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Preliminaries Matrix structure Orbit restrictions Submatrix method Computational searches

Vectorial Boolean Functions and APN functions

F2n - finite field with 2n elements, n ∈ N.

▶ A function F : F2n → F2n is called (n,n)-function or Vectorial
Boolean Function.

▶ F (x) =
∑2n−1

i=0 ai · x i , ai ∈ F2n - its univariate
representation.

▶ DaF (x) = F (a+ x) + F (x) - its derivative in the direction
a ∈ F2n\{0}.

▶ ∆aF (x) = F (a+ x) + F (x) + F (a) + F (0) - symmetric
derivative in the direction a ∈ F2n\{0} of F .

Nadiia Ichanska QAM method 1 / 18



Preliminaries Matrix structure Orbit restrictions Submatrix method Computational searches

Vectorial Boolean Functions and APN functions

F2n - finite field with 2n elements, n ∈ N.

▶ A function F : F2n → F2n is called (n,n)-function or Vectorial
Boolean Function.

▶ F (x) =
∑2n−1

i=0 ai · x i , ai ∈ F2n - its univariate
representation.

▶ DaF (x) = F (a+ x) + F (x) - its derivative in the direction
a ∈ F2n\{0}.

▶ ∆aF (x) = F (a+ x) + F (x) + F (a) + F (0) - symmetric
derivative in the direction a ∈ F2n\{0} of F .

Nadiia Ichanska QAM method 1 / 18



Preliminaries Matrix structure Orbit restrictions Submatrix method Computational searches

Vectorial Boolean Functions and APN functions

F2n - finite field with 2n elements, n ∈ N.

▶ A function F : F2n → F2n is called (n,n)-function or Vectorial
Boolean Function.

▶ F (x) =
∑2n−1

i=0 ai · x i , ai ∈ F2n - its univariate
representation.

▶ DaF (x) = F (a+ x) + F (x) - its derivative in the direction
a ∈ F2n\{0}.

▶ ∆aF (x) = F (a+ x) + F (x) + F (a) + F (0) - symmetric
derivative in the direction a ∈ F2n\{0} of F .

Nadiia Ichanska QAM method 1 / 18



Preliminaries Matrix structure Orbit restrictions Submatrix method Computational searches

Vectorial Boolean Functions and APN functions

F2n - finite field with 2n elements, n ∈ N.

▶ A function F : F2n → F2n is called (n,n)-function or Vectorial
Boolean Function.

▶ F (x) =
∑2n−1

i=0 ai · x i , ai ∈ F2n - its univariate
representation.

▶ DaF (x) = F (a+ x) + F (x) - its derivative in the direction
a ∈ F2n\{0}.

▶ ∆aF (x) = F (a+ x) + F (x) + F (a) + F (0) - symmetric
derivative in the direction a ∈ F2n\{0} of F .

Nadiia Ichanska QAM method 1 / 18



Preliminaries Matrix structure Orbit restrictions Submatrix method Computational searches

Vectorial Boolean Functions and APN functions

F2n - finite field with 2n elements, n ∈ N.

▶ A function F : F2n → F2n is called (n,n)-function or Vectorial
Boolean Function.

▶ F (x) =
∑2n−1

i=0 ai · x i , ai ∈ F2n - its univariate
representation.

▶ ∆aF (x) = F (a+ x) + F (x) + F (a) + F (0) - symmetric
derivative in the direction a ∈ F2n\{0} of F .

▶ δF = max
a,b∈F2n ,a ̸=0

|{x ∈ F2n : ∆F (a, x) = b}| - its differential

unifomity.

▶ F is almost perfect nonlinear(APN) if δF = 2.

Nadiia Ichanska QAM method 1 / 18



Preliminaries Matrix structure Orbit restrictions Submatrix method Computational searches

Vectorial Boolean Functions and APN functions

F2n - finite field with 2n elements, n ∈ N.

▶ A function F : F2n → F2n is called (n,n)-function or Vectorial
Boolean Function.

