Further investigations on the QAM method for finding new APN functions

Nadiia Ichanska (Joint work with Simon Berg and Nikolay S. Kaleyski)

University of Bergen

Selmer Seminar March 18, 2024

- \mathbb{F}_{2^n} finite field with 2^n elements, $n \in \mathbb{N}$.
 - A function F : 𝔽_{2ⁿ} → 𝔽_{2ⁿ} is called (n,n)-function or Vectorial Boolean Function.

- \mathbb{F}_{2^n} finite field with 2^n elements, $n \in \mathbb{N}$.
 - A function F : 𝔽_{2ⁿ} → 𝔽_{2ⁿ} is called (n,n)-function or Vectorial Boolean Function.
 - ► $F(x) = \sum_{i=0}^{2^n-1} a_i \cdot x^i$, $a_i \in \mathbb{F}_{2^n}$ its univariate representation.

<ロト <問ト < 目と < 目と

- \mathbb{F}_{2^n} finite field with 2^n elements, $n \in \mathbb{N}$.
 - A function F : 𝔽_{2ⁿ} → 𝔽_{2ⁿ} is called (n,n)-function or Vectorial Boolean Function.
 - ► $F(x) = \sum_{i=0}^{2^n-1} a_i \cdot x^i$, $a_i \in \mathbb{F}_{2^n}$ its univariate representation.
 - D_aF(x) = F(a + x) + F(x) its derivative in the direction a ∈ 𝔽_{2ⁿ}\{0}.

イロン イ理 とく ヨン イ ヨン

- \mathbb{F}_{2^n} finite field with 2^n elements, $n \in \mathbb{N}$.
 - A function F : 𝔽_{2ⁿ} → 𝔽_{2ⁿ} is called (n,n)-function or Vectorial Boolean Function.
 - ► $F(x) = \sum_{i=0}^{2^n-1} a_i \cdot x^i$, $a_i \in \mathbb{F}_{2^n}$ its univariate representation.
 - D_aF(x) = F(a + x) + F(x) its derivative in the direction a ∈ 𝔽_{2ⁿ}\{0}.
 - Δ_aF(x) = F(a + x) + F(x) + F(a) + F(0) symmetric derivative in the direction a ∈ 𝔽_{2ⁿ} \{0} of F.

(日)

\mathbb{F}_{2^n} - finite field with 2^n elements, $n \in \mathbb{N}$.

- A function F : 𝔽_{2ⁿ} → 𝔽_{2ⁿ} is called (n,n)-function or Vectorial Boolean Function.
- $F(x) = \sum_{i=0}^{2^n-1} a_i \cdot x^i$, $a_i \in \mathbb{F}_{2^n}$ its univariate representation.
- ▲_aF(x) = F(a+x) + F(x) + F(a) + F(0) symmetric derivative in the direction a ∈ 𝔽_{2ⁿ} \{0} of F.

(日)

\mathbb{F}_{2^n} - finite field with 2^n elements, $n \in \mathbb{N}$.

- A function F : 𝔽_{2ⁿ} → 𝔽_{2ⁿ} is called (n,n)-function or Vectorial Boolean Function.
- $F(x) = \sum_{i=0}^{2^n-1} a_i \cdot x^i$, $a_i \in \mathbb{F}_{2^n}$ its univariate representation.
- Δ_aF(x) = F(a+x) + F(x) + F(a) + F(0) symmetric derivative in the direction a ∈ 𝔽_{2ⁿ} \{0} of F.
- ► $\delta_F = \max_{a,b \in \mathbb{F}_{2^n}, a \neq 0} |\{x \in \mathbb{F}_{2^n} : \Delta_F(a,x) = b\}|$ its differential unifomity.

イロト 不得 トイヨト イヨト

\mathbb{F}_{2^n} - finite field with 2^n elements, $n \in \mathbb{N}$.

