Decompositions of Permutations in a Finite Field

Samuele Andreoli

UNIVERSITY OF BERGEN

On Decompositions of Permutations in Quadratic Functions

Samuele Andreoli ${ }^{1}$, Enrico Piccione ${ }^{1}$, Lilya Budaghyan ${ }^{1}$, Pantelimon Stănică ${ }^{2}$, and Svetla Nikova ${ }^{1,3}$
${ }^{1}$ University of Bergen, Norway, \{name.surname\}@uib.no
${ }^{2}$ Naval Postgraduate School, Applied Mathematics Department, Monterey, CA 93955, USA, pstanica@nps.edu
${ }^{3}$ KU Leuven, Belgium, \{name.surname\}@esat.kuleuven.be

Based on [APB $\left.{ }^{+} 23\right]$.

1 Preliminaries

2 Decompositions using Carlitz

3 Decompositions using Stafford

4 Search of Decompositions

5 References

A function $F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{n}$ is called an $(n, n)-$ function.
A (n, n)-function admits a representation as a univariate polynomial over $\mathbb{F}_{p^{n}}$, called univariate representation,

The algebraic degree of F is $\mathrm{d}^{\circ}(F)=\max _{\alpha_{i} \neq 0} \mathrm{w}_{p}(i)$, where w_{p} is the p-weight.

A power function is a monomial $x^{k}, 1 \leq k<p^{n}-1$ and $d^{\circ}(F)=\mathrm{w}_{p}(k)$. An invertible power function is a power permutation.

A function $F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{n}$ is called an $(n, n)-$ function.
A (n, n)-function admits a representation as a univariate polynomial over $\mathbb{F}_{p^{n}}$, called univariate representation,

$$
F(x)=\sum_{i=0}^{p^{n}-1} \alpha_{i} x^{i}
$$

The algebraic degree of F is $\mathrm{d}^{\circ}(F)=\max _{\alpha_{i} \neq 0} \mathrm{w}_{p}(i)$, where w_{p} is the p-weight.

A power function is a monomial $x^{k}, 1 \leq k<p^{n}-1$ and $\mathrm{d}^{\circ}(F)=\mathrm{w}_{p}(k)$. An invertible power function is a power permutation.

A function $F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{n}$ is called an (n, n)-function.
A (n, n)-function admits a representation as a univariate polynomial over $\mathbb{F}_{p^{n}}$, called univariate representation,

$$
F(x)=\sum_{i=0}^{p^{n}-1} \alpha_{i} x^{i}
$$

The algebraic degree of F is $\mathrm{d}^{\circ}(F)=\max _{\alpha_{i} \neq 0} \mathrm{w}_{p}(i)$, where w_{p} is the p-weight.

A power function is a monomial $x^{k}, 1 \leq k<p^{n}-1$ and $\mathrm{d}^{\circ}(F)=\mathrm{w}_{p}(k)$. An invertible power function is a power permutation.

A function $F: \mathbb{F}_{p}^{n} \rightarrow \mathbb{F}_{p}^{n}$ is called an (n, n)-function.
A (n, n)-function admits a representation as a univariate polynomial over $\mathbb{F}_{p^{n}}$, called univariate representation,

$$
F(x)=\sum_{i=0}^{p^{n}-1} \alpha_{i} x^{i}
$$

The algebraic degree of F is $\mathrm{d}^{\circ}(F)=\max _{\alpha_{i} \neq 0} \mathrm{w}_{p}(i)$, where w_{p} is the p-weight.

A power function is a monomial $x^{k}, 1 \leq k<p^{n}-1$ and $\mathrm{d}^{\circ}(F)=\mathrm{w}_{p}(k)$. An invertible power function is a power permutation.
Two power functions $x^{d_{1}}, x^{d_{2}}$ are said Cyclotomic Equivalent if $x^{d_{1}}=x^{p^{i}} \circ x^{d_{2}}$ We say F and G are Affine Equivalent if there are affine permutations A and B such that

$$
F=A \circ G \circ B .
$$

We say that they are CCZ-equivalent if there is a linear permutation L mapping the graph of F into the graph of G.
 For power functions, CCZ \Longleftrightarrow Affine \Longleftrightarrow Cyclotomic.

Differential uniformity is defined as

We say that F is perfect nonlinear ($P N$) if $\delta_{F}=1$.
We say that F is almost perfect nonlinear (APN) if $\delta_{F}=2$.

Two power functions $x^{d_{1}}, x^{d_{2}}$ are said Cyclotomic Equivalent if $x^{d_{1}}=x^{p^{i}} \circ x^{d_{2}}$ We say F and G are Affine Equivalent if there are affine permutations A and B such that

$$
F=A \circ G \circ B .
$$

We say that they are CCZ-equivalent if there is a linear permutation L mapping the graph of F into the graph of G.

Two power functions $x^{d_{1}}, x^{d_{2}}$ are said Cyclotomic Equivalent if $x^{d_{1}}=x^{p^{i}} \circ x^{d_{2}}$ We say F and G are Affine Equivalent if there are affine permutations A and B such that

$$
F=A \circ G \circ B .
$$

We say that they are CCZ-equivalent if there is a linear permutation L mapping the graph of F into the graph of G. For power functions, CCZ \Longleftrightarrow Affine \Longleftrightarrow Cyclotomic.

Differential uniformity is defined as

We say that F is perfect nonlinear $(P N)$ if $\delta_{F}=1$
We say that F is almost perfect nonlinear (APN) if $\delta_{F}=2$.

Two power functions $x^{d_{1}}, x^{d_{2}}$ are said Cyclotomic Equivalent if $x^{d_{1}}=x^{p^{i}} \circ x^{d_{2}}$ We say F and G are Affine Equivalent if there are affine permutations A and B such that

$$
F=A \circ G \circ B .
$$

We say that they are CCZ-equivalent if there is a linear permutation L mapping the graph of F into the graph of G. For power functions, CCZ \Longleftrightarrow Affine \Longleftrightarrow Cyclotomic.

