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» A function F : Fon — Fon is called (n,n)-function or Vectorial
Boolean Function.
> F(x)= 212;61 aj - x', aj € Fon - its univariate
representation.
» A F(x)=F(a+x)+ F(x)+ F(a) + F(0) - symmetric
derivative in the direction a € F2.\{0} of F.

> 0F = € Fan : Ap(a,x) = b}| - its differential
F aybeﬁj&(&#on 2 F(a, x) }| - its differentia
unifomity.

» F is almost perfect nonlinear(APN) if 6 = 2.
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> The algebraic degree of a function F : Fon — Fon is
deg(F) = max wa(i), where wy(i) is the 2-weight of the

0<i<2"—1
a;j#0
exponent /.
» Fis a linear function if F(x) = Y. ajx?, a; € Fon.

0<i<n
F is affine if it is a sum of a linear and a constant.

> F is quadratic if deg(F) < 2.
» We will consider homogeneous quadratic (n, n)-function F

F(X) = Z a,'JX2i+2j, ajj € Fon.

0<i<j<n—1
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Equivalence

The functions F and F’ from Fan to itself are called

» affine equivalent (or linear equivalent) if F/ = A; o F o A; for
affine (linear) permutations Ay, Ay from Fan to itself.

» EA-equivalent if F’ and F + A are affine equivalent for affine
mapping A.

» Carlet-Charpin-Zinoviev(CCZ-equivalent).
For quadratic APN (n, n) - functions, F and F’ are
CCZ-equivalent if and only if they are EA-equivalent [2].
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0<i<j<n—1
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> Let F(x)= > a,-,jx2i+2j over Fan.
0<i<j<n-1
> Let us set a normal basis B = {b, b2,... b2 '} of Fan over
Fs.

» [3] The rank of the vector v € [F3, is the dimension of the

subspace spanned by its elements.
nxn

» The derivative matrix Mg € F5;" of function F is

ApF(b)  ApF(b?) ... ApF(b")

ApF(b) ApF(b?) ... ApF(b")
Mg = _ : :

A F(b) DyF (B ... DgF(b")
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» The derivative matrix Mg € F3,*" of function F is

AF(b,b) AF(b,bz) AF(b,b”)

AF(b,b?) AF(B2,B2) ... AF(2,b")
Mg = . . , .

AF (b,b") AF (B2,6") ... AF (b7 b")

> A matrix Mg € FJ," is called a Quadratic APN Matrix

(QAM) [3] if
1. Mg is symmetric and the elements in its main diagonal are all
zeros;

2. Every nonzero linear combination of the n rows (or columns,
since Mg is symmetric) of Mg has rank n— 1.
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Following Corollary 5 from [1], we get that function

F(X) = Z a;Jx2i+2j, ajj S an (2)

0<i<j<n—1

is APN if and only if its derivative matrix Mg is QAM.
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Structure of the derivative matrix (1)

> Let F(x) = Y ocicjcn_1 aijx2 T2 with coefficients a;; € Fon
in some subfield Fom of [Fan

Nadiia Ichanska QAM method 7/18



Matrix structure
®0

Structure of the derivative matrix (1)

> Let F(x) = ocicjcn 1 a;Jx2i+2j with coefficients a; j € Fam
in some subfield Fom of [Fan
m m o 2m n__ N 2m m
> (F)) =a" (x)" =325 a (x)" = F (x*"),

Nadiia Ichanska QAM method 7/18



Matrix structure
®0

Structure of the derivative matrix (1)
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Structure of the derivative matrix (1)

> Let F(x) = ocicjcn 1 a;Jx2i+2j with coefficients a; j € Fam
in some subfield ]Fgm of Fon
m . n N 2M m
> (F))" =a2" () =75 a (x)* = F (x27),
> (DLF(x) = F(x+a)2" + F(x)2" + F(a)?" = A pm F (x27),

m

Mi+m,j+m = (Mi:f)z :

i 0 AF(by, by) AF (by, by) ]
AF(by, by) 0 AF (b, by)
; ' (AF(by, by))?" ;
(AF(by, by))?" 0
| AF(bi,by) AF (by, by)
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where Q1,Q5, ..
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Matrix structure
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Structure of the search

Mr =

where Q1,Q5, ..

0 o
2 O g L
QG ... 0 Qo
: 02" 0

2" ... 0

. ,Q/ € Fon - variables.

A variable €; is located on the i-th level.

Nadiia Ichanska
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Theorem 3 [3]

For any linear permutation / on Fan and M € F3" s.t. M = Mg
then any M’ = Mg, produced by

M;; =1I(Mj;)forall1 <i,j<n (4)
will be F" = /o F linearly equivalent(also EA-equivalent) to F.

Let £ be a set of all linear (n, n)-permutations / = > 7" ; aix? ™

on Fan with subfield a; € Fom. Then the orbit of a € Faon

Orb(a, L) = {I(a) : | € L}.

Nadiia Ichanska QAM method 9/18
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Orbit Restrictions

Fon = Orb(ay, L)U---U Orb(ag, L), for some a; € Fon, 1 < i < k.

0 L(21) L(Q2)

L(Q) O .
L) ... 0 L(Q2™) L(Q3")

Mer=1 oy o .. |
LQ3" ... 0

where L(Q,?m*j) = (L(2))2™, je{1,...,n/m —1} for any
variable ©;, 1 <i </,
Nadiia Ichanska 10 / 18
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0 A @
A 0 LT
Q ... 0 A7 QF
Me=1 1+ 2 o .
2" ... 0

OrbA(Qz,[,) = {/(Qz) el | /(A) = A}

Nadiia Ichanska QAM method 11 /18



Orbit restrictions
ooe

Orbit partition level by level

an = Orb(A,C) U..., Ac€ ]an.