- A function F : 𝔽_{2ⁿ} → 𝔽_{2ⁿ} is called (n,n)-function or Vectorial Boolean Function.
- $F(x) = \sum_{i=0}^{2^n-1} a_i \cdot x^i$, $a_i \in \mathbb{F}_{2^n}$ its univariate representation.
- ▲_aF(x) = F(a+x) + F(x) + F(a) + F(0) symmetric derivative in the direction a ∈ 𝔽_{2ⁿ} \{0} of F.
- ► $\delta_F = \max_{a,b \in \mathbb{F}_{2^n}, a \neq 0} |\{x \in \mathbb{F}_{2^n} : \Delta_F(a,x) = b\}|$ its differential unifomity.
- *F* is almost perfect nonlinear(APN) if $\delta_F = 2$.

イロト 不得 トイヨト イヨト

Preliminaries 00●0000	Matrix structure 00	Orbit restrictions	Submatrix method 00	Computational searches

▶ The algebraic degree of a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is $deg(F) = \max_{\substack{0 \le i \le 2^n - 1 \\ a_i \ne 0}} w_2(i)$, where $w_2(i)$ is the 2-weight of the exponent *i*.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Preliminaries 00●0000	Matrix structure 00	Orbit restrictions	Submatrix method 00	Computational searches

- ▶ The algebraic degree of a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is $\deg(F) = \max_{\substack{0 \le i \le 2^n 1 \\ a_i \ne 0}} w_2(i)$, where $w_2(i)$ is the 2-weight of the exponent *i*.
- *F* is a **linear** function if $F(x) = \sum_{0 \le i < n} a_i x^{2^i}$, $a_i \in \mathbb{F}_{2^n}$.

F is **affine** if it is a sum of a linear and a constant.

Preliminaries	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches

▶ The algebraic degree of a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is $\deg(F) = \max_{\substack{0 \le i \le 2^n - 1 \\ a_i \ne 0}} w_2(i)$, where $w_2(i)$ is the 2-weight of the exponent *i*.

• *F* is a **linear** function if $F(x) = \sum_{0 \le i < n} a_i x^{2^i}, a_i \in \mathbb{F}_{2^n}$.

F is affine if it is a sum of a linear and a constant.

F is quadratic if $deg(F) \leq 2$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Preliminaries 00●0000	Matrix structure 00	Orbit restrictions	Submatrix method 00	Computational searches

- ▶ The algebraic degree of a function $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is $\deg(F) = \max_{\substack{0 \le i \le 2^n 1 \\ a_i \ne 0}} w_2(i)$, where $w_2(i)$ is the 2-weight of the exponent *i*.
- *F* is a **linear** function if $F(x) = \sum_{0 \le i < n} a_i x^{2^i}$, $a_i \in \mathbb{F}_{2^n}$.

F is affine if it is a sum of a linear and a constant.

- F is quadratic if $deg(F) \leq 2$.
- We will consider homogeneous quadratic (n, n)-function F

$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i + 2^j}, \ a_{i,j} \in \mathbb{F}_{2^n}.$$

イロン イヨン イヨン

The functions F and F' from \mathbb{F}_{2^n} to itself are called

■ affine equivalent (or linear equivalent) if F' = A₁ ∘ F ∘ A₂ for affine (linear) permutations A₁, A₂ from F_{2ⁿ} to itself.

The functions F and F' from \mathbb{F}_{2^n} to itself are called

- affine equivalent (or linear equivalent) if F' = A₁ ∘ F ∘ A₂ for affine (linear) permutations A₁, A₂ from F_{2ⁿ} to itself.
- EA-equivalent if F' and F + A are affine equivalent for affine mapping A.

A D N A B N A B N A B N

The functions F and F' from \mathbb{F}_{2^n} to itself are called

- affine equivalent (or linear equivalent) if F' = A₁ ∘ F ∘ A₂ for affine (linear) permutations A₁, A₂ from F_{2ⁿ} to itself.
- EA-equivalent if F' and F + A are affine equivalent for affine mapping A.
- Carlet-Charpin-Zinoviev(CCZ-equivalent).

The functions F and F' from \mathbb{F}_{2^n} to itself are called

- affine equivalent (or linear equivalent) if F' = A₁ ∘ F ∘ A₂ for affine (linear) permutations A₁, A₂ from F_{2ⁿ} to itself.
- EA-equivalent if F' and F + A are affine equivalent for affine mapping A.
- Carlet-Charpin-Zinoviev(CCZ-equivalent).
 For quadratic APN (n, n) functions, F and F' are CCZ-equivalent if and only if they are EA-equivalent [2].