Differential uniformity is defined as

$$
\delta_{F}=\max _{a, b \in \mathbb{F}_{p^{n}}, a \neq 0}\left|\left\{x \in \mathbb{F}_{p^{n}} \mid F(x+a)-F(x)=b\right\}\right| .
$$

We say that F is perfect nonlinear $(P N)$ if $\delta_{F}=1$.
We say that F is almost perfect nonlinear (APN) if $\delta_{F}=2$.

Decomposition

A decomposition of a (n, n)-function F is a sequence of (n, n)-functions such that

$$
F=G_{1} \circ \cdots \circ G_{\ell} .
$$

Applications in hardware implementations, especially masked implementations.

Goals:

■ algebraic degree of G_{i} should be small (typically 2 or 3),
■ ℓ should also be as small as possible.

Decomposition

A decomposition of a (n, n)-function F is a sequence of (n, n)-functions such that

$$
F=G_{1} \circ \cdots \circ G_{\ell} .
$$

Applications in hardware implementations, especially masked implementations.

Goals:
■ algebraic degree of G_{i} should be small (typically 2 or 3),
■ ℓ should also be as small as possible.

Decomposition

A decomposition of a (n, n)-function F is a sequence of (n, n)-functions such that

$$
F=G_{1} \circ \cdots \circ G_{\ell} .
$$

Applications in hardware implementations, especially masked implementations.

Goals:
■ algebraic degree of G_{i} should be small (typically 2 or 3),
■ ℓ should also be as small as possible.

1 Preliminaries

2 Decompositions using Carlitz

3 Decompositions using Stafford

4 Search of Decompositions

5 References

Carlitz Theorem [Car53]

Let \mathbb{F}_{q} be a finite field, then all permutation polynomials are generated by $x^{-1}=x^{q-2}$ and the affine polynomials $a x+b$, with $a, b \in \mathbb{F}_{q}, a \neq 0$.

$$
\begin{aligned}
& \text { Which means, for any } F(x) \text { permutation polynomial in } \mathbb{F}_{p^{n}}[x] \text {, } \\
& \qquad F(x)=A_{1}(x) \circ x^{-1} \circ A_{2}(x) \circ x^{-1} \circ \cdots \circ A_{\ell-1}(x) \circ x^{-1} \circ A_{\ell}(x),
\end{aligned}
$$

Further need to decompose x^{-1} into low algebraic degree functions G_{j}.

- use generic low degree polynomials,
- use low degree power permutations

Carlitz Theorem [Car53]

Let \mathbb{F}_{q} be a finite field, then all permutation polynomials are generated by $x^{-1}=x^{q-2}$ and the affine polynomials $a x+b$, with $a, b \in \mathbb{F}_{q}, a \neq 0$.

Which means, for any $F(x)$ permutation polynomial in $\mathbb{F}_{p^{n}}[x]$,

$$
F(x)=A_{1}(x) \circ x^{-1} \circ A_{2}(x) \circ x^{-1} \circ \cdots \circ A_{\ell-1}(x) \circ x^{-1} \circ A_{\ell}(x),
$$

and $A_{i}(x)=a_{i} x+b_{i}$.

Further need to decompose x^{-1} into low algebraic degree functions G_{i}.

- use generic low degree polynomials,
- use low degree power permutations

Carlitz Theorem [Car53]

Let \mathbb{F}_{q} be a finite field, then all permutation polynomials are generated by $x^{-1}=x^{q-2}$ and the affine polynomials $a x+b$, with $a, b \in \mathbb{F}_{q}, a \neq 0$.

Which means, for any $F(x)$ permutation polynomial in $\mathbb{F}_{p^{n}}[x]$,

$$
F(x)=A_{1}(x) \circ x^{-1} \circ A_{2}(x) \circ x^{-1} \circ \cdots \circ A_{\ell-1}(x) \circ x^{-1} \circ A_{\ell}(x),
$$

and $A_{i}(x)=a_{i} x+b_{i}$.

Further need to decompose x^{-1} into low algebraic degree functions G_{i}.
■ use generic low degree polynomials,
■ use low degree power permutations

Find decomposition

$$
x^{d}=x^{e_{1}} \circ \ldots \circ x^{e_{\ell}}
$$

where all power functions have algebraic degree no greater than two (or three).

The problem is equivalent to finding

where all factors have p-weight no greater than two (or three).
The existence of a decomposition of length ℓ, using factors of p-weight ω, is a cyclotomic invariant.

Find decomposition

$$
x^{d}=x^{e_{1}} \circ \ldots \circ x^{e_{\ell}}
$$

where all power functions have algebraic degree no greater than two (or three).

The problem is equivalent to finding

$$
d=e_{1} \ldots e_{\ell}\left(\bmod p^{n}-1\right)
$$

where all factors have p-weight no greater than two (or three).
The existence of a decomposition of length ℓ, using factors of p-weight ω, is a cyclotomic invariant.

Find decomposition

$$
x^{d}=x^{e_{1}} \circ \ldots \circ x^{e_{\ell}}
$$

where all power functions have algebraic degree no greater than two (or three).

The problem is equivalent to finding

$$
d=e_{1} \ldots e_{\ell}\left(\bmod p^{n}-1\right)
$$

where all factors have p-weight no greater than two (or three).
The existence of a decomposition of length ℓ, using factors of p-weight ω, is a cyclotomic invariant.

$$
p^{k} d=p^{k}\left(e_{1} \ldots e_{\ell}\right)=\left(p^{k} e_{1}\right) \ldots e_{\ell} \quad\left(\bmod p^{n}-1\right)
$$

Previous Work

Search algorithm for $p=2$ in [NNR19]

- Compute all exponents b of 2 -weight 2 in $Z_{p^{n}-1}^{*}$.
- Compute their orders m_{b}.
$■$ Try all combinations of $\Pi_{i} b_{i}^{e_{i}}$ for $e_{i}=0, \ldots, m_{b_{i}}$.