▶ F (x) =
∑2n−1

i=0 ai · x i , ai ∈ F2n - its univariate
representation.

▶ ∆aF (x) = F (a+ x) + F (x) + F (a) + F (0) - symmetric
derivative in the direction a ∈ F2n\{0} of F .

▶ δF = max
a,b∈F2n ,a ̸=0

|{x ∈ F2n : ∆F (a, x) = b}| - its differential

unifomity.

▶ F is almost perfect nonlinear(APN) if δF = 2.

Nadiia Ichanska QAM method 1 / 18



Preliminaries Matrix structure Orbit restrictions Submatrix method Computational searches

Vectorial Boolean Functions and APN functions

F2n - finite field with 2n elements, n ∈ N.

▶ A function F : F2n → F2n is called (n,n)-function or Vectorial
Boolean Function.

▶ F (x) =
∑2n−1

i=0 ai · x i , ai ∈ F2n - its univariate
representation.

▶ ∆aF (x) = F (a+ x) + F (x) + F (a) + F (0) - symmetric
derivative in the direction a ∈ F2n\{0} of F .

▶ δF = max
a,b∈F2n ,a ̸=0

|{x ∈ F2n : ∆F (a, x) = b}| - its differential

unifomity.

▶ F is almost perfect nonlinear(APN) if δF = 2.

Nadiia Ichanska QAM method 1 / 18



Preliminaries Matrix structure Orbit restrictions Submatrix method Computational searches

▶ The algebraic degree of a function F : F2n → F2n is
deg(F ) = max

0≤i≤2n−1
ai ̸=0

w2(i), where w2(i) is the 2-weight of the

exponent i .

▶ F is a linear function if F (x) =
∑

0≤i<n
aix

2i , ai ∈ F2n .

F is affine if it is a sum of a linear and a constant.

▶ F is quadratic if deg(F ) ≤ 2.

▶ We will consider homogeneous quadratic (n, n)-function F

F (x) =
∑

0≤i<j≤n−1

ai ,jx
2i+2j , ai ,j ∈ F2n .
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Equivalence

The functions F and F ′ from F2n to itself are called

▶ affine equivalent (or linear equivalent) if F ′ = A1 ◦ F ◦ A2 for
affine (linear) permutations A1,A2 from F2n to itself.

▶ EA-equivalent if F ′ and F + A are affine equivalent for affine
mapping A.

▶ Carlet-Charpin-Zinoviev(CCZ-equivalent).

For quadratic APN (n, n) - functions, F and F ′ are
CCZ-equivalent if and only if they are EA-equivalent [2].
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QAM of the quadratic function over F2n

▶ Let F (x) =
∑

0≤i<j≤n−1
ai ,jx

2i+2j over F2n .

▶ Let us set a normal basis B = {b, b2, . . . , b2n−1} of F2n over
F2.

▶ [3] The rank of the vector v ∈ Fn
2n is the dimension of the

subspace spanned by its elements.

▶ The derivative matrix MF ∈ Fn×n
2n of function F is

MF =


∆bF (b) ∆bF (b

2) . . . ∆bF (bn)
∆b2F (b) ∆b2F (b

2) . . . ∆b2F (bn)
...

...
. . .

...
∆bnF (b) ∆bnF

(
b2
)

. . . ∆bnF (bn)

 .
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QAM of the quadratic function over F2n

▶ The derivative matrix MF ∈ Fn×n
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(
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)
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...
. . .

...
∆F (b, bn) ∆F

(
b2, bn

)
. . . ∆F (bn, bn)

 .