• Let
$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i + 2^j}$$
 over \mathbb{F}_{2^n} .

э

• Let
$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i+2^j}$$
 over \mathbb{F}_{2^n} .

▶ Let us set a normal basis B = {b, b²,..., b^{2ⁿ⁻¹}} of F_{2ⁿ} over F₂.

э

• Let
$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i+2^j}$$
 over \mathbb{F}_{2^n} .

- ▶ Let us set a normal basis B = {b, b²,..., b^{2ⁿ⁻¹}} of F_{2ⁿ} over F₂.
- [3] The rank of the vector v ∈ Fⁿ_{2ⁿ} is the dimension of the subspace spanned by its elements.

(日) (四) (日) (日) (日)

• Let
$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i+2^j}$$
 over \mathbb{F}_{2^n} .

▶ Let us set a normal basis B = {b, b²,..., b^{2ⁿ⁻¹}} of F_{2ⁿ} over F₂.

- [3] The rank of the vector v ∈ ℝⁿ_{2ⁿ} is the dimension of the subspace spanned by its elements.
- ▶ The **derivative matrix** $M_F \in \mathbb{F}_{2^n}^{n \times n}$ of function *F* is

$$M_{F} = \begin{bmatrix} \Delta_{b}F(b) & \Delta_{b}F(b^{2}) & \dots & \Delta_{b}F(b^{n}) \\ \Delta_{b^{2}}F(b) & \Delta_{b^{2}}F(b^{2}) & \dots & \Delta_{b^{2}}F(b^{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{b^{n}}F(b) & \Delta_{b^{n}}F(b^{2}) & \dots & \Delta_{b^{n}}F(b^{n}) \end{bmatrix}$$

(日) (四) (日) (日) (日)

▶ The derivative matrix $M_F \in \mathbb{F}_{2^n}^{n \times n}$ of function *F* is

$$M_{F} = \begin{bmatrix} \Delta F(b,b) & \Delta F(b,b^{2}) & \dots & \Delta F(b,b^{n}) \\ \Delta F(b,b^{2}) & \Delta F(b^{2},b^{2}) & \dots & \Delta F(b^{2},b^{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \Delta F(b,b^{n}) & \Delta F(b^{2},b^{n}) & \dots & \Delta F(b^{n},b^{n}) \end{bmatrix}.$$
(1)

э

▶ The **derivative matrix** $M_F \in \mathbb{F}_{2^n}^{n \times n}$ of function *F* is

$$M_{F} = \begin{bmatrix} \Delta F(b,b) & \Delta F(b,b^{2}) & \dots & \Delta F(b,b^{n}) \\ \Delta F(b,b^{2}) & \Delta F(b^{2},b^{2}) & \dots & \Delta F(b^{2},b^{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \Delta F(b,b^{n}) & \Delta F(b^{2},b^{n}) & \dots & \Delta F(b^{n},b^{n}) \end{bmatrix}.$$
(1)

A matrix M_F ∈ ℝ^{n×n}_{2ⁿ} is called a Quadratic APN Matrix (QAM) [3] if:

э

• The **derivative matrix** $M_F \in \mathbb{F}_{2^n}^{n \times n}$ of function *F* is

$$M_{F} = \begin{bmatrix} \Delta F(b,b) & \Delta F(b,b^{2}) & \dots & \Delta F(b,b^{n}) \\ \Delta F(b,b^{2}) & \Delta F(b^{2},b^{2}) & \dots & \Delta F(b^{2},b^{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \Delta F(b,b^{n}) & \Delta F(b^{2},b^{n}) & \dots & \Delta F(b^{n},b^{n}) \end{bmatrix}.$$
(1)

- A matrix M_F ∈ ℝ^{n×n}_{2ⁿ} is called a Quadratic APN Matrix (QAM) [3] if:
 - 1. M_F is symmetric and the elements in its main diagonal are all zeros;

