Attacking Glitch Detection Circuits

Amund Askeland

UNIVERSITY OF BERGEN

Attacking Glitch Detection Circuits

Who Watches the Watchers: Attacking Glitch Detection Circuits

Amund Askeland^{1,3}, Svetla Nikova^{1,2} and Ventzislav Nikov⁴

¹ University of Bergen, Bergen, Norway, firstname.lastname@uib.no
² COSIC, KU Leuven, Leuven, Belgium, firstname.lastname@esat.kuleuven.be
³ Nasjonal Sikkerhetsmyndighet, Oslo, Norway
⁴ NXP Semiconductors, Leuven, Belgium, venci.nikov@gmail.com

This talk is based on [ANN23]

Fault Injection Attacks

- Provoke faulty computations in hardware
 - Some faults are exploitable
 - e.g faulty ciphertexts, incorrect branching
- Common methods are voltage and clock glitching
- Cause timing-violations in the target system

Timing in Hardware

Propagation Delay Due to Load Capacitance

$$t_{PLH} = \frac{C_L V_{DD}}{k_P (V_{DD} - V_{TP})^2}$$

Amund Askeland

Attacking Glitch Detection Circuits

4th March 2024 3 / 19

Timing in Hardware

Timing Requirement for Synchronous Circuits

$$T_{clk} > T_{clk2Q} + T_{comb} + T_{setup}$$

Amund Askeland

Attacking Glitch Detection Circuits

Glitch Detection Circuits

- Detectors as countermeasures
- A popular family of detector designs is based on "Parallel Delay Lines"

Glitch Detection Circuits

- Detectors as countermeasures
- A popular family of detector designs is based on "Parallel Delay Lines"

Attacking Glitch Detection Circuits

- The detectors work and can detect FIA
- Hard to prove a detector design
- Are there situations where these detectors can fail?

Clock Glitching

- One or more glitches added to the clock signal
- We use T_G to refer to the time of extra *rising* edges

Experimental Setup

- Detectors and AES implemented on an FPGA
- Glitchy clock signal generated internally

Fault Alarm	No	Yes
Low	Negative	False Negative
High	False Positive	Positive

Attack 1

- Targets feedback inverter
- $\bullet T_G < T_{inv}$
- Applicable to PDL-1 and PDL-2

Attack 2

- Between inverter and xor
- $\blacksquare T_{inv} + T_{setup} < T_G < T_{xor}$
- Applicable to PDL-1

Results Attack 1 & 2

Results Using External Glitch Generator

Double Glitch Attacks

- The single glitch attacks have strict requirements on T_G timing
- Using multiple glitches we have more options

Attack 3

- Targets output xor
- $T_{G1} < T_D$ and $T_{G2} T_{G1} < T_{xor}$
- Applicable to PDL-2 and PDL-3

Attack 3 timing diagram

Attacking Glitch Detection Circuits

Results Attack 3

Attack 4

- Extension of attack 2
 T_{inv} + T_{setup} < T_{G1} < T_{xor} and T_{G1} + T_{xor} < T_{G2} < T_{xor} + T_D
- Applicable to PDL-1

Results Attack 4

Conclusion

- Glitch detectors can fail
- There are countermeasures
- Room for improvement

References I

Amund Askeland, Svetla Nikova, and Ventzislav Nikov. Who watches the watchers: Attacking glitch detection circuits. Cryptology ePrint Archive, Paper 2023/1647, 2023. https://eprint.iacr.org/2023/1647. **Questions?**