0 A @
A 0 LT
Q ... 0 A7 QF
Me=1 1+ 2 o .
2" ... 0

OrbA(Qz,[,) = {/(Qz) el | /(A) = A}

S= {Ql, .. .,Qkfl}
Orbs(Qu, £) = {I(Q) : 1 € L | VX €5+ I(X) = X}.
Nadiia Ichanska 11 /18
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Submatrix method
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Submatrix method

> Let M € FJ,'" be a derivative matrix.

» M is QAM if and only if every submatrix S € F5,9,
1< p,qg < nof Mis proper.

» S proper if every nonzero linear combinations of the p rows
has rank at least g — 1.
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Submatrix method
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Submatrix method

> Let M € FJ" be a derivative matrix.

» M is QAM if and only if every submatrix S € F5,9,
1< p,qg < nof Mis proper.

A 0 - )
B 0o A" B?"
Q3 A" 0

: B2" 0
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Submatrix method
oe

Submatrix method

> Let M € FJ" be a derivative matrix.

» M is QAM if and only if every submatrix S € F5,9,
1< p,qg < nof Mis proper.

A 0 -
B 0o A" B?"
Q3 A" 0

» After considering F' = F o L, where L = ajx2i, a;j € [Fom, we
could eliminate the number of submatrices for this test.

Nadiia Ichanska QAM method
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» F(x) over Fys with coefficients in Fa..

> 48 = 65536 linear permutations with coefficients in the
subfield were constructed.

» By using these permutations, the first level of the search was
partitioned into 4 orbits.

HEESES

Table: The first level
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Computational searches
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(8.2)

> F(x) over Fys with coefficients in Fo.

> 48 = 65536 linear permutations with coefficients in the
subfield were constructed.

» The number of variables = levels in this dimension is 8.

» By using these permutations, the first level of the search was
partitioned into 4 orbit representatives.

1 a a’ at’
#{ 0} =8| #{Q}i =30 | #{Q}; =22 | #{Q}i =14
Ol’blﬂz OrbaQQ Orba7§22 Orbaan

Nadiia Ichanska

Table: The second level

QAM method
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1 a a’ al’

40 hours | 1 month | 10 days | 7 days
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1 a a’ al’

40 hours | 1 month | 10 days | 7 days

> 196863 quadratic APN functions were found in the search,
with 27 unique ortho-derivative differential spectra.
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Computational searches
00®0000

(8.2)

> F(x) over Fys with coefficients in Fo.

1 a a’ al’

40 hours | 1 month | 10 days | 7 days

> 196863 quadratic APN functions were found in the search,
with 27 unique ortho-derivative differential spectra.

b 28596 | 285572 | 4170,24 | (18 | 85,12 | ;85,9 | 6 | 3
> (38196 22008 24608 G456 812 _ it ortho-derivative differential
spectra.
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Computational searches
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(10,2)

» F(x) over Fyi0 with coefficients in Fy.

> 410 — 1048576 linear permutations with coefficients in the
subfield were constructed.

» The number of variables = levels in this dimension is 9.

» By using these permutations, the first level of the search was
partitioned into 3 orbit representatives.

1 a a°
#{}i =5 | #{Q}i =33 | #{Q}; =50
Orlez Orban Orbasﬂz
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(10,1)

» F(x) over Fyi0 with coefficients in Fy1.

» 210 — 1024 linear permutations with coefficients in the
subfield were constructed.

» The number of variables = levels in this dimension is 5.

» By using these permutations, the first level of the search was
partitioned into 8 orbit representatives.

1 ‘ 3 ‘ pic ‘ o5 ‘ 33 ‘ 257 ‘ 299 ‘ 2341
# of orbit representatives for 2" level after Sub-matrix Test
0746 1012 [ 753 | 71 [ 112 [ 78 | 8
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» F(x) over Fy with coefficients in [Fos.

> 89 = 134217728 linear permutations with coefficients in the
subfield were constructed.

» The number of variables = levels in this dimension is 12.
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» F(x) over Fy with coefficients in [Fos.

> 89 = 134217728 linear permutations with coefficients in the
subfield were constructed.

» The number of variables = levels in this dimension is 12.

Remark

Let a € Fy9. We categorize a into the following cases:
1. Catp ={a:a€Fy|a+a® =0},
2. Catp={a:aclFy| a+a® +a° = 0},
3. Cats ={a:acFyp|a¢ Caty, a¢ Catr},
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» F(x) over Fy with coefficients in [Fos.
> 89 = 134217728 linear permutations with coefficients in the
subfield were constructed.

» The number of variables = levels in this dimension is 12.
Remark
Let a € Fy9. We categorize a into the following cases:

1. Catp ={a:a€Fy|a+a® =0},

2. Catp={a:aclFy| a+a® +a° = 0},

3. Cats ={a:acFyp|a¢ Caty, a¢ Catr},

Theorem .

Let a, b € Cats. If there eX|st I(x ) S8 0 Cix%, i € Fys st
I(a) = b, I(a®) = b?, I(a¥) = b*°. Then there exist linear
permutation L € £ s.t. L(a) = b.
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Conclusions

» For F(x) over Fan with coefficients in Fom we run searches
(n, m) for (8,2),(10,2),(10,1),(9,3).
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Conclusions

» For F(x) over Fan with coefficients in Fom we run searches
(n, m) for (8,2),(10,2),(10,1),(9,3).

» We conclude where it is feasible to get the results and
improve the computational method as possible.

» Computational searches are still running.
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