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First Part

Definitions mostly

Some history too



An important class of polynomials

Definition
A polynomial L ∈ Fpe [x ] is called a linearized polynomial if

L(x) =
∑
i

aix
pi .

Such polynomials represent all linear transformations of Fpe when viewed
as a vector space over Fp. In particular, they satisfy

L(x + y) = L(x) + L(y) for all x , y ∈ Fpe .

A linearized polynomial L ∈ Fq[x ] induces a permutation under evaluaton
(is a PP) over Fq if and only if the only root of L(x) in Fq is 0.
(If you think about this in terms of a non-singular linear transformation,
then we’re talking about the size of the null space.)
And linearized polynomials are closed under reduction modulo xq − x .
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Another important class of polynomials

Definition
A polynomial D ∈ Fq[x ] is a Dembowski-Ostrom (DO) polynomial if

D(x) =
∑
i ,j

aijx
pi+pj .

They are mostly significant because they are precisely the polynomials
whose non-trivial differential operators D(x + a)− D(x)− D(a) are all
linearized polynomials.
And DO polynomials are closed under reduction modulo xq − x .
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The interplay between DOs and linearized polynomials

So DO polynomials are precisely those polynomials whose non-trivial
differential operators D(x + a)−D(x)−D(a) are all linearized polynomials
However, this is not their only important connection.

L(x) =
∑
i

aix
pi

D(x) =
∑
i ,j

aijx
pi+pj

Think about what happens with composition. . .

Yep, L(D) and D(L) are both DOs, even after reduction.
This can lead to the study of DO polynomials under the action of the
general linear group, say, since the general linear group is nothing more
than the group of all non-singular transformations – i.e. the group of
linearized PPs working modulo xq − x .
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Incidence structures I

Definition
A connected incidence structure P is a projective plane if

⊕ Every two points lie on a unique line.

⊕ Every two lines intersect at a unique point.

⊕ There are at least 4 points, no three of which are collinear.

These axioms force P to have the following properties:

⊕ the number of points on each line is the same as the number of lines
through each point.

n + 1

⊕ the same number of points as lines.

n2 + n + 1

We call this important invariant n the order of P.
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Affine and projective planes

If you have a projective plane and you delete any one line and all of the
points on it, then you obtain what is known as an affine plane.

The affine plane satisfies almost all of the axioms of a projective plane
(there’s a slight fudge in the 2 lines intersecting at a unique point part).

Affine planes are equivalent to projective planes for if you have an affine
plane, then it can only be completed in a single way to obtain a projective
plane.

This concept of “completing” or “extending” is a central technique in
projective geometry.
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The big open problems

There are two major open problems in the area.

⊕ It is conjectured that any plane of prime order is classical – i.e. you
can construct it by defining vertical lines and slope lines y = mx + c
over Fp.

Most geometers believe this is true.

⊕ It is conjectured that all planes must have prime power order.

There is no consensus among geometers.
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Incidence structures II

Definition
A connected incidence structure S is a semibiplane if

⊕ Every two points lie on 0 or 2 lines.

⊕ Every two lines intersect at 0 or 2 points.

Definition
A connected incidence structure S is a biplane if

⊕ Every two points lie on 2 lines.

⊕ Every two lines intersect at 2 points.

For biplanes we have the same number of points on a line and lines
through a point: n + 2.
And the number of points and lines in the entire structure are the same:
1 + (n + 2)(n + 1)/2.
Again we call n the order.
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The big open problems

The biggest problem here concerns biplanes.

We only know of 18 examples, the largest ones having order 11.

And we have literally no idea what’s going on.

The biggest problem concerning semibiplanes is probably:

There is a method for constructing projective planes from specific types of
semibiplanes, and when it works it produces “exotic” examples.

But so far it’s only produced 2 new examples because we only have 2
examples of semibiplanes that satisfy the criteria!

This is not like the biplane problem – we have infinitely many examples of
semibiplanes, its just that the criteria needed seems to be very rare.
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Incidence structures III

Definition
A connected incidence structure S is a semisymmetric design (SSD) if
there exists some integer λ > 0 such that

⊕ Every two points lies on 0 or λ lines.

⊕ Every two lines intersect at 0 or λ points.

Here λ is often called the incidence parameter.

If λ = 1, the SSD is more commonly called a partial plane.