Previous Work

Search algorithm for $p=2$ in [NNR19]

- Compute all exponents b of 2 -weight 2 in $Z_{p^{n}-1}^{*}$.
- Compute their orders m_{b}.
$■$ Try all combinations of $\Pi_{i} b_{i}^{e_{i}}$ for $e_{i}=0, \ldots, m_{b_{i}}$.
Later improved by Petrides in [Pet23].
Decompositions for the inverse for infinite values of n
- using only quadratic power permutations [Pet23]
- using quadratic and cubic power permutations [LSaa23].

Previous Work

Search algorithm for $p=2$ in [NNR19]

- Compute all exponents b of 2 -weight 2 in $Z_{p^{n}-1}^{*}$.
- Compute their orders m_{b}.
$■$ Try all combinations of $\Pi_{i} b_{i}^{e_{i}}$ for $e_{i}=0, \ldots, m_{b_{i}}$.
Later improved by Petrides in [Pet23].
Decompositions for the inverse for infinite values of n
- using only quadratic power permutations [Pet23]

■ using quadratic and cubic power permutations [LSaa23].

Our contribution

Consider

$$
\mathcal{Q}_{n}=\left\langle 2^{j}, 2^{i}+1 \in \mathbb{Z}_{2^{n}-1}^{*}\right\rangle \leqslant \mathbb{Z}_{2^{n}-1}^{*}
$$

We have one immediate observation:

- (Gold) Kasami, and Niho nower functions belong in Q_{n},

Moreover, $\mathbb{Z}_{2^{n}-1}^{*}$ is cyclic if and only if $2^{n}-1$ is prime.

$$
\mathbb{Z}_{2^{n}-1}^{*} \text { cyclic } \Longleftrightarrow q \in\left\{2,4, p^{0}, 2 p^{0}\right\}
$$

Our contribution

Consider

$$
\mathcal{Q}_{n}=\left\langle 2^{j}, 2^{i}+1 \in \mathbb{Z}_{2^{n}-1}^{*}\right\rangle \leqslant \mathbb{Z}_{2^{n}-1}^{*}
$$

We have one immediate observation:
■ (Gold), Kasami, and Niho power functions belong in \mathcal{Q}_{n},

Moreover, $\mathbb{Z}_{2^{n}-1}^{*}$ is cyclic if and only if $2^{n}-1$ is prime.

$$
\mathbb{Z}_{2^{n}-1}^{*} \text { cyclic } \Longleftrightarrow q \in\left\{2,4, p^{0}, 2 p^{0}\right\}
$$

Our contribution

Consider

$$
\mathcal{Q}_{n}=\left\langle 2^{j}, 2^{i}+1 \in \mathbb{Z}_{2^{n}-1}^{*}\right\rangle \leqslant \mathbb{Z}_{2^{n}-1}^{*}
$$

We have one immediate observation:
■ (Gold), Kasami, and Niho power functions belong in \mathcal{Q}_{n},

Moreover, $\mathbb{Z}_{2^{n}-1}^{*}$ is cyclic if and only if $2^{n}-1$ is prime.

Our contribution

Consider

$$
\mathcal{Q}_{n}=\left\langle 2^{j}, 2^{i}+1 \in \mathbb{Z}_{2^{n}-1}^{*}\right\rangle \leqslant \mathbb{Z}_{2^{n}-1}^{*}
$$

We have one immediate observation:
■ (Gold), Kasami, and Niho power functions belong in \mathcal{Q}_{n},

Moreover, $\mathbb{Z}_{2^{n}-1}^{*}$ is cyclic if and only if $2^{n}-1$ is prime.

$$
\mathbb{Z}_{2^{n}-1}^{*} \text { cyclic } \Longleftrightarrow q \in\left\{2,4, p^{\ell}, 2 p^{\ell}\right\}
$$

Our contribution

Consider

$$
\mathcal{Q}_{n}=\left\langle 2^{j}, 2^{i}+1 \in \mathbb{Z}_{2^{n}-1}^{*}\right\rangle \leqslant \mathbb{Z}_{2^{n}-1}^{*}
$$

We have one immediate observation:
■ (Gold), Kasami, and Niho power functions belong in \mathcal{Q}_{n},

Moreover, $\mathbb{Z}_{2^{n}-1}^{*}$ is cyclic if and only if $2^{n}-1$ is prime.

$$
\mathbb{Z}_{2^{n}-1}^{*} \text { cyclic } \Longleftrightarrow q \in\left\{2,4, p^{\ell}, 2 p^{\ell}\right\}
$$

Our contribution

Consider

$$
\mathcal{Q}_{n}=\left\langle 2^{j}, 2^{i}+1 \in \mathbb{Z}_{2^{n}-1}^{*}\right\rangle \leqslant \mathbb{Z}_{2^{n}-1}^{*}
$$

We have one immediate observation:
■ (Gold), Kasami, and Niho power functions belong in \mathcal{Q}_{n},

Moreover, $\mathbb{Z}_{2^{n}-1}^{*}$ is cyclic if and only if $2^{n}-1$ is prime.

$$
\mathbb{Z}_{2^{n}-1}^{*} \text { cyclic } \Longleftrightarrow q \in\left\{p^{\ell}\right\}
$$

If $2^{n}-1=p^{\ell}$, then $2^{n}-p^{\prime}=1$, and $(x, y, a, b)=(2, p, n, l)$ would be a solution to $x^{a}-y^{b}=1$

Our contribution

Consider

$$
\mathcal{Q}_{n}=\left\langle 2^{j}, 2^{i}+1 \in \mathbb{Z}_{2^{n}-1}^{*}\right\rangle \leqslant \mathbb{Z}_{2^{n}-1}^{*}
$$

We have one immediate observation:
■ (Gold), Kasami, and Niho power functions belong in \mathcal{Q}_{n},

Moreover, $\mathbb{Z}_{2^{n}-1}^{*}$ is cyclic if and only if $2^{n}-1$ is prime.

$$
\mathbb{Z}_{2^{n}-1}^{*} \text { cyclic } \Longleftrightarrow 2^{n}-1=p
$$

ERRATA A decomposition always exists for the inverse since $\left(\frac{3}{2^{n}-1}\right)=-1$, but 3 might not be a generator.