• The **derivative matrix** $M_F \in \mathbb{F}_{2^n}^{n \times n}$ of function *F* is

$$M_{F} = \begin{bmatrix} \Delta F(b,b) & \Delta F(b,b^{2}) & \dots & \Delta F(b,b^{n}) \\ \Delta F(b,b^{2}) & \Delta F(b^{2},b^{2}) & \dots & \Delta F(b^{2},b^{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \Delta F(b,b^{n}) & \Delta F(b^{2},b^{n}) & \dots & \Delta F(b^{n},b^{n}) \end{bmatrix}.$$
(1)

- A matrix M_F ∈ ℝ^{n×n}_{2ⁿ} is called a Quadratic APN Matrix (QAM) [3] if:
 - 1. M_F is symmetric and the elements in its main diagonal are all zeros;
 - 2. Every nonzero linear combination of the *n* rows (or columns, since M_F is symmetric) of M_F has rank n 1.

Preliminaries 000000●	Matrix structure	Orbit restrictions	Submatrix method 00	Computational searches

Following Corollary 5 from [1], we get that function

$$F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i + 2^j}, \ a_{i,j} \in \mathbb{F}_{2^n}$$
(2)

is APN if and only if its derivative matrix M_F is QAM.

▲ 東 ▶ | ▲ 更 ▶

• Let $F(x) = \sum_{0 \le i < j \le n-1} a_{i,j} x^{2^i+2^j}$ with coefficients $a_{i,j} \in \mathbb{F}_{2^m}$ in some subfield \mathbb{F}_{2^m} of \mathbb{F}_{2^n}

・ロト ・四ト ・ヨト ・ヨト

Let F(x) = ∑_{0≤i<j≤n-1} a_{i,j}x^{2ⁱ+2^j} with coefficients a_{i,j} ∈ 𝔽_{2^m} in some subfield 𝔽_{2^m} of 𝔽_{2ⁿ}
 (F(x))^{2^m} = a_i^{2^m} (xⁱ)^{2^m} = ∑_{i=0}^{2ⁿ-1} a_i (xⁱ)^{2^m} = 𝓕 (x^{2^m}),

э

Let F(x) = ∑_{0≤i<j≤n-1} a_{i,j}x^{2ⁱ+2^j} with coefficients a_{i,j} ∈ 𝔽_{2^m} in some subfield 𝔽_{2^m} of 𝔽_{2ⁿ}
 (F(x))^{2^m} = a_i^{2^m} (xⁱ)^{2^m} = ∑_{i=0}^{2ⁿ-1} a_i (xⁱ)^{2^m} = F (x^{2^m}),
 (Δ_aF(x))^{2^m} = F(x+a)^{2^m} + F(x)^{2^m} + F(a)^{2^m} = Δ_{a^{2^m}}F (x^{2^m}),

æ

$$\begin{bmatrix} 0 & \Delta F(b_1, b_2) & \dots & \dots & \Delta F(b_1, b_n) \\ \Delta F(b_1, b_2) & 0 & \ddots & \dots & \Delta F(b_2, b_n) \\ \vdots & \ddots & \ddots & (\Delta F(b_1, b_2))^{2^m} & \vdots \\ \vdots & \ddots & (\Delta F(b_1, b_2))^{2^m} & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \Delta F(b_1, b_n) & \Delta F(b_2, b_n) & \dots & \dots & 0 \end{bmatrix}$$

Structure of the search

where $\Omega_1, \Omega_2, \ldots, \Omega_I \in \mathbb{F}_{2^n}$ - variables.

2

(3)

<ロト <回ト < 回ト < 回ト -

Structure of the search

$$M_{F} = \begin{pmatrix} 0 & \Omega_{1} & \Omega_{2} & \dots & \dots & \dots \\ \Omega_{1} & 0 & \ddots & \ddots & \dots & \dots \\ \Omega_{2} & \dots & 0 & \Omega_{1}^{2^{m}} & \Omega_{2}^{2^{m}} & \dots \\ \vdots & \vdots & \Omega_{1}^{2^{m}} & 0 & \dots & \dots \\ \vdots & \vdots & \Omega_{2}^{2^{m}} & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

where $\Omega_1, \Omega_2, \ldots, \Omega_l \in \mathbb{F}_{2^n}$ - variables. A variable Ω_i is located on the *i*-th level.