If λ = 2, the SSD is just a semibiplane.
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Some facts about SSDs

Theorem [Wild, 1981]
Let S be a semisymmetric design with incidence parameter λ > 1. Then S
has the following properties,

(i) there is a positive integer k such that every point is on k lines and
every line contains k points,

(ii) the number of points is equal to the number of lines, usually denoted
by v ,

(iii) every point has k(k − 1)/λ neighbours,

(iv) v ≥ k(k − 1)/λ+ 1,

(v) 2λ | vk(k − 1).

Because of these results we usually write SSD(v , k, λ) for the SSD.
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The big open problems

If we generalise the biplane definition to λ > 2, we know even less than we
do for biplanes.

And we have even less idea what’s going on.

At present, there is also no theory on how to complete partial planes or
semibiplanes or SSDs to their regular counterparts.

There is some partial success for partial planes, but we have no idea for
any λ ≥ 2.

It was hoped that this approach might lead to breaking open the general
problem, but nowawdays at least some combinatorists seem to think it is a
dead-end.
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Second Part

Definitions of the functions

Sort of a history



A long long time ago. . .

Definition (Dembowski & Ostrom, 1968)
Let G ,H be finite abelian groups, written additively.
Let f : G → H .
We say f is

planar

if, for every a ∈ G , b ∈ H with a ̸= 0, the equation

f (x + a)− f (x) = b

has a unique solution x ∈ G .
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A not-as-long time ago. . .

Definition (Nyberg, 1993)
Let G ,H be finite abelian groups, written additively.
Let f : G → H .
We say f is

almost perfect non-linear (APN)

if, for every a ∈ G , b ∈ H with a ̸= 0, the equation

f (x + a)− f (x) = b

has at most 2 solutions x ∈ G .
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A not-as-long as a not-as-long time ago. . .

Definition (Coulter & Henderson, 1999)
Let G ,H be finite abelian groups, written additively.
Let f : G → H .
We say f is

semiplanar

if, for every a ∈ G , b ∈ H with a ̸= 0, the equation

f (x + a)− f (x) = b

has either 0 or 2 solutions x ∈ G .
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APN vs semiplanar

Why the two definitions?
Revisiting the proof of the following result is maybe instructive:

Lemma
If f : G → H is planar, then #G must be odd.

Suppose f is planar and #G is even.
Then there exists an involution t ∈ G (an element of order 2).
As f is planar, the map x 7→ f (x + t)− f (x) is a bijection.
That means there exists a unique solution x0 to

f (x0 + t) = f (x0).

But then f ((x0 + t) + t)− f (x0 + t) = f (x0)− f (x0 + t) = 0, so that
x0 + t is also a solution, a contradiction.

So whenever we look at the derivative in the direction of an involution,
solutions will come in pairs.
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APN vs semiplanar

So whenever we look at the derivative in the direction of an
involution, solutions will come in pairs.

Now consider the two definitions over a finite field of characteristic 2.
In F2e , the additive group (the relevant group to the definition) is an
elementary abelian 2-group.

That means every non-zero element is an involution.

So every derivative will have solutions coming in pairs and consequently
APN and semiplanar coincide over finite fields of characteristic 2.

Over other groups, they mean different things.
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Ago. . .

Definition (Coulter & Fain, 1999/2021)
Let G ,H be finite abelian groups, written additively.
Let f : G → H and λ ≥ 2 be an integer.
We say f is

semiplanar of index λ

if, for every a ∈ G , b ∈ H with a ̸= 0, the equation

f (x + a)− f (x) = b

has either 0 or λ solutions x ∈ G .
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Third Part

Incidence structures from functions

Justifying why those functions just defined were just defined

The problem of connectivity (or connectedness, if you prefer)



An incidence structure for functions (planar version)

For f : G → H , we define an incidence structure I (G ,H ; f ) as follows:

⊕ ”Points” are the elements of G × H ,

⊕ ”Lines” are the symbols L(a, b), L(c) where a, c ∈ G and b ∈ H , and
are defined by

⊕ L(a, b) = {(x , f (x − a) + b) : x ∈ G}, and
⊕ L(c) = {(c , y) : y ∈ H }

One can think of these lines as lines of slope a and vertical lines.

Note how the whole structure I (G ,H ; f ) is dependent on f as the slope
lines are dependent on f .
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Intersection points

L(a, b) = {(x , f (x − a) + b) : x ∈ G}

L(c) = {(c , y) : y ∈ H }

Consider the intersection points for the lines in I (G ,H ; f ). We have

L(c) ∩ L(d) = ∅
L(c) ∩ L(a, b) = {(c , f (c − a) + b)}.