[APB+23, Theorem 3.3]

Let $2^{n}-1=p$ be a prime. Then $\mathcal{Q}_{n}=\mathbb{Z}_{2^{n}-1}^{*}=<3>$. If $p \equiv 3(\bmod 4)$, then it is also generated by 5 .

It is enough to compute the Legendre Symbols of 3 and 5, defined as

which are equal to -1 if and only if a is a primitive element of \mathbb{Z}_{p}^{*}

ERRATA A decomposition always exists for the inverse since $\left(\frac{3}{2^{n}-1}\right)=-1$, but 3 might not be a generator.

[APB+23, Theorem 3.3]

Let $2^{n}-1=p$ be a prime. Then $\mathcal{Q}_{n}=\mathbb{Z}_{2^{n}-1}^{*}=<3>$. If $p \equiv 3(\bmod 4)$, then it is also generated by 5 .

It is enough to compute the Legendre Symbols of 3 and 5, defined as

$$
\left(\frac{a}{p}\right)=a^{\frac{p-1}{2}}
$$

which are equal to -1 if and only if a is a primitive element of \mathbb{Z}_{ρ}^{*}

[APB+23, Lemma 3.1]

Let $n=4 t$. If $k \neq 2^{i}\left(\bmod 2^{4}-1\right)$, then $k \notin \mathcal{Q}_{n}$.

It is computationally verified that $7,13,14 \notin \mathcal{Q}_{4}$.
$\square \mathcal{Q}_{4}$ is a subgroup of $\mathcal{Q}_{4 t}$, so $k \in \mathcal{Q}_{4 t} \Longrightarrow k \bmod 2^{4}-1 \in \mathcal{Q}_{4}$.
n $n=4 t$, and $k=7,13,14 \bmod 2^{4}-1 \Longrightarrow k \notin \mathcal{Q}_{n}$.
[APB+23, Lemma 3.1]
Let $n=4 t$. If $k \in \mathcal{Q}_{n}$, then $\delta_{x^{k}} \geqslant 16$.

By Lemma 3.1, we have that for any $x \in \mathbb{F}_{2^{4}}$

[APB+23, Lemma 3.1]

Let $n=4 t$. If $k \neq 2^{i}\left(\bmod 2^{4}-1\right)$, then $k \notin \mathcal{Q}_{n}$.

It is computationally verified that $7,13,14 \notin \mathcal{Q}_{4}$.
$\square \mathcal{Q}_{4}$ is a subgroup of $\mathcal{Q}_{4 t}$, so $k \in \mathcal{Q}_{4 t} \Longrightarrow k \bmod 2^{4}-1 \in \mathcal{Q}_{4}$.
$\square n=4 t$, and $k=7,13,14 \bmod 2^{4}-1 \Longrightarrow k \notin \mathcal{Q}_{n}$.

By Lemma 3.1, we have that for any $x \in \mathbb{F}_{2^{4}}$

[APB+23, Lemma 3.1]

Let $n=4 t$. If $k \neq 2^{i}\left(\bmod 2^{4}-1\right)$, then $k \notin \mathcal{Q}_{n}$.

It is computationally verified that $7,13,14 \notin \mathcal{Q}_{4}$.
$\square \mathcal{Q}_{4}$ is a subgroup of $\mathcal{Q}_{4 t}$, so $k \in \mathcal{Q}_{4 t} \Longrightarrow k \bmod 2^{4}-1 \in \mathcal{Q}_{4}$.
$\square n=4 t$, and $k=7,13,14 \bmod 2^{4}-1 \Longrightarrow k \notin \mathcal{Q}_{n}$.

[APB ${ }^{+}$23, Lemma 3.1]

Let $n=4 t$. If $k \in \mathcal{Q}_{n}$, then $\delta_{x^{k}} \geq 16$.
By Lemma 3.1, we have that for any $x \in \mathbb{F}_{2^{4}}$

$$
(x+1)^{k}+x^{k}=x^{k}+1+x^{k}=1
$$

To sum up:

$■$ ERRATA Existence result for $2^{n}-1$ prime.

- Inexistence result for $n=4 t, \delta_{x^{d}}<16$.

Intermediate cases are group membership problems.

To sum up:

■ ERRATA Existence result for $2^{n}-1$ prime.
■ Inexistence result for $n=4 t, \delta_{x^{d}}<16$.

Intermediate cases are group membership problems.

1 Preliminaries

2 Decompositions using Carlitz

3 Decompositions using Stafford

4 Search of Decompositions

5 References

[Sta98, Theorem 1]

Let k, q be positive integers, $q=p^{n}>2$, and $\operatorname{gcd}(k, q-1)=1$. Then all permutation polynomials are generated by x^{k} and the affine polynomials $a x+b$, with $a, b \in \mathbb{F}_{q}, a \neq 0$, if and only if
\square is odd and $k \neq p^{i}$, or

- $p=2$ and x^{k} is an odd permutation.

Which means, for any $F(x)$ permutation polynomial in $\mathbb{F}_{p^{n}}[x]$,

No further need to decompose the power function x^{k} if chosen appropriately!

- For p odd, no particular work to do.
- For p even, how to characterize the parity of a power permutation?

[Sta98, Theorem 1]

Let k, q be positive integers, $q=p^{n}>2$, and $\operatorname{gcd}(k, q-1)=1$. Then all permutation polynomials are generated by x^{k} and the affine polynomials $a x+b$, with $a, b \in \mathbb{F}_{q}, a \neq 0$, if and only if
$\square p$ is odd and $k \neq p^{i}$, or

- $p=2$ and x^{k} is an odd permutation.