э

(3)

(日) (四) (日) (日) (日)

Orbit restrictions

Theorem 3 [3]

For any linear permutation / on \mathbb{F}_{2^n} and $M \in \mathbb{F}_{2^n}^{n \times n}$ s.t. $M = M_F$ then any $M' = M_{F'}$ produced by

$$M'_{i,j} = I(M_{i,j}) \text{ for all } 1 \le i,j \le n \tag{4}$$

will be $F' = I \circ F$ linearly equivalent(also EA-equivalent) to F.

・ロト ・四ト ・ヨト ・ヨト

Orbit restrictions

Theorem 3 [3]

For any linear permutation / on \mathbb{F}_{2^n} and $M \in \mathbb{F}_{2^n}^{n \times n}$ s.t. $M = M_F$ then any $M' = M_{F'}$ produced by

$$M'_{i,j} = I(M_{i,j}) \text{ for all } 1 \le i,j \le n \tag{4}$$

will be $F' = I \circ F$ linearly equivalent(also EA-equivalent) to F. Let \mathcal{L} be a set of all linear (n, n)-permutations $I = \sum_{i=1}^{n} \alpha_i x^{2^{i-1}}$ on \mathbb{F}_{2^n} with subfield $\alpha_i \in \mathbb{F}_{2^m}$.

・ロト ・四ト ・ヨト ・ヨト

Orbit restrictions

Theorem 3 [3]

For any linear permutation / on \mathbb{F}_{2^n} and $M \in \mathbb{F}_{2^n}^{n \times n}$ s.t. $M = M_F$ then any $M' = M_{F'}$ produced by

$$M'_{i,j} = I(M_{i,j}) \text{ for all } 1 \le i,j \le n \tag{4}$$

will be $F' = I \circ F$ linearly equivalent(also EA-equivalent) to F. Let \mathcal{L} be a set of all linear (n, n)-permutations $I = \sum_{i=1}^{n} \alpha_i x^{2^{i-1}}$ on \mathbb{F}_{2^n} with subfield $\alpha_i \in \mathbb{F}_{2^m}$. Then the **orbit** of $a \in \mathbb{F}_{2^n}$

$$Orb(a, \mathcal{L}) = \{ l(a) : l \in \mathcal{L} \}.$$
(5)

イロト イヨト イヨト イヨト

Nadiia Ichanska

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches

Orbit Restrictions

 $\mathbb{F}_{2^n} = Orb(a_1, \mathcal{L}) \cup \cdots \cup Orb(a_k, \mathcal{L}), \text{ for some } a_i \in \mathbb{F}_{2^n}, \ 1 \leq i \leq k.$

3

Preliminaries 0000000	Matrix structure	Orbit restrictions	Submatrix method	Computational searches

Orbit Restrictions

 $\mathbb{F}_{2^n} = Orb(a_1, \mathcal{L}) \cup \cdots \cup Orb(a_k, \mathcal{L}), \text{ for some } a_i \in \mathbb{F}_{2^n}, \ 1 \leq i \leq k.$

$$M_{F'} = \begin{pmatrix} 0 & L(\Omega_1) & L(\Omega_2) & \dots & \dots & \dots \\ L(\Omega_1) & 0 & \ddots & \ddots & \dots & \dots \\ L(\Omega_2) & \dots & 0 & L(\Omega_1^{2^m}) & L(\Omega_2^{2^m}) & \dots \\ \vdots & \vdots & L(\Omega_1^{2^m}) & 0 & \dots & \dots \\ \vdots & \vdots & L(\Omega_2^{m}) & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

where
$$L(\Omega_i^{2^{m*j}}) = (L(\Omega_i))^{2^{m*j}}, j \in \{1, \ldots, n/m-1\}$$
 for any variable $\Omega_i, 1 \leq i \leq l$.