So zero or 1 intersection points involving vertical lines. And

L(a, b) ∩ L(c , d) = {(x , f (x − a) + b) : f (x − a) + b = f (x − c) + d}
= {(x , f (x − a) + b) : f (x − a)− f (x − c) = d − b}.

So when a = c , L(a, b) ∩ L(a, d) = ∅ unless b = d .

For a ̸= c , intersection points are tied to the derivatives of f .
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Properties of the structure I (G ,H ; f )

Theorem (Dembowski & Ostrom, 1968)
Let G and H be finite abelian groups written additively where
#G = #H = n. If f : G → H is a planar function, then I (G ,H ; f ) has the
following properties.

(i) It has n2 points and n2 + n lines.

(ii) Each line contains n points and each point is on n + 1 lines.

(iii) Every pair of points occur on a unique line. Every pair of lines
intersect in 0 or 1 points.

(iv) For every point there are exactly n2 − 1 other points defined by the
lines through it; for every line there are exactly n2 other lines
intersecting it.
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Projective planes from planar functions

Theorem (Dembowski & Ostrom, 1968)
A connected I (G ,H ; f ) is an affine plane if and only if f : G → H is a
planar function.

The only issue to be considered is whether or not the structure is
connected.

However, since every point has n2 − 1 neighbours, we see every point is
connected to every other point.

Thus, planar functions always produce affine planes.
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An incidence structure for functions (semiplanar version)

For f : G → H , define S(G ,H ; f ) as follows:

⊕ ”Points” are the elements of G × H ,

⊕ ”Lines” are the symbols L(a, b) where a ∈ G and b ∈ H , and are
defined by

⊕ L(a, b) = {(x , f (x − a) + b) : x ∈ G}.

What changed? Yes, we deleted the vertical lines.

But why?!
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How come you can just delete stuff?!

A little known fact about projective planes is that the step from projective
to affine through deleting a line is not the only reversible step one can do.

Projective plane~w�
Delete any one line and all the points on it~w�

Affine plane~w�
Delete all the lines of a single parallel class (the “vertical lines”)~w�

The defining component of the projective plane (just the “slope lines”)
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The structure S(G ,H ; f )

We’re keeping the slope lines but throwing out the vertical lines.

Implications?

The structure remains dependent on the function f .

And the intersection points of slope lines are dependent on the derivatives,
which means the derivatives of the function remain integral to
understanding the incidence structure.
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Properties of the structure S(G ,H ; f )

Theorem (Coulter & Henderson, 1999; Coulter & Fain, 2021)
Let G and H be finite abelian groups written additively where #G = n
and #H = m. If f : G → H is a semiplanar function of index λ ≥ 2, then
S(G ,H ; f ) has the following properties.

(i) It has nm points and nm lines.

(ii) Each line contains n points and each point is on n lines.

(iii) Every pair of points occur on 0 or λ lines and every pair of lines
intersect in 0 or λ points.

(iv) For every point there are exactly n(n − 1)/λ other points defined by
the lines through it.
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SDDs from semiplanar functions

Theorem (Coulter & Henderson, 1999; Coulter & Fain, 2021)
Let #G = n and #H = m.
A connected S(G ,H ; f ) is a SSD(nm, n, λ) if and only if f : G → H is a
semiplanar function of index λ.

Yes, there is that issue with connectivity. . .

Unlike the planar function situation, now we’re only guaranteed that a
point has (at best) roughly half the points in the structure as neighbours,
so it’s not quite as straightforward.
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Is this structure connected or not?!

Theorem (Coulter & Henderson, 1999, 2004)
Let f : G → H be a semiplanar function of index 2. If the structure is not
connected, then it splits into exactly two isomorphic semibiplanes.

This actually happens when #G = #H = 4.

Theorem (Coulter & Henderson, 1999)
If f : G → H is a bijective semiplanar function of index 2 and #G > 4,
then S(G ,H ; f ) is connected.

Theorem (Yoshiara, 2010)
If f : G → H is a semiplanar function of index 2 and #G > 4, then
S(G ,H ; f ) is connected.
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Connectivity of S(G ,H ; f ) for semiplanar f

For S ⊆ G , we use Span(S) to denote the subgroup of G that is generated
by S – i.e. the closure of S .

Theorem (Coulter & Fain, 2021)
Let f : G → H be a semiplanar function of index λ ≥ 2 and suppose wlog
f (0) = 0. Define the set Γf by

Γf = {(x , f (x)) : x ∈ G} .