Which means, for any $F(x)$ permutation polynomial in $\mathbb{F}_{p^{n}}[x]$,

$$
F=A_{1}(x) \circ x^{k} \circ A_{2}(x) \circ x^{k} \circ \cdots \circ A_{\ell-1}(x) \circ x^{k} \circ A_{\ell}(x) .
$$

No further need to decompose the power function x^{k} if chosen appropriately!

- For podd, no particular work to do.
- For p even, how to characterize the parity of a power permutation?

[Sta98, Theorem 1]

Let k, q be positive integers, $q=p^{n}>2$, and $\operatorname{gcd}(k, q-1)=1$. Then all permutation polynomials are generated by x^{k} and the affine polynomials $a x+b$, with $a, b \in \mathbb{F}_{q}, a \neq 0$, if and only if
$\square p$ is odd and $k \neq p^{i}$, or

- $p=2$ and x^{k} is an odd permutation.

Which means, for any $F(x)$ permutation polynomial in $\mathbb{F}_{p^{n}}[x]$,

$$
F=A_{1}(x) \circ x^{k} \circ A_{2}(x) \circ x^{k} \circ \cdots \circ A_{\ell-1}(x) \circ x^{k} \circ A_{\ell}(x) .
$$

No further need to decompose the power function x^{k} if chosen appropriately!
■ For p odd, no particular work to do.
\square For p even, how to characterize the parity of a power permutation?

Previous Work

There are earlier attempts to characterise the parity of power permutations [ÇÖ21]

■ Efficient algorithm to compute the parity of a power permutation.
■ Conjecture about the parity of quadratic power permutations:

Previous Work

There are earlier attempts to characterise the parity of power permutations [ÇÖ21]

■ Efficient algorithm to compute the parity of a power permutation.

- Conjecture about the parity of quadratic power permutations:

[ÇÖ21, Conjecture 6.3]

- For all n odd integers, the power permutation x^{3} is odd over $\mathbb{F}_{2^{n}}$,
- for all $n \equiv 2,3(\bmod 4)$, the power permutation x^{5} is odd over $\mathbb{F}_{2^{n}}$,
- for all n multiples of 4 and not a power of 2, all quadratic permutations are even over $\mathbb{F}_{2^{n}}$.

Zolotoroff-Frobenius Lemma [Fro14]

Let a, b be positive integers, $b \geq 3$ odd, and $\operatorname{gcd}(a, b)=1$. Let $\sigma_{a}: \mathbb{Z}_{b} \rightarrow \mathbb{Z}_{b}$ be the multiplication map $x \mapsto a x$. Then

$$
\operatorname{sgn}\left(\sigma_{a}\right)=\left(\frac{a}{b}\right) .
$$

Where the Jacobi Symbol for any odd $N=p_{1}^{e_{1}} \ldots p_{\ell}^{e_{\ell}}$ is

$$
\left(\frac{a}{N}\right)=\left(\frac{a}{p_{1}}\right)^{e_{1}} \cdots\left(\frac{a}{p_{\ell}}\right)^{e_{\ell}} .
$$

■ Alternative proof of Gauss Law of Quadratic Reciprocity by Zolotoroff,
■ extended by Frobenius to all odd N.

Our Contribution

[APB+23, Lemma 4.1]

Let $n \geq 3$, and x^{k} a power permutation in $\mathbb{F}_{2^{n}}[x]$. Then $\operatorname{sgn}\left(x^{k}\right)=\left(\frac{k}{2^{n}-1}\right)$.

Let α be a primitive element of $\mathbb{F}_{2^{n}}$,

is an isomorphism.

Our Contribution

[APB+23, Lemma 4.1]

Let $n \geq 3$, and x^{k} a power permutation in $\mathbb{F}_{2^{n}}[x]$. Then $\operatorname{sgn}\left(x^{k}\right)=\left(\frac{k}{2^{n}-1}\right)$.

Let α be a primitive element of $\mathbb{F}_{2^{n}}$,

$$
\begin{aligned}
\Psi_{\alpha}: \mathbb{Z}_{2^{n}-1} & \rightarrow \mathbb{F}_{2^{n}} \backslash\{0\} \\
b & \mapsto \alpha^{b}
\end{aligned}
$$

is an isomorphism.

[APB ${ }^{+} 23$, Tehorem 4.1]

Let $n \geq 3$. Then
$1 x^{3}$ is an odd permutation over $\mathbb{F}_{2^{n}}$ if and only if $n \equiv 1(\bmod 2)$,
$2 x^{5}$ is an odd permutation over $\mathbb{F}_{2^{n}}$ if and only if $n \equiv 2,3(\bmod 4)$,
3 quadratic power permutations over $\mathbb{F}_{2^{n}}$ are even for any $n \equiv 0(\bmod 4)$.

- ($1-2$) are direct computations of the Jacobi Symbol.

- (3) proved by induction on $n=4 t$, by manipulating $\left(\frac{2^{i}+1}{2^{n}-1}\right)$

[APB+23, Theorem 4.2]
 Let $n>3$. All permutations over $\mathbb{F}_{2 n}$ admit a decomposition using quadratic and affine permutations if and only if $4 \nmid n$.

[APB ${ }^{+}$23, Tehorem 4.1]

Let $n \geq 3$. Then
$1 x^{3}$ is an odd permutation over $\mathbb{F}_{2^{n}}$ if and only if $n \equiv 1(\bmod 2)$,
$2 x^{5}$ is an odd permutation over $\mathbb{F}_{2^{n}}$ if and only if $n \equiv 2,3(\bmod 4)$,
3 quadratic power permutations over $\mathbb{F}_{2^{n}}$ are even for any $n \equiv 0(\bmod 4)$.

- $(1-2)$ are direct computations of the Jacobi Symbol.
- (3) proved by induction on $n=4 t$, by manipulating $\left(\frac{2^{i}+1}{2^{n}-1}\right)$.

Let $n \geq 3$. All permutations over $\mathbb{F}_{2^{n}}$ admit a decomposition using quadratic and affine permutations if and only if $4 \nmid n$.