Nadiia Ichanska

10 / 18

 $\mathbb{F}_{2^n} = Orb(A, \mathcal{L}) \cup \ldots, \ A \in \mathbb{F}_{2^n}.$

Nadiia Ichanska

э

<ロト <問ト < 目と < 目と

 $\mathbb{F}_{2^n} = Orb(A, \mathcal{L}) \cup \ldots, \ A \in \mathbb{F}_{2^n}.$

 $\mathbb{F}_{2^n} = Orb(A, \mathcal{L}) \cup \ldots, \ A \in \mathbb{F}_{2^n}.$

$$M_{F} = \begin{pmatrix} 0 & A & \Omega_{2} & \dots & \dots \\ A & 0 & \ddots & \ddots & \dots & \dots \\ \Omega_{2} & \dots & 0 & A^{2^{m}} & \Omega_{2}^{2^{m}} & \dots \\ \vdots & \vdots & A^{2^{m}} & 0 & \dots & \dots \\ \vdots & \vdots & \Omega_{2}^{2^{m}} & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

 $Orb_A(\Omega_2, \mathcal{L}) = \{ I(\Omega_2) : I \in \mathcal{L} \mid I(A) = A \}.$

э

 $\mathbb{F}_{2^n} = Orb(A, \mathcal{L}) \cup \ldots, \ A \in \mathbb{F}_{2^n}.$

$$M_F = \begin{pmatrix} 0 & A & \Omega_2 & \dots & \dots & \dots \\ A & 0 & \ddots & \ddots & \dots & \dots \\ \Omega_2 & \dots & 0 & A^{2^m} & \Omega_2^{2^m} & \dots \\ \vdots & \vdots & A^{2^m} & 0 & \dots & \dots \\ \vdots & \vdots & \Omega_2^{2^m} & \dots & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

 $Orb_A(\Omega_2, \mathcal{L}) = \{ I(\Omega_2) : I \in \mathcal{L} \mid I(A) = A \}.$

 $S = \{0, 0, ...\}$

$$Orb_{\mathcal{S}}(\Omega_k,\mathcal{L}) = \{ l(\Omega_k) : l \in \mathcal{L} \mid \forall X \in \mathcal{S} : l(X) = X \}.$$

æ

<ロト <問ト < 目と < 目と

- Let $M \in \mathbb{F}_{2^n}^{n \times n}$ be a derivative matrix.
- *M* is QAM if and only if every submatrix $S \in \mathbb{F}_{2^n}^{p \times q}$, $1 \le p, q \le n$ of *M* is **proper**.

< □ > < 同 > < 回 > < 回 > < 回 >

- Let $M \in \mathbb{F}_{2^n}^{n \times n}$ be a derivative matrix.
- *M* is QAM if and only if every submatrix $S \in \mathbb{F}_{2^n}^{p \times q}$, $1 \le p, q \le n$ of *M* is **proper**.
- ► S proper if every nonzero linear combinations of the p rows has rank at least q - 1.

< □ > < 同 > < 回 > < 回 > < 回 >

- Let $M \in \mathbb{F}_{2^n}^{n \times n}$ be a derivative matrix.
- *M* is QAM if and only if every submatrix $S \in \mathbb{F}_{2^n}^{p \times q}$, $1 \le p, q \le n$ of *M* is **proper**.

- Let $M \in \mathbb{F}_{2^n}^{n \times n}$ be a derivative matrix.
- *M* is QAM if and only if every submatrix $S \in \mathbb{F}_{2^n}^{p \times q}$, $1 \le p, q \le n$ of *M* is **proper**.

After considering F' = F ∘ L, where L = a_jx^{2'}, a_j ∈ 𝔽_{2^m}, we could eliminate the number of submatrices for this test.

13 / 18

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Preliminaries 0000000	Matrix structure	Orbit restrictions	Submatrix method	Computational searches •000000
(8,2)				

- 13	20			h n	nc	100
1.1	au	ша	нс.,	па	115	ĸа
-	_			_		

э

* ヨト * ヨト

< A

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches
(8.2)				

- F(x) over \mathbb{F}_{2^8} with coefficients in \mathbb{F}_{2^2} .
- 4⁸ = 65536 linear permutations with coefficients in the subfield were constructed.

< □ > < □ > < □ > < □ > < □ >

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches
(0, 1)				

(8,2)

- F(x) over \mathbb{F}_{2^8} with coefficients in \mathbb{F}_{2^2} .
- 4⁸ = 65536 linear permutations with coefficients in the subfield were constructed.
- By using these permutations, the first level of the search was partitioned into 4 orbits.

