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Notations and definitions

We denote, by Fq, the finite field with q = pn elements, where p is a
prime number and n is a positive integer.

By F∗
q = ⟨g⟩, we denote the multiplicative cyclic group of nonzero

elements of Fq, where g is a primitive element of Fq.

Let f be a function form the finite field Fq to itself then f can be
uniquely represented as a univariate polynomial over Fq of the form

f (X ) =

q−1∑
i=0

aiX
i , ai ∈ Fq.

We call a polynomial f ∈ Fq[X ], a permutation polynomial (PP) over
Fq if the associated mapping x 7→ f (x) is a bijection from Fq to Fq.
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Differential uniformity

One of the most important developments in block cipher cryptanalysis
was the invention of differential cryptanalysis by Biham and Shamir.

A function f is called differentially δ-uniform if for every a ∈ F∗
q and

every b ∈ Fq, the equation f (X + a)− f (X ) = b admits at most δ
solutions.

When δ = 1, we say that the function f is perfect nonlinear (PN)
function.

When δ = 2, we say that the function f is almost perfect nonlinear
(APN) function.
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Boomerang Attacks

The boomerang attacks were introduced by David Wagner in 1999.

We assume that the cipher E can be decomposed into two parts E0

and E1 such that E = E1 ◦ E0 as shown in the figure below

Figure: Basic Boomerang Attack
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Boomerang Attacks

A good differential α
E0−→ β over E0 that holds with probability p.

A good differential γ
E1−→ β over E1 that holds with probability q.

These two differentials can now be used to construct a distinguisher
over the whole cipher.
We start with a pair of plaintexts x0 and x1 with a difference α.
When encrypting these two plaintexts, we expect the corresponding
intermediate texts y0 := E0(x0) and y1 := E0(x1) to have a difference
β with probability p.
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With z0 := E1(y0) and z1 := E1(y1) being the respective ciphertexts,
we now construct two more ciphertexts z2 := z0 + δ and z3 := z1 + δ
by adding the difference δ to each of z0 and z1.
Then the pairs (z0, z2) and (z1, z3) both have a difference of δ, the
ciphertext difference in the second differential.
Decrypting these two ciphertexts, provides us with two more
intermediate texts, y2 := E−1

1 (z2) and y3 := E−1
1 (z3) and two more

plaintexts, x2 := E−1
0 (y2) and x3 := E−1

0 (y3).
Assuming independence of the two ciphertext pairs (z0, z2) and
(z1, z3), both of their respective intermediate pairs (y0, y2) and
(y1, y3) will have a differences of γ with probability q2.
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Combining this with the probability that (x0, x1) follows the first
differential, we have with probability pq2 that y0 + y1 = β,
y0 + y2 = γ and y1 + y3 = γ.

This forces the difference between y2 and y3 to be β.

Again assuming independence from the other pairs, the pair (y2, y3)
will follow the first differential with probability p, resulting in a
plaintext difference of α between x2 and x3.

Taking all of these steps together, we estimate that the probability to
see a difference α between x2 and x3 is equal to p2q2.
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Boomerang Uniformity

To simplify this analysis, in 2018, Cid et al. introduced the notion of
boomerang connectivity table (BCT)

In this paper the BCT entries were defined for permutation functions
in even characteristic and the knowledge of the inverse of the
permutation was required to compute the BCT entries

In 2019, Li et al. gave an equivalent technique to compute BCT,
which does not require the compositional inverse of the permutation
polynomial f (X ) at all
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Boomerang Uniformity

For any a, b ∈ Fq, the BCT entry of the function f at point (a, b),
denoted by Bf (a, b), is the number of solutions (x , y) ∈ Fq × Fq of
the following system of equations{

f (X )− f (Y ) = b,

f (X + a)− f (Y + a) = b.

The boomerang uniformity of the function f , denoted by Bf , is then
defined as the maximum of Bf (a, b), where a, b ∈ F∗

q.
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Cid et al. showed that for permutation functions f , the boomerang
uniformity is greater than or equal to the differential uniformity

However, perhaps, due to lack of any explicit example in the case of
non-permutations, in several follow up papers the term “permutation”
was not emphasized and it has been stated that for any function f ,
the differential uniformity is less than the boomerang uniformity

In 2021, Hasan et al. showed that for non-permutations, the
differential uniformity is not necessarily smaller than the boomerang
uniformity
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Monomials with known boomerang uniformity in odd
characteristic

p d Condition Bf Is PP?

C1 3 pn+3
2 n odd 3 Yes

C2 p > 2 pm − 1 n = 2m, p ̸≡ 2 (mod 3) 2 No

C3 p > 2 (pm+3)(pm−1)
2 n = 2m 2 No

C4 p > 2 pn−3
2 pn ≡ 3 (mod 4) ≤ 6 No

C5 p > 2 pn − 2 any n ≤ 5 Yes

C6 p > 2 k(pm − 1) n = 2m, gcd(k , pm + 1) = 1 2 No

Table: Monomials X d over Fpn with known boomerang uniformity.
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Our Contribution

We consider the class of power maps f (X ) = X
pn+3

2 ∈ Fpn [X ]

Helleseth and Sandberg considered the differential uniformity of this
class of power maps and showed that its differential uniformity ∆f is
given by

∆f ≤


1 if p = 3 and n is even,

3 if p ̸= 3 and pn ≡ 1 (mod 4),

4 otherwise.

It is easy to see that when pn ≡ 3 (mod 4) then f is a permutation.

We considered the boomerang uniformity of the power permutation

X
pn+3

2 , where pn ≡ 3 (mod 4) for all p > 3 and showed that the
boomerang uniformity is ≤ 23
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Our Contribution

Moreover, we also obtained the compositional inverse of this power
permutation

Theorem

Let q ≡ 3 (mod 4) then the compositional inverse of the power

permutation f (X ) = X
q+3
2 is given by

f −1(X ) =

{
X

q+1
4 if p ≡ 3 (mod 8),

X
3q−1

4 if p ≡ 7 (mod 8).
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Our Contribution

We also determined the algebraic degree of the compositional inverse

Theorem

Let p ≡ 3 (mod 4) and n = 2m + 1 for some non-negative integer m then
the algebraic degree of the inverse of the power permutation

f (X ) = X
pn+3

2 is {
(4m+1)p−4m+1

4 if p ≡ 3 (mod 8),
(4m+3)p−4m−1

4 if p ≡ 7 (mod 8).
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Future Directions
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