[APB ${ }^{+} 23$, Tehorem 4.1]

Let $n \geq 3$. Then
$1 x^{3}$ is an odd permutation over $\mathbb{F}_{2^{n}}$ if and only if $n \equiv 1(\bmod 2)$,
$2 x^{5}$ is an odd permutation over $\mathbb{F}_{2^{n}}$ if and only if $n \equiv 2,3(\bmod 4)$,
3 quadratic power permutations over $\mathbb{F}_{2^{n}}$ are even for any $n \equiv 0(\bmod 4)$.

- (1-2) are direct computations of the Jacobi Symbol.

■ (3) proved by induction on $n=4 t$, by manipulating $\left(\frac{2^{i}+1}{2^{n}-1}\right)$.

[APB ${ }^{+}$23, Theorem 4.2]

Let $n \geq 3$. All permutations over $\mathbb{F}_{2^{n}}$ admit a decomposition using quadratic and affine permutations if and only if $4 \nmid n$.

[APB ${ }^{+}$23, Theorem 4.3]

Let $n \geq 3, n=2^{v_{2}(n)} s$, so that s is odd. Then $x^{k_{n}}$ is an odd power permutation, where

■ $k_{n}=2^{2 s}+2^{s}+1$, for any n, except when $s=1$ and $v_{2}(n)$ is an odd integer,

- $k_{n}=13$, if $s=1$ and $\nu_{2}(n)$ is an odd integer.

Where both statements are proved by direct computations of the Jacobi

 Symbols case by case.
Let $n \geq 3$. All permutations on $\mathbb{F}_{2^{n}}$ admit a decomposition in cubic power

 permutations and affine permutations.
[APB ${ }^{+}$23, Theorem 4.3]

Let $n \geq 3, n=2^{\nu_{2}(n)} s$, so that s is odd. Then $x^{k_{n}}$ is an odd power permutation, where
$k_{n}=2^{2 s}+2^{s}+1$, for any n, except when $s=1$ and $v_{2}(n)$ is an odd integer,

- $k_{n}=13$, if $s=1$ and $v_{2}(n)$ is an odd integer.

Where both statements are proved by direct computations of the Jacobi Symbols case by case.
 permutations and affine permutations.

$\left[\mathrm{APB}^{+}\right.$23, Theorem 4.3]

Let $n \geq 3, n=2^{\nu_{2}(n)} s$, so that s is odd. Then $x^{k_{n}}$ is an odd power permutation, where

■ $k_{n}=2^{2 s}+2^{s}+1$, for any n, except when $s=1$ and $v_{2}(n)$ is an odd integer,

- $k_{n}=13$, if $s=1$ and $v_{2}(n)$ is an odd integer.

Where both statements are proved by direct computations of the Jacobi Symbols case by case.

[APB ${ }^{+}$23, Theorem 4.4]

Let $n \geq 3$. All permutations on $\mathbb{F}_{2^{n}}$ admit a decomposition in cubic power permutations and affine permutations.

To sum up

■ p odd, all nonlinear power permutations can be used to generate the permutation polynomials.

- $p=2$:
- Even permutations can be decomposed using quadratics iff n is not a power of 2.
- Odd permutations can be decomposed using quadratics iff $4 \nmid n$.
- All permutations can be decomposed using cubics for any n.

1 Preliminaries

2 Decompositions using Carlitz

3 Decompositions using Stafford

4 Search of Decompositions

5 References

Search for decomposition of reasonable length.

$$
F=\left(a_{1} x+b_{1}\right) \circ x^{k} \circ \cdots \circ x^{k} \circ\left(a_{\ell} x+b_{\ell}\right)
$$

Naive brute force search is $\mathcal{O}\left(2^{2 n \ell}\right)$.
Some simple observations can improve the situation drastically.

- Search up to affine equivalence:
- incorporate $a_{1} x+b_{1}$ and $a_{\ell} x+b_{\ell}$ in the affine permutations.
- The check for Affine equivalence can be implemented efficiently.
- Target the whole class of equivalence.

■ $(a x+b)^{k}=a^{k}\left(x+b a^{-1}\right)^{k}$, so only b_{i} need to be bruteforced.
This improves the search spaze size and gives a complexity of $\mathcal{O}\left(2^{2 n \ell}\right)$.

Search for decomposition of reasonable length.

$$
F=\left(a_{1} x+b_{1}\right) \circ x^{k} \circ \cdots \circ x^{k} \circ\left(a_{\ell} x+b_{\ell}\right)
$$

Naive brute force search is $\mathcal{O}\left(2^{2 n \ell}\right)$.
Some simple observations can improve the situation drastically.

- Search up to affine equivalence:
- incorporate $a_{1} x+b_{1}$ and $a_{\ell} x+b_{\ell}$ in the affine permutations.
- The check for Affine equivalence can be implemented efficiently.
- Target the whole class of equivalence.
- $(a x+b)^{k}=a^{k}\left(x+b a^{-1}\right)^{k}$, so only b_{i} need to be bruteforced.

This improves the search spaze size and gives a complexity of $\mathcal{O}\left(2^{2 n \ell}\right)$.

Search for decomposition of reasonable length.

$$
F=\left(a_{1} x+b_{1}\right) \circ x^{k} \circ \cdots \circ x^{k} \circ\left(a_{\ell} x+b_{\ell}\right)
$$

Naive brute force search is $\mathcal{O}\left(2^{2 n \ell}\right)$.
Some simple observations can improve the situation drastically.
■ Search up to affine equivalence:
■ incorporate $a_{1} x+b_{1}$ and $a_{\ell} x+b_{\ell}$ in the affine permutations.

- The check for Affine equivalence can be implemented efficiently.
- Target the whole class of equivalence.
- $(a x+b)^{k}=a^{k}\left(x+b a^{-1}\right)^{k}$, so only b_{i} need to be bruteforced.

This improves the search spaze size and gives a complexity of $\mathcal{O}\left(2^{2 n \ell}\right)$.

