On Cryptographic Properties of a Class of Power Permutations in Odd Characteristic

Mohit Pal

University of Bergen

mohit.pal@uib.no

April 15, 2024

- Notations and Definitions
- Differential Uniformity
- Boomerang Uniformity
- Our Contribution

∃ >

• We denote, by \mathbb{F}_q , the finite field with $q = p^n$ elements, where p is a prime number and n is a positive integer.

- We denote, by \mathbb{F}_q , the finite field with $q = p^n$ elements, where p is a prime number and n is a positive integer.
- By 𝔽^{*}_q = ⟨g⟩, we denote the multiplicative cyclic group of nonzero elements of 𝔽_q, where g is a primitive element of 𝔽_q.

- We denote, by \mathbb{F}_q , the finite field with $q = p^n$ elements, where p is a prime number and n is a positive integer.
- By 𝔽^{*}_q = ⟨g⟩, we denote the multiplicative cyclic group of nonzero elements of 𝔽_q, where g is a primitive element of 𝔽_q.
- Let f be a function form the finite field 𝔽_q to itself then f can be uniquely represented as a univariate polynomial over 𝔽_q of the form
 f(X) = ∑_{i=0}^{q-1} a_iXⁱ, a_i ∈ 𝔽_q.

- We denote, by \mathbb{F}_q , the finite field with $q = p^n$ elements, where p is a prime number and n is a positive integer.
- By $\mathbb{F}_q^* = \langle g \rangle$, we denote the multiplicative cyclic group of nonzero elements of \mathbb{F}_q , where g is a primitive element of \mathbb{F}_q .
- Let f be a function form the finite field 𝔽_q to itself then f can be uniquely represented as a univariate polynomial over 𝔽_q of the form
 f(X) = ∑_{i=0}^{q-1} a_iXⁱ, a_i ∈ 𝔽_q.
- We call a polynomial $f \in \mathbb{F}_q[X]$, a permutation polynomial (PP) over \mathbb{F}_q if the associated mapping $x \mapsto f(x)$ is a bijection from \mathbb{F}_q to \mathbb{F}_q .

• One of the most important developments in block cipher cryptanalysis was the invention of differential cryptanalysis by Biham and Shamir.

- One of the most important developments in block cipher cryptanalysis was the invention of differential cryptanalysis by Biham and Shamir.
- A function f is called differentially δ -uniform if for every $a \in \mathbb{F}_q^*$ and every $b \in \mathbb{F}_q$, the equation f(X + a) f(X) = b admits at most δ solutions.

- One of the most important developments in block cipher cryptanalysis was the invention of differential cryptanalysis by Biham and Shamir.
- A function f is called differentially δ -uniform if for every $a \in \mathbb{F}_q^*$ and every $b \in \mathbb{F}_q$, the equation f(X + a) f(X) = b admits at most δ solutions.
- When $\delta = 1$, we say that the function f is perfect nonlinear (PN) function.

- One of the most important developments in block cipher cryptanalysis was the invention of differential cryptanalysis by Biham and Shamir.
- A function f is called differentially δ -uniform if for every $a \in \mathbb{F}_q^*$ and every $b \in \mathbb{F}_q$, the equation f(X + a) f(X) = b admits at most δ solutions.
- When $\delta = 1$, we say that the function f is perfect nonlinear (PN) function.
- When $\delta = 2$, we say that the function f is almost perfect nonlinear (APN) function.

• The boomerang attacks were introduced by David Wagner in 1999.

< ∃⇒

э

- The boomerang attacks were introduced by David Wagner in 1999.
- We assume that the cipher E can be decomposed into two parts E₀ and E₁ such that E = E₁ ◦ E₀ as shown in the figure below

- The boomerang attacks were introduced by David Wagner in 1999.
- We assume that the cipher E can be decomposed into two parts E₀ and E₁ such that E = E₁ \circ E₀ as shown in the figure below

Figure: Basic Boomerang Attack

Mohit Pal (UiB)

• A good differential $\alpha \xrightarrow{E_0} \beta$ over E_0 that holds with probability p.

- A good differential $\alpha \xrightarrow{E_0} \beta$ over E_0 that holds with probability p.
- A good differential $\gamma \xrightarrow{E_1} \beta$ over E_1 that holds with probability q.

- A good differential $\alpha \xrightarrow{E_0} \beta$ over E_0 that holds with probability p.
- A good differential $\gamma \xrightarrow{E_1} \beta$ over E_1 that holds with probability q.
- These two differentials can now be used to construct a distinguisher over the whole cipher.