(1)

▶ A matrix MF ∈ Fn×n
2n is called a Quadratic APN Matrix

(QAM) [3] if:

1. MF is symmetric and the elements in its main diagonal are all
zeros;

2. Every nonzero linear combination of the n rows (or columns,
since MF is symmetric) of MF has rank n − 1.
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Following Corollary 5 from [1], we get that function

F (x) =
∑

0≤i<j≤n−1

ai ,jx
2i+2j , ai ,j ∈ F2n (2)

is APN if and only if its derivative matrix MF is QAM.
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Structure of the derivative matrix (1)

▶ Let F (x) =
∑

0≤i<j≤n−1 ai ,jx
2i+2j with coefficients ai ,j ∈ F2m

in some subfield F2m of F2n

▶ (F (x))2
m

= a2
m

i

(
x i
)2m

=
∑2n−1

i=0 ai
(
x i
)2m

= F
(
x2

m)
,

▶ (∆aF (x))
2m = F (x + a)2

m
+F (x)2

m
+F (a)2

m
= ∆a2mF

(
x2

m)
,

Mi+m,j+m = (Mi ,j)
2m .



0 ∆F (b1, b2) . . . . . . ∆F (b1, bn)

∆F (b1, b2) 0
. . . . . . ∆F (b2, bn)

...
. . .

. . . (∆F (b1, b2))
2m

...
...

. . . (∆F (b1, b2))
2m 0

...
...

. . .
. . .

. . .
...

∆F (b1, bn) ∆F (b2, bn) . . . . . . 0


.
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Structure of the search

MF =



0 Ω1 Ω2 . . . . . . . . .

Ω1 0
. . .

. . . . . . . . .
Ω2 . . . 0 Ω2m

1 Ω2m
2 . . .

...
... Ω2m

1 0 . . . . . .
...

... Ω2m
2 . . . 0 . . .

...
...

...
...

...
. . .


, (3)

where Ω1,Ω2, . . . ,Ωl ∈ F2n - variables.

A variable Ωi is located on the i-th level.
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Structure of the search

MF =



0 Ω1 Ω2 . . . . . . . . .
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Orbit restrictions

Theorem 3 [3]

For any linear permutation l on F2n and M ∈ Fn×n
2n s.t. M = MF

then any M ′ = MF ′ produced by

M ′
i ,j = l(Mi ,j) for all 1 ≤ i , j ≤ n (4)

will be F ′ = l ◦ F linearly equivalent(also EA-equivalent) to F .

Let L be a set of all linear (n, n)-permutations l =
∑n

i=1 αix
2i−1

on F2n with subfield αi ∈ F2m . Then the orbit of a ∈ F2n

Orb(a,L) = {l(a) : l ∈ L}. (5)
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Orbit Restrictions

F2n = Orb(a1,L)∪ · · · ∪Orb(ak ,L), for some ai ∈ F2n , 1 ≤ i ≤ k .

MF ′ =



0 L(Ω1) L(Ω2) . . . . . . . . .

L(Ω1) 0
. . .

. . . . . . . . .
L(Ω2) . . . 0 L(Ω2m

1 ) L(Ω2m
2 ) . . .

...
... L(Ω2m

1 ) 0 . . . . . .
...

... L(Ω2m
2 ) . . . 0 . . .

...
...

...
...

...
. . .


,

where L(Ω2m∗j
i ) = (L(Ωi ))

2m∗j
, j ∈ {1, . . . , n/m − 1} for any

variable Ωi , 1 ≤ i ≤ l .
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Orbit partition level by level

F2n = Orb(A,L) ∪ . . . , A ∈ F2n .

MF =



0 A Ω2 . . . . . . . . .

A 0
. . .

. . . . . . . . .
Ω2 . . . 0 A2m Ω2m

2 . . .
...

... A2m 0 . . . . . .
...

... Ω2m
2 . . . 0 . . .

...
...

...
...

...
. . .


.

OrbA(Ω2,L) = {l(Ω2) : l ∈ L | l(A) = A}.

S = {Ω1, . . . ,Ωk−1}
OrbS(Ωk ,L) = {l(Ωk) : l ∈ L | ∀X ∈ S : l(X ) = X}.
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Submatrix method

▶ Let M ∈ Fn×n
2n be a derivative matrix.

▶ M is QAM if and only if every submatrix S ∈ Fp×q
2n ,

1 ≤ p, q ≤ n of M is proper.