Search for decomposition of reasonable length.

$$
F=\left(a_{1} x+b_{1}\right) \circ x^{k} \circ \cdots \circ x^{k} \circ\left(a_{\ell} x+b_{\ell}\right)
$$

Naive brute force search is $\mathcal{O}\left(2^{2 n \ell}\right)$.
Some simple observations can improve the situation drastically.
■ Search up to affine equivalence:
■ incorporate $a_{1} x+b_{1}$ and $a_{\ell} x+b_{\ell}$ in the affine permutations.

- The check for Affine equivalence can be implemented efficiently.
- Target the whole class of equivalence.
$\square(a x+b)^{k}=a^{k}\left(x+b a^{-1}\right)^{k}$, so only b_{i} need to be bruteforced.
This improves the search spaze size and gives a complexity of $\mathcal{O}\left(2^{2 n \ell}\right)$

Search for decomposition of reasonable length.

$$
F=\left(a_{1} x+b_{1}\right) \circ x^{k} \circ \cdots \circ x^{k} \circ\left(a_{\ell} x+b_{\ell}\right)
$$

Naive brute force search is $\mathcal{O}\left(2^{2 n \ell}\right)$.
Some simple observations can improve the situation drastically.
\square Search up to affine equivalence:
\square incorporate $a_{1} x+b_{1}$ and $a_{\ell} x+b_{\ell}$ in the affine permutations.

- The check for Affine equivalence can be implemented efficiently.
- Target the whole class of equivalence.
$\square(a x+b)^{k}=a^{k}\left(x+b a^{-1}\right)^{k}$, so only b_{i} need to be bruteforced.
This improves the search spaze size and gives a complexity of $\mathcal{O}\left(2^{2 n \ell}\right)$.

Target the PRESENT S-Box [BKL+07]:
■ Cubic permutation polynomial in $\mathbb{F}_{2^{4}}$, C56B90AD3EF84712,

- use the cubic power permutation x^{7},
- no improvement in terms of degree, but now it can be expressed as power permutations and XORs.

The algorithm yields a decomposition of length 7 in a few seconds:

Searches for different examples are still ongoing with different targets.

Target the PRESENT S-Box [BKL+07]:
■ Cubic permutation polynomial in $\mathbb{F}_{2^{4}}$, C56B90AD3EF84712,

- use the cubic power permutation x^{7},

■ no improvement in terms of degree, but now it can be expressed as power permutations and XORs.

The algorithm yields a decomposition of length 7 in a few seconds:

$$
x^{7} \circ(x+3) \circ x^{7} \circ(x+4) \circ x^{7} \circ(x+3) \circ x^{7} \circ(x+3) \circ x^{7} \circ(x+3) \circ x^{7} .
$$

Searches for different examples are still ongoing with different targets.

Target the PRESENT S-Box [BKL+07]:
■ Cubic permutation polynomial in $\mathbb{F}_{2^{4}}$, C56B90AD3EF84712,

- use the cubic power permutation x^{7},
- no improvement in terms of degree, but now it can be expressed as power permutations and XORs.

The algorithm yields a decomposition of length 7 in a few seconds:

$$
x^{7} \circ(x+3) \circ x^{7} \circ(x+4) \circ x^{7} \circ(x+3) \circ x^{7} \circ(x+3) \circ x^{7} \circ(x+3) \circ x^{7} .
$$

Searches for different examples are still ongoing with different targets.

Let $G=\left\{x^{k}\right\} \bigcup\left\{a x+b \mid a, b \in \mathbb{F}_{q}, a \neq 0\right\}$. If the hypotheses of Stafford's theorem are fulfilled, $\operatorname{Sym}\left(\mathbb{F}_{q}\right)=<G>$.

> Problem
> Schreier-Sims produces words including the inverse of generators. The inverse of a quadratic power permutation over $\mathbb{F}_{2^{n}}$ can have algebraic degree up to $\frac{n+1}{2}$ [Nyb93].

Let $G=\left\{x^{k}\right\} \bigcup\left\{a x+b \mid a, b \in \mathbb{F}_{q}, a \neq 0\right\}$. If the hypotheses of Stafford's theorem are fulfilled, $\operatorname{Sym}\left(\mathbb{F}_{q}\right)=<G>$.

Finding a word $g_{1} \circ \ldots \circ g_{\ell}=\pi \in \operatorname{Sym}\left(\mathbb{F}_{q}\right), g_{i} \in G$ is an old problem.
■ Schreier and Sims presented an efficient algorithm in [SIM70].
\square Knuth provided an implementation running time of $\mathcal{O}\left(q^{5}\right)$ in [Knu91].

Let $G=\left\{x^{k}\right\} \bigcup\left\{a x+b \mid a, b \in \mathbb{F}_{q}, a \neq 0\right\}$. If the hypotheses of Stafford's theorem are fulfilled, $\operatorname{Sym}\left(\mathbb{F}_{q}\right)=<G>$.

Finding a word $g_{1} \circ \ldots \circ g_{\ell}=\pi \in \operatorname{Sym}\left(\mathbb{F}_{q}\right), g_{i} \in G$ is an old problem.
$■$ Schreier and Sims presented an efficient algorithm in [SIM70].
■ Knuth provided an implementation running time of $\mathcal{O}\left(q^{5}\right)$ in [Knu91].

Problem

Schreier-Sims produces words including the inverse of generators. The inverse of a quadratic power permutation over $\mathbb{F}_{2^{n}}$ can have algebraic degree up to $\frac{n+1}{2}$ [Nyb93].

A different approach is presented in [Tan11].
■ Main focus: a bound for the diameter of $\operatorname{Sym}(n)$ given a set of generators.
■ Possible to derive an algorithm producing words of length $\mathcal{O}\left(n 2^{n}\right)$.
This algorithm uses cycles of length 3 as stepping stones, so their representation is critical.

A different approach is presented in [Tan11].
\square Main focus: a bound for the diameter of $\operatorname{Sym}(n)$ given a set of generators.
■ Possible to derive an algorithm producing words of length $\mathcal{O}\left(n 2^{n}\right)$.