- A good differential $\alpha \xrightarrow{E_0} \beta$ over E_0 that holds with probability p.
- A good differential $\gamma \xrightarrow{E_1} \beta$ over E_1 that holds with probability q.
- These two differentials can now be used to construct a distinguisher over the whole cipher.
- We start with a pair of plaintexts x_0 and x_1 with a difference α .
- When encrypting these two plaintexts, we expect the corresponding intermediate texts y₀ := E₀(x₀) and y₁ := E₀(x₁) to have a difference β with probability p.

- With $z_0 := E_1(y_0)$ and $z_1 := E_1(y_1)$ being the respective ciphertexts, we now construct two more ciphertexts $z_2 := z_0 + \delta$ and $z_3 := z_1 + \delta$ by adding the difference δ to each of z_0 and z_1 .
- Then the pairs (z_0, z_2) and (z_1, z_3) both have a difference of δ , the ciphertext difference in the second differential.
- Decrypting these two ciphertexts, provides us with two more intermediate texts, $y_2 := E_1^{-1}(z_2)$ and $y_3 := E_1^{-1}(z_3)$ and two more plaintexts, $x_2 := E_0^{-1}(y_2)$ and $x_3 := E_0^{-1}(y_3)$.
- Assuming independence of the two ciphertext pairs (z_0, z_2) and (z_1, z_3) , both of their respective intermediate pairs (y_0, y_2) and (y_1, y_3) will have a differences of γ with probability q^2 .

- Combining this with the probability that (x₀, x₁) follows the first differential, we have with probability pq² that y₀ + y₁ = β, y₀ + y₂ = γ and y₁ + y₃ = γ.
- This forces the difference between y_2 and y_3 to be β .
- Again assuming independence from the other pairs, the pair (y₂, y₃) will follow the first differential with probability p, resulting in a plaintext difference of α between x₂ and x₃.
- Taking all of these steps together, we estimate that the probability to see a difference α between x₂ and x₃ is equal to p²q².

• To simplify this analysis, in 2018, Cid et al. introduced the notion of boomerang connectivity table (BCT)

- To simplify this analysis, in 2018, Cid et al. introduced the notion of boomerang connectivity table (BCT)
- In this paper the BCT entries were defined for permutation functions in even characteristic and the knowledge of the inverse of the permutation was required to compute the BCT entries

- To simplify this analysis, in 2018, Cid et al. introduced the notion of boomerang connectivity table (BCT)
- In this paper the BCT entries were defined for permutation functions in even characteristic and the knowledge of the inverse of the permutation was required to compute the BCT entries
- In 2019, Li et al. gave an equivalent technique to compute BCT, which does not require the compositional inverse of the permutation polynomial f(X) at all

Boomerang Uniformity

For any a, b ∈ 𝔽_q, the BCT entry of the function f at point (a, b), denoted by 𝔅_f(a, b), is the number of solutions (x, y) ∈ 𝔽_q × 𝔽_q of the following system of equations

$$\begin{cases} f(X) - f(Y) = b, \\ f(X + a) - f(Y + a) = b \end{cases}$$

Boomerang Uniformity

For any a, b ∈ F_q, the BCT entry of the function f at point (a, b), denoted by B_f(a, b), is the number of solutions (x, y) ∈ F_q × F_q of the following system of equations

$$\begin{cases} f(X) - f(Y) = b, \\ f(X + a) - f(Y + a) = b \end{cases}$$

The boomerang uniformity of the function *f*, denoted by B_f, is then defined as the maximum of B_f(a, b), where a, b ∈ ℝ^{*}_a.

Mohit Pal (UiB)

• Cid et al. showed that for permutation functions *f*, the boomerang uniformity is greater than or equal to the differential uniformity

- Cid et al. showed that for permutation functions *f*, the boomerang uniformity is greater than or equal to the differential uniformity
- However, perhaps, due to lack of any explicit example in the case of non-permutations, in several follow up papers the term "permutation" was not emphasized and it has been stated that for any function *f*, the differential uniformity is less than the boomerang uniformity

- Cid et al. showed that for permutation functions *f*, the boomerang uniformity is greater than or equal to the differential uniformity
- However, perhaps, due to lack of any explicit example in the case of non-permutations, in several follow up papers the term "permutation" was not emphasized and it has been stated that for any function *f*, the differential uniformity is less than the boomerang uniformity
- In 2021, Hasan et al. showed that for non-permutations, the differential uniformity is not necessarily smaller than the boomerang uniformity

Monomials with known boomerang uniformity in odd characteristic

	p	d	Condition	\mathcal{B}_{f}	ls PP?
<i>C</i> ₁	3	$\frac{p^n+3}{2}$	<i>n</i> odd	3	Yes
<i>C</i> ₂	<i>p</i> > 2	p^m-1	$n = 2m, p \not\equiv 2 \pmod{3}$	2	No
<i>C</i> ₃	<i>p</i> > 2	$\frac{(p^m+3)(p^m-1)}{2}$	n=2m	2	No
<i>C</i> ₄	<i>p</i> > 2	$\frac{p^n-3}{2}$	$p^n \equiv 3 \pmod{4}$	≤ 6	No
<i>C</i> ₅	<i>p</i> > 2	<i>p</i> ^{<i>n</i>} - 2	any <i>n</i>	≤ 5	Yes
<i>C</i> ₆	<i>p</i> > 2	$k(p^m-1)$	$n=2m, \ \gcd(k,p^m+1)=1$	2	No

Table: Monomials X^d over \mathbb{F}_{p^n} with known boomerang uniformity.