Then S(G ,H ; f ) is connected if and only if Span(Γf ) = G × H .
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Connectivity of S(G ,H ; f ) for semiplanar f

Corollary
If S(G ,H ; f ) is connected, then Span(Im(f )) = H .

We thought this was a sufficient condition, but there are some easy
counterexamples.

The polynomial f (x) = Tr(x2) over Fq2 , with Tr the trace from Fq2 to Fq,
is semiplanar of index q (for q ≥ 5). But it’s easy to show. . .

⊕ S(Fq2 ,Fq2 ; f ) and S(Fq2 ,Fq2 ; f + x) are isomorphic, and

⊕ Span(Im(f )) = Fq and Span(Im(f + x)) = Fq2 .
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The best we can do with connectivity

Theorem (Coulter & Fain, 2021)
Let G ,H be finite abelian groups of order n and m, respectively.
Let f : G → H be semiplanar of index λ > 2.
Then S(G ,H ; f ) is a collection of at most m

n λ isomorphic SSDs.

Disappointingly, this is, in fact, the best we can do!

The function f (x) = Tr(x2) where Tr is the trace from Fqn to Fq is a
semiplanar function of index qn−1.

And we can prove that S(Fqn ,Fqn ; f ) is a collection of qn−1 isomorphic
copies of a SSD(qn+1, qn, qn−1).
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Fourth Part

Restrictions

Existence

Composition



Requirements for planar functions to exist

There are some limitations on the groups involved:

⊕ #G = #H

⊕ G cannot contain an involution. So #G must be odd.

A further possible requirement is that both groups need to be elementary
abelian p-groups.

J.C.D.S. Yaqub may have had a proof of this (“about 3 pages of
hand-written notes”), but she died before sharing it with me.

Nowadays this is called Yaqub’s conjecture, and if it’s true, then the study
of planar functions can be restricted to just the finite field case.
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Requirements for semiplanar functions to exist (λ ≥ 2)

There are only 2 conditions, and both are kind of trivial:

⊕ #G/#H ≤ λ.

⊕ λ must divide #G .

There was a combinatorial design conjecture akin to Yaqub’s conjecture
related to certain designs, but this was proven false by Mubayi via a
construction over non-abelian groups.

His constructions, however, do not ever produce SSDs so his results do not
preclude the possibilty that we can only construct these functions over
elementary p-groups again.
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Actual planar functions

Theorem (Coulter & Matthews, 1997)

Let f (x) = xp
k+1 ∈ Fpe [x ] with p odd.

Then f is planar if and only if e
gcd(k,e) is odd.

Yes, DO monomial examples.
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Actual semiplanar functions (APN functions)

Since APN and semiplanar functions are one and the same over F2e , we
can cheat and just use APN examples here. . .

Theorem (Gold, 1968)

Let f (x) = x2
k+1 ∈ F2e [x ].

Then f is APN/semiplanar of index 2 if and only if gcd(k , e) = 1.

Most in the room will be able to list at least several more examples, but
I’m just going to leave it simple with this one. . . there’s a reason, of course!
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Actual semiplanar functions of index λ > 2

Theorem (Coulter & Fain, 2021)

Let f (x) = xp
k+1 ∈ Fpe [x ].

For p = 2, f is semiplanar of index 2gcd(k,e).
For p odd, we have the following:

(i) If e
gcd(k,e) is odd, then f is planar.

(ii) If e
gcd(k,e) is even, then f is semiplanar of index pgcd(k,e).

To be honest, this is kind of forced. The reason is pretty simple.

And if you’ve ever wondered why there is a prevalence of DOs among
planar functions and APN functions, it is the same reason.
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Why DO polynomials have chances of being semiplanar

The reason DO polynomials have better chances than other polynomials
rests on two facts:

⊕ Linear operators (linearized polynomials) are always regular on their
image sets – they are necessarily pk -to-1 for some k , where p is the
characteristic.

⊕ DO polynomials are precisely those polynomials whose derivatives are
linear operators.

So the derivative of a DO polynomial in the direction a will always have 0
or pka solutions to f (x + a)− f (x) = b for each b, where ka is only
dependent on a.

Thus, the only requirement is that all the ka are the same – the regularity
of preimages is already taken care of.
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And DO monomials have to be planar or semiplanar

The derivative of a DO polynomial in the direction a will always have 0 or
pka solutions to f (x + a)− f (x) = b for each b.

But for monomials, all the derivatives are basically equivalent.

(x + a)n − xn = an((x/a) + 1)n − xn

= an((y + 1)n − yn) for y = x/a.