A D N A B N A B N A B N

Preliminaries 0000000	Matrix structure	Orbit restrictions	Submatrix method	Computational searches
(0,0)				

(8,2)

- F(x) over \mathbb{F}_{2^8} with coefficients in \mathbb{F}_{2^2} .
- 4⁸ = 65536 linear permutations with coefficients in the subfield were constructed.
- By using these permutations, the first level of the search was partitioned into 4 orbits.

$$1 \quad a \quad a^7 \quad a^{17}$$

Table: The first level

< □ > < 同 > < 回 > < 回 > < 回 >

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches
(8.2)				

- F(x) over \mathbb{F}_{2^8} with coefficients in \mathbb{F}_{2^2} .
- 4⁸ = 65536 linear permutations with coefficients in the subfield were constructed.
- The number of variables = levels in this dimension is 8.
- By using these permutations, the first level of the search was partitioned into 4 orbit representatives.

1	а	a ⁷	a ¹⁷
$\#\{\Omega_2\}_i = 8$	$\#\{\Omega_2\}_i=30$	$\#\{\Omega_2\}_i = 22$	$\#\{\Omega_2\}_i = 14$
$Orb_1\Omega_2$	$Orb_a\Omega_2$	$Orb_{a^7}\Omega_2$	$Orb_{a^{17}}\Omega_2$

Table: The second level

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches
(8.2)				
(0,2)				

1	а	a ⁷	a ¹⁷
40 hours	1 month	10 days	7 days

э

Preliminaries	Matrix structure 00	Orbit restrictions	Submatrix method 00	Computational searches
(α, α)				

(8,2)

1	а	a ⁷	a ¹⁷
40 hours	1 month	10 days	7 days

 196863 quadratic APN functions were found in the search, with 27 unique ortho-derivative differential spectra.

A B b A B b

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches

(8,2)

1	а	a ⁷	a ¹⁷
40 hours	1 month	10 days	7 days

 196863 quadratic APN functions were found in the search, with 27 unique ortho-derivative differential spectra.

 $\blacktriangleright \ a^{85}x^{96} + a^{85}x^{72} + a^{170}x^{24} + x^{18} + a^{85}x^{12} + a^{85}x^9 + x^6 + x^3.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches

(8,2)

1	а	a ⁷	a ¹⁷
40 hours	1 month	10 days	7 days

 196863 quadratic APN functions were found in the search, with 27 unique ortho-derivative differential spectra.

- $\blacktriangleright \ a^{85}x^{96} + a^{85}x^{72} + a^{170}x^{24} + x^{18} + a^{85}x^{12} + a^{85}x^9 + x^6 + x^3.$
- 0³⁸¹⁹⁶, 2²²⁰⁰⁸, 4⁴⁶⁰⁸, 6⁴⁵⁶, 8¹² its ortho-derivative differential spectra.

・ 何 ト ・ ヨ ト ・ ヨ ト

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method 00	Computational searches
(10.2)				
(10.2)				

- F(x) over $\mathbb{F}_{2^{10}}$ with coefficients in \mathbb{F}_{2^2} .
- 4¹⁰ = 1048576 linear permutations with coefficients in the subfield were constructed.
- The number of variables = levels in this dimension is 9.
- By using these permutations, the first level of the search was partitioned into 3 orbit representatives.

1	а	a ⁵
$\#\{\Omega_2\}_i = 5$	$\#\{\Omega_2\}_i = 33$	$\#\{\Omega_2\}_i = 50$
$Orb_1\Omega_2$	$Orb_a\Omega_2$	$Orb_{a^5}\Omega_2$

Preliminaries	Matrix structure	Orbit restrictions	Submatrix method	Computational searches
0000000	00		00	0000000
(10,1)				

- F(x) over $\mathbb{F}_{2^{10}}$ with coefficients in \mathbb{F}_{2^1} .
- 2¹⁰ = 1024 linear permutations with coefficients in the subfield were constructed.
- The number of variables = levels in this dimension is 5.
- By using these permutations, the first level of the search was partitioned into 8 orbit representatives.

