,M, L, θ)-QCSS over Zq with

▶ K = pn+1(p − 1)

▶ M = pn+1

▶ L = pm

▶ θ = pm
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For sufficiently large p and n = m − 1, the constructed QCSSs are

asymptotically optimal (optimal factor approaches to 1), with

respect to the new bounds
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Summary of Our Work

▶ Study a special type of QCSSs (as a union of CCCs)

▶ Derive several new lower bounds on their correlation magnitude

▶ Construct new asymptotically optimal QCSSs, which can have

flexible set size and alphabet size
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Future Research

▶ How to construct optimal QCSSs w.r.t the new bounds?

▶ How about bounds and constructions of periodic CCCs and

CCC-based QCSSs?
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New Correlation Bound and Construction of
Quasi-Complementary Sequence Sets

Palash Sarkar , Chunlei Li , Senior Member, IEEE, Sudhan Majhi , Senior Member, IEEE,
and Zilong Liu , Senior Member, IEEE

Abstract—Quasi-complementary sequence sets (QCSSs) have
attracted sustained research interests for simultaneously sup-
porting more active users in multi-carrier code-division
multiple-access (MC-CDMA) systems compared to complete
complementary codes (CCCs). In this paper, we investigate a
novel class of QCSSs composed of multiple CCCs. We derive a
new aperiodic correlation lower bound for this type of QCSSs,
which is tighter than the existing bounds for QCSSs. We then
present a systematic construction of such QCSSs with a exible
alphabet size and a low maximum correlation magnitude, and
also show that the constructed aperiodic QCSSs can meet the
newly derived bound asymptotically.

Index Terms—Multi-carrier code-division multiple-access
(MC-CDMA), aperiodic correlation, complete complementary
code (CCC), quasi-complementary sequence set (QCSS), mul-
tivariate function.

I. INTRODUCTION

AS a generalization of the Golay complementary pair [1],
the complementary sequence set introduced by Tseng

and Liu [2] consists of M ≥ 2 constituent sequences of length
L having zero aperiodic auto-correlation sum for all nonzero
time shifts. A complementary sequence set is usually arranged
as an M × L matrix (known as a complementary matrix
or complementary code). A set of K complementary codes
with the same order (M,L) is called a mutually orthogonal
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complementary sequence set (MOCSS) if any two distinct
complementary codes have zero aperiodic cross-correlation
sums for all time shifts [3]. A MOCSS has its size K ≤
M and it is known as a complete complementary code
(CCC) when the equality is reached. Due to their ideal
auto- and cross-correlation properties, CCCs have a salient
feature for supporting interference-free multi-carrier code-
division multiple-access (MC-CDMA) communications where
users are assigned with different complementary codes from
a CCC [4], [5], [6].

To support more users in MC-CDMA systems, the notion
of low-correlation zone CSS, which refers to a set of (com-
plementary) sequence sets having low maximum correlation
magnitudes within a time-shift zone around the origin, was
proposed [7]; in particular, when the maximum correla-
tion magnitude within the zone is zero, it reduces to a
zero-correlation zone CSS [8], [9], [10]. By extending the
low correlation zone to all the non-trivial time-shifts, quasi-
complementary sequence sets (QCSSs) with uniformly low
maximum correlation magnitude were introduced and inves-
tigated [11]. A QCSS-based MC-CDMA system is expected
to accommodate larger amount of asynchronous time-offsets,
whilst supporting more users [12], [13].

A. Existing Works on the Construction and the Correlation
Bound of QCSSs

In this subsection, we recall some known results on QCSSs.
Let q be a positive integer and Aq = ξiq 0 ≤ i < q,
where ξq = exp(2π

√
−1q) is a q-th primitive root of unity.

We denote by AM×L
q the set of all M × L matrices over

Aq . A subset of AM×L
q is termed a (K,M,L, θ)-QCSS over

Aq if it consists of K matrices in AM×L
q and its maximum

magnitude of aperiodic correlation sums equals a positive
value θ. The multipath interference and multiuser interference
in QCSS-based MC-CDMA systems are constrained by the
maximum correlation sum magnitude θ, which is desired to
be small. In the literature, several researchers have studied the
lower bound on θ. Welch in [14] rst gave the following lower
bound:

θ ≥ ML


K
M − 1

K(2L− 1)− 1
 (1)

In 2014, Liu et al. [15] extended the idea of Levenshtein
bound [16] for M ≥ 2 and provided a tighter correlation lower
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Thank You
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