• We consider the class of power maps $f(X) = X^{rac{p^n+3}{2}} \in \mathbb{F}_{p^n}[X]$

< 4[™] >

∃ ⇒

э

- We consider the class of power maps $f(X) = X^{rac{p^n+3}{2}} \in \mathbb{F}_{p^n}[X]$
- Helleseth and Sandberg considered the differential uniformity of this class of power maps and showed that its differential uniformity Δ_f is given by

$$\Delta_f \leq egin{cases} 1 & ext{if } p=3 ext{ and } n ext{ is even}, \ 3 & ext{if } p
eq 3 ext{ and } p^n\equiv 1 \pmod{4}, \ 4 & ext{otherwise}. \end{cases}$$

- We consider the class of power maps $f(X) = X^{rac{p^n+3}{2}} \in \mathbb{F}_{p^n}[X]$
- Helleseth and Sandberg considered the differential uniformity of this class of power maps and showed that its differential uniformity Δ_f is given by

$$\Delta_f \leq egin{cases} 1 & ext{if } p=3 ext{ and } n ext{ is even}, \ 3 & ext{if } p
eq 3 ext{ and } p^n\equiv 1 \pmod{4}, \ 4 & ext{otherwise}. \end{cases}$$

• It is easy to see that when $p^n \equiv 3 \pmod{4}$ then f is a permutation.

13/18

- We consider the class of power maps $f(X) = X^{rac{p''+3}{2}} \in \mathbb{F}_{p''}[X]$
- Helleseth and Sandberg considered the differential uniformity of this class of power maps and showed that its differential uniformity Δ_f is given by

$$\Delta_f \leq egin{cases} 1 & ext{if } p=3 ext{ and } n ext{ is even}, \ 3 & ext{if } p
eq 3 ext{ and } p^n\equiv 1 \pmod{4}, \ 4 & ext{otherwise}. \end{cases}$$

It is easy to see that when pⁿ ≡ 3 (mod 4) then f is a permutation.
We considered the boomerang uniformity of the power permutation X^{pⁿ+3}/₂, where pⁿ ≡ 3 (mod 4) for all p > 3 and showed that the

boomerang uniformity is ≤ 23

• Moreover, we also obtained the compositional inverse of this power permutation

Theorem

Let $q \equiv 3 \pmod{4}$ then the compositional inverse of the power permutation $f(X) = X^{\frac{q+3}{2}}$ is given by

$$f^{-1}(X) = \begin{cases} X^{\frac{q+1}{4}} & \text{if } p \equiv 3 \pmod{8}, \\ X^{\frac{3q-1}{4}} & \text{if } p \equiv 7 \pmod{8}. \end{cases}$$

• We also determined the algebraic degree of the compositional inverse

Theorem

Let $p \equiv 3 \pmod{4}$ and n = 2m + 1 for some non-negative integer m then the algebraic degree of the inverse of the power permutation $f(X) = X^{\frac{p^n+3}{2}}$ is

$$\begin{cases} \frac{(4m+1)p-4m+1}{4} & \text{if } p \equiv 3 \pmod{8}, \\ \frac{(4m+3)p-4m-1}{4} & \text{if } p \equiv 7 \pmod{8}. \end{cases}$$

Mohit Pal (UiB)

• • • • • • • •

3

- Boura, C., Canteaut, A.: On the boomerang uniformity of cryptographic S-boxes. IACR Trans. Symmetric Cryptol. 3, 290–310 (2018).
- Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table: a new cryptanalysis tool. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, LNCS, vol. 10821, pp. 683–714. Springer, Cham (2018).
- Hasan, S.U., Pal, M., Stănică, P.: Boomerang uniformity of a class of power maps. Des. Codes Cryptogr. 89, 2627–2636 (2021).
- Li, K., Qu, L., Sun, B., Li, C.: New results about the boomerang uniformity of permutation polynomials. IEEE Trans. Inform. Theory **65**(11), 7542–7553 (2019).
- Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999, LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999).

Image: A matrix and a matrix

Thank you for your attention!

Mohit Pal (UiB)

A class of power permutations

April 15, 2024

∃ →