1	а	a ⁵	a^{15}	a ³³	a ⁵⁷	a ⁹⁹	a ³⁴¹
# of orbit representatives for 2 nd level after Sub-matrix Test							
0	746	1012	753	71	112	78	8

Preliminaries	Matrix structure	Orbit restrictions	Submatrix method	Computational searches
(9,3)				

- F(x) over \mathbb{F}_{2^9} with coefficients in \mathbb{F}_{2^3} .
- 8⁹ = 134217728 linear permutations with coefficients in the subfield were constructed.
- The number of variables = levels in this dimension is 12.

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches
(9.3)				

- F(x) over \mathbb{F}_{2^9} with coefficients in \mathbb{F}_{2^3} .
- 8⁹ = 134217728 linear permutations with coefficients in the subfield were constructed.
- ▶ The number of variables = levels in this dimension is 12.

Remark

Let $a \in \mathbb{F}_{2^9}$. We categorize *a* into the following cases:

1.
$$Cat_1 = \{a : a \in \mathbb{F}_{2^9} \mid a + a^{2^3} = 0\},\$$

2. $Cat_2 = \{a : a \in \mathbb{F}_{2^9} \mid a + a^{2^3} + a^{2^6} = 0\},\$
3. $Cat_3 = \{a : a \in \mathbb{F}_{2^9} \mid a \notin Cat_1, a \notin Cat_2\}\$

• • = • • = •

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches
(9,3)				

- F(x) over \mathbb{F}_{2^9} with coefficients in \mathbb{F}_{2^3} .
- 8⁹ = 134217728 linear permutations with coefficients in the subfield were constructed.
- The number of variables = levels in this dimension is 12.

Remark

Let $a \in \mathbb{F}_{2^9}$. We categorize a into the following cases:

1.
$$Cat_1 = \{a : a \in \mathbb{F}_{2^9} \mid a + a^{2^3} = 0\},\$$

2. $Cat_2 = \{a : a \in \mathbb{F}_{2^9} \mid a + a^{2^3} + a^{2^6} = 0\},\$
3. $Cat_3 = \{a : a \in \mathbb{F}_{2^9} \mid a \notin Cat_1, a \notin Cat_2\}\$

Theorem

Let $a, b \in Cat_3$. If there exist $l(x) = \sum_{i=0}^{8} c_i x^{2^i}$, $c_i \in \mathbb{F}_{2^3}$ s.t. l(a) = b, $l(a^{2^3}) = b^{2^3}$, $l(a^{2^6}) = b^{2^6}$. Then there exist linear permutation $L \in \mathcal{L}$ s.t. L(a) = b.

17 / 18

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches

Conclusions

For F(x) over 𝔽_{2ⁿ} with coefficients in 𝔽_{2^m} we run searches (n, m) for (8, 2), (10, 2), (10, 1), (9, 3).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Preliminaries 0000000	Matrix structure 00	Orbit restrictions	Submatrix method	Computational searches

Conclusions

- For F(x) over 𝔽_{2ⁿ} with coefficients in 𝔽_{2^m} we run searches (n, m) for (8, 2), (10, 2), (10, 1), (9, 3).
- We conclude where it is feasible to get the results and improve the computational method as possible.

Preliminaries 0000000	Matrix structure	Orbit restrictions	Submatrix method	Computational searches

Conclusions

- For F(x) over 𝔽_{2ⁿ} with coefficients in 𝔽_{2^m} we run searches (n, m) for (8, 2), (10, 2), (10, 1), (9, 3).
- We conclude where it is feasible to get the results and improve the computational method as possible.
- Computational searches are still running.

Diana Davidova and Nikolay Kaleyski.

Classification of all do planar polynomials with prime field coefficients over $gf(3^n)$ for n up to 7.

Cryptology ePrint Archive, Paper 2022/1059, 2022. https://eprint.iacr.org/2022/1059.

Satoshi Yoshiara.

Equivalences of quadratic APN functions. Journal of Algebraic Combinatorics, 35(3):461–475, 2012.

 Yuyin Yu, Mingsheng Wang, and Yongqiang Li.
 A matrix approach for constructing quadratic APN functions. Designs, codes and cryptography, 73(2):587–600, 2014.

< □ > < □ > < □ > < □ > < □ > < □ >