▶ S proper if every nonzero linear combinations of the p rows
has rank at least q − 1.
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Submatrix method

▶ Let M ∈ Fn×n
2n be a derivative matrix.

▶ M is QAM if and only if every submatrix S ∈ Fp×q
2n ,

1 ≤ p, q ≤ n of M is proper.

▶ 

0 A B Ω3 . . . . . .

A 0
. . .

. . . . . . . . .
B . . . 0 A2m B2m . . .

Ω3
... A2m 0 . . . . . .

...
... B2m . . . 0 . . .


.

▶ After considering F ′ = F ◦ L, where L = ajx
2i , aj ∈ F2m , we

could eliminate the number of submatrices for this test.
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(8,2)

▶ F (x) over F28 with coefficients in F22 .

▶ 48 = 65536 linear permutations with coefficients in the
subfield were constructed.

▶ By using these permutations, the first level of the search was
partitioned into 4 orbits.

1 a a7 a17

Table: The first level
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(8,2)

▶ F (x) over F28 with coefficients in F22 .

▶ 48 = 65536 linear permutations with coefficients in the
subfield were constructed.

▶ The number of variables = levels in this dimension is 8.

▶ By using these permutations, the first level of the search was
partitioned into 4 orbit representatives.

1 a a7 a17

#{Ω2}i = 8 #{Ω2}i = 30 #{Ω2}i = 22 #{Ω2}i = 14
Orb1Ω2 OrbaΩ2 Orba7Ω2 Orba17Ω2

Table: The second level
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(8,2)

▶ F (x) over F28 with coefficients in F22 .

1 a a7 a17

40 hours 1 month 10 days 7 days

▶ 196863 quadratic APN functions were found in the search,
with 27 unique ortho-derivative differential spectra.

▶ a85x96 + a85x72 + a170x24 + x18 + a85x12 + a85x9 + x6 + x3.

▶ 038196, 222008, 44608, 6456, 812 - its ortho-derivative differential
spectra.
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(10,2)

▶ F (x) over F210 with coefficients in F22 .

▶ 410 = 1048576 linear permutations with coefficients in the
subfield were constructed.

▶ The number of variables = levels in this dimension is 9.

▶ By using these permutations, the first level of the search was
partitioned into 3 orbit representatives.

1 a a5

#{Ω2}i = 5 #{Ω2}i = 33 #{Ω2}i = 50
Orb1Ω2 OrbaΩ2 Orba5Ω2
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(10,1)

▶ F (x) over F210 with coefficients in F21 .

▶ 210 = 1024 linear permutations with coefficients in the
subfield were constructed.

▶ The number of variables = levels in this dimension is 5.

▶ By using these permutations, the first level of the search was
partitioned into 8 orbit representatives.

1 a a5 a15 a33 a57 a99 a341

# of orbit representatives for 2nd level after Sub-matrix Test

0 746 1012 753 71 112 78 8
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(9,3)

▶ F (x) over F29 with coefficients in F23 .

▶ 89 = 134217728 linear permutations with coefficients in the
subfield were constructed.

▶ The number of variables = levels in this dimension is 12.

Remark
Let a ∈ F29 . We categorize a into the following cases:

1. Cat1 = {a : a ∈ F29 | a+ a2
3

= 0},
2. Cat2 = {a : a ∈ F29 | a+ a2

3

+ a2
6

= 0},
3. Cat3 = {a : a ∈ F29 | a /∈ Cat1, a /∈ Cat2},

Theorem
Let a, b ∈ Cat3. If there exist l(x) =

∑8
i=0 cix

2i , ci ∈ F23 s.t.

l(a) = b, l(a2
3
) = b2

3
, l(a2

6
) = b2

6
. Then there exist linear

permutation L ∈ L s.t. L(a) = b.
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Conclusions

▶ For F (x) over F2n with coefficients in F2m we run searches
(n,m) for (8, 2), (10, 2), (10, 1), (9, 3).

▶ We conclude where it is feasible to get the results and
improve the computational method as possible.

▶ Computational searches are still running.
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