This means all the derivatives have the same multiplicities of preimages,
just for different images.

So for DO monomials, all the derivatives have a regularity of preimages
because they’re DOs, and the same multiplicities of preimages because
they’re monomials.

That means DO monomials have to be planar or semiplanar!
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Composing planar functions with linear transformations

Theorem (Coulter & Matthews, 1997)
Let f , L ∈ Fq[x ] with L a linearized polynomial.
The following are equivalent.

(i) f (L) is planar.

(ii) L(f ) is planar.

(iii) f is planar and L is a permutation polynomial.

This looks like a version of. . .

Definition (Not sure who did this first!)
Let f , h ∈ Fq[x ]. Then we say f and h are extended affine equivalent if
there exists linearized L1, L2, L3, with L1, L2 permutations, and constants
c1, c2 such that

f (x) ≡ L2(h(L1(x) + c1)) + L3(x) + c2 mod (xq − x).
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APN/semiplanar equivalent?

Robert Coulter (UD) Constructing designs February 2024 44 / 49



APN/semiplanar equivalent?

But it is not!
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APN/semiplanar equivalent?

An equivalent result to the Coulter/Matthews statement would be:

A Theorem

this is not

Let f , L ∈ Fq[x ] with L a linearized polynomial.
The following are equivalent.

(i) f (L) is semiplanar of index λ.

(ii) L(f ) is semiplanar of index λ.

(iii) f is semiplanar of index λ and L is a permutation polynomial.

But this is not true in general!
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APN/semiplanar equivalent?

In fact, I don’t even know if this works for λ = 2/APN. . .

A Theorem?
Let f , L ∈ Fq[x ] with L a linearized polynomial.
The following are equivalent.

(i) f (L) is APN.

(ii) L(f ) is APN.

(iii) f is APN and L is a permutation polynomial.

In a very quick search, I couldn’t find a result stating this explicitly, and I
suspect it is probably false.
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So what do we have?

Theorem (Coulter & Matthews, 1997)
Let f , L ∈ Fq[x ] with L a linearized polynomial.
The following are equivalent.

(i) f (L) is planar.

(ii) L(f ) is planar.

(iii) f is planar and L is a permutation polynomial.

What we have from EA-equivalence is an equivalence relation defined on
functions using linear transformations which preserves semiplanarity.

But it doesn’t force the decomposition conclusion we see in this planarity
theorem.

Specifically, if I give you a polynomial L(f ) which is semiplanar of index λ,
then you cannot conclude L is a permutation polynomial and f is
semiplanar of index λ.

So the equivalence of the 3 statements fails.
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Semiplanar functions and linear transformations

Theorem (Coulter & Fain, 2021)
Let f , L ∈ Fq[x ] with L a linearized polynomial.
The following are equivalent.

(i) f (L) is semiplanar of index λ.

(ii) f is semiplanar of index λ and L is a permutation polynomial.

Thus, you cannot relax the condition with regards to inner composition.

But outer compositions do not behave as nicely.
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Semiplanar functions and linear transformations

Lemma (Coulter & Fain, 2021)
Let f , L,M ∈ Fq[x ] with f planar and L,M linearized polynomials.

(i) L(f ) is semiplanar of index #ker(L).

(ii) M(L(f )) is either semiplanar of index #ker(M(L)) or
M(L(f (x))) ≡ 0 mod (xq − x).

Lemma (Coulter & Fain, 2021)
Let f , L ∈ Fq[x ] with f semiplanar of some index λ ≥ 2 and L a linearized
polynomial.
Then L(f ) is semiplanar of some index or equivalent to the 0 polynomial if
and only if # (ker(L) ∩ Im(∆f ,a)) is the same for all a ∈ F⋆

q.
Here ∆f ,a(x) = f (x + a)− f (x)− f (a).
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Open problems and future work

⊕ Construct semiplanar functions over non-abelian groups or prove they
don’t exist.

⊕ Construct semiplanar functions over abelian groups that are not
elementary abelian p-groups, or prove they don’t exist.

⊕ Conjecture: Over odd finite fields, all semiplanar functions of index
λ > 1 are EA-equivalent to DO polynomials.

⊕ Classify semiplanar monomials.

⊕ Obtain a better understanding of how composition of semiplanar
functions and linear transformations behaves.

⊕ We’ve done very little so far on investigating automorphism groups of
SSDs. The semibiplane case, in particular, needs to be looked at.
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Fifth Part

The end.
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