On vectorial functions mapping strict affine subspaces of their domain into strict affine subspaces of their co-domain, and the strong D-property

Enrico Piccione¹

¹UNIVERSITY OF BERGEN, ²UNIVERSITY OF PARIS 8 (Joint work with Claude Carlet^{1,2})

Abstract

We study those (N, M)-functions \mathcal{F} which map at least one *n*-dimensional affine subspace $A \subseteq \mathbb{F}_2^N$ to (a subset of) an *m*-dimensional affine subspace $A' \subseteq \mathbb{F}_2^N$. This leads to (n, m)-functions \mathcal{F}_A . We study the cryptographic properties of \mathcal{F}_A by means of the ones of \mathcal{F} . We then focus on the case M = N = m + 1 = n + 1, resulting in $\mathcal{F}(x) = \psi(\mathcal{G}(x))$ (or $\psi(\mathcal{G}(x)) + x$) where ψ is a linear function with a kernel of dimension 1. We are interested in the case where \mathcal{G} is almost perfect nonlinear (APN). We say that \mathcal{G} has the strong D-property if \mathcal{G}_A has the D-property [1] for all affine hyperplanes A whose contrary allows the APNness of \mathcal{F}_A . We study the strong D-property for crooked functions and we prove that the Gold APN function has the strong D-property in large dimension. Then we give a partial result on the Dobbertin APN function. We then consider the case where \mathcal{F}_A and \mathcal{G} are permutations. We prove that some of the known families [2, 3] of 4-uniform permutations corresponding to this framework are not APN in even dimension.

References

- [1] H. Taniguchi, *D*-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} , Cryptography and Communications (2023).
- [2] Y. Li and M. Wang, Constructing differentially 4-uniform permutations over $GF(2^{2m})$ from quadratic APN permutations over $GF(2^{2m+1})$, Designs, codes and cryptography (2014).
- [3] C. Carlet, On known and new differentially uniform functions, ACISP, 2011.