This algorithm uses cycles of length 3 as stepping stones, so their representation is critical.

A different approach is presented in [Tan11].
■ Main focus: a bound for the diameter of $\operatorname{Sym}(n)$ given a set of generators.
■ Possible to derive an algorithm producing words of length $\mathcal{O}\left(n 2^{n}\right)$.

This algorithm uses cycles of length 3 as stepping stones, so their representation is critical.

Problem

For $n=4$, these permutations already have decompositions of length $\ell \geq 12$.
For $n=5$, the computation is ongoing.

Conclusions and Open Problems

- Power Functions
- (Sub)Group Membership in $\mathbb{Z}_{2^{n}-1}^{*}$
- Extend to $\mathbb{Z}_{p^{n}-1}^{*}$?
- Carlitz Decompositions
- Stafford Decomposition
- Possible to further reduce the search space?
- Group membership algorithms, $\ell \sim \mathcal{O}\left(n^{5}\right)$
- Possible to have better membership algorithms, exploiting the shape of the generators?
- Better decompositions by relaxing the requisites on the algebraic degree?

Conclusions and Open Problems

- Power Functions
- (Sub)Group Membership in $\mathbb{Z}_{2^{n}-1}^{*}$
- Extend to $\mathbb{Z}_{p^{n}-1}^{*}$?
- Carlitz Decompositions
- Stafford Decomposition
- Possible to further reduce the search space?
- Group membership algorithms, $\ell \sim \mathcal{O}\left(n^{5}\right)$
- Possible to have better membership algorithms, exploiting the shape of the generators?
- Better decompositions by relaxing the requisites on the algebraic degree?

Conclusions and Open Problems

- Power Functions
- (Sub)Group Membership in $\mathbb{Z}_{2^{n}-1}^{*}$
- Extend to $\mathbb{Z}_{p^{n}-1}^{*}$?
- Carlitz Decompositions
- Stafford Decomposition
- Possible to further reduce the search space?
- Group membership algorithms, $\ell \sim \mathcal{O}\left(n^{5}\right)$
- Possible to have better membership algorithms, exploiting the shape of the generators?
- Better decompositions by relaxing the requisites on the algebraic degree?

Conclusions and Open Problems

- Power Functions
- (Sub)Group Membership in $\mathbb{Z}_{2^{n}-1}^{*}$
- Extend to $\mathbb{Z}_{p^{n}-1}^{*}$?
- Carlitz Decompositions

■ Stafford Decomposition

- Possible to further reduce the search space?
- Group membership algorithms, $\ell \sim \mathcal{O}\left(n^{5}\right)$
- Possible to have better membership algorithms, exploiting the shape of the generators?
\square Better decompositions by relaxing the requisites on the algebraic degree?

Conclusions and Open Problems

- Power Functions
- (Sub)Group Membership in $\mathbb{Z}_{2^{n}-1}^{*}$
- Extend to $\mathbb{Z}_{p^{n}-1}^{*}$?

■ Carlitz Decompositions
■ Stafford Decomposition

- Possible to further reduce the search space?
- Group membership algorithms, $\ell \sim \mathcal{O}\left(n^{5}\right)$
- Possible to have better membership algorithms, exploiting the shape of the generators?
\square Better decompositions by relaxing the requisites on the algebraic degree?

Thank you!

Questions?

㐭 Samuele Andreoli，Enrico Piccione，Lilya Budaghyan，Pantelimon Stănică，and Svetla Nikova，On decompositions of permutations in quadratic functions，Cryptology ePrint Archive，Paper 2023／1632，2023， https：／／eprint．iacr．org／2023／1632．
R Andrey Bogdanov，Lars R．Knudsen，Gregor Leander，Christof Paar，Axel Poschmann，Matthew J．B．Robshaw，Yannick Seurin，and C．Vikkelsoe， PRESENT：an ultra－lightweight block cipher，Cryptographic Hardware and Embedded Systems－CHES 2007，9th International Workshop， Vienna，Austria，September 10－13，2007，Proceedings（Pascal Paillier and Ingrid Verbauwhede，eds．），LNCS，vol．4727，Springer，2007， pp．450－466．
Leonard Carlitz，Permutations in a finite field，Proc．AMS（1953）， 538.
囯 Pinar Çomak and Ferruh Özbudak，On the parity of power permutations， IEEE Access 9 （2021），106806－106812．

围 Georg Ferdinand Frobenius，Über das quadratische reziprozitätsgese ii，Königliche Akademie der Wissenschaften， 1914.

Donald E. Knuth, Efficient representation of perm groups, 1991.
Florian Luca, Santanu Sarkar, and Pantelimon Stănică, Representing the inverse map as a composition of quadratics in a finite field of characteristic 2, arXiv (2023).
Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen, Decomposition of permutations in a finite field, Cryptogr. Commun. 11 (2019), no. 3, 379-384.
Kaisa Nyberg, Differentially uniform mappings for cryptography, Advances in Cryptology - EUROCRYPT '93, Workshop on the Theory and Application of Cryptographic Techniques, Lofthus, Norway, May 23-27, 1993, Proceedings (Tor Helleseth, ed.), LNCS, vol. 765, Springer, 1993, pp. 55-64.
Reorge Petrides, On decompositions of permutation polynomials into quadratic and cubic power permutations, Cryptogr. Commun. 15 (2023), no. 1, 199-207.
(CHARLES C. SIMS, Computational methods in the study of permutation groupsttthis research was supported in part by the national science foundation., Computational Problems in Abstract Algebra (JOHN LEECH, ed.), Pergamon, 1970, pp. 169-183.
囯 Richard M. Stafford, Groups of permutation polynomials over finite fields, Finite Fields and Their Applications 4 (1998), no. 4, 450-452.
(1an Shuo Tan, On the diameter of cayley graphs of finite groups, University of Chicago VIGRE REU (2011).

