On vectorial functions mapping strict affine subspaces of their domain into strict affine subspaces of their co-domain, and the strong D-property

> Enrico Piccione¹ (Joint work with Claude Carlet^{1,2})

¹University of Bergen, ²University of Paris 8

Selmer Seminar January 22, 2024

- 1. Preliminaries and Introduction
- 2. Restricting vectorial functions to affine spaces
- 3. Restricting (N, N)-functions over affine hyperplanes and the strong D-property
- 4. Revisiting two infinite families of differentially 4-uniform (N 1, N 1)-permutations
- 5. Conclusions

Preliminaries and Introduction

 \mathbb{F}_{2^N} is the finite field of order 2^N \mathbb{F}_2^N is a vector space over \mathbb{F}_2 $\operatorname{Tr}_N(x) = x + x^2 + \dots + x^{2^{N-1}}$ is the (absolute) trace function over \mathbb{F}_{2^N} . We also write $\operatorname{Tr} = \operatorname{Tr}_N$

A set $A \subseteq \mathbb{F}_2^N$ is called affine if $x + y + z \in A$ for all $x, y, z \in A$.

The dimension of A is given by the dimension of the vector space a + A for any $a \in A$

$\mathcal{F}, \mathcal{G}, \mathcal{H}$ Vectorial Boolean functions $\mathbb{F}_2^N \to \mathbb{F}_2^M$ (occasionally F, G, H)

If N = M, we can represent a function as a polynomial in $\mathbb{F}_{2^N}[x]$ of degree strictly less than 2^N (univariate representation).

$$\begin{split} & \mathcal{W}_{\mathcal{F}}(u,v) = \sum_{x \in \mathbb{F}_{2}^{N}} (-1)^{v \cdot \mathcal{F}(x) + u \cdot x} \text{ Walsh transform evaluated in } u \in \mathbb{F}_{2}^{N} \ v \in \mathbb{F} \\ & \mathsf{nl}(\mathcal{F}) = 2^{N-1} - \frac{1}{2} \max_{u \in \mathbb{F}_{2}^{N}, v \in \mathbb{F}_{2}^{M} \setminus \{0\}} |\mathcal{W}_{\mathcal{F}}(u,v)| \text{ Nonlinearity} \\ & D_{a}\mathcal{F}(x) = \mathcal{F}(x+a) + \mathcal{F}(x) \text{ derivative through direction } a \in \mathbb{F}_{2}^{N} \setminus \{0\}. \\ & \delta_{\mathcal{F}} = \max_{a \in \mathbb{F}_{2}^{N} \setminus \{0\}, b \in \mathbb{F}_{2}^{M}} |\{x \in \mathbb{F}_{2}^{N} \mid D_{a}\mathcal{F}(x) = b\}| \text{ Differential Uniformity.} \\ & \mathcal{F} \text{ is called } \delta \text{-uniform if } \delta_{\mathcal{F}} \leq \delta. \\ & 2\text{-uniform functions are called APN.} \end{split}$$

 $\mathcal{F}, \mathcal{G}, \mathcal{H}$ Vectorial Boolean functions $\mathbb{F}_2^N \to \mathbb{F}_2^M$ (occasionally F, G, H)

If N = M, we can represent a function as a polynomial in $\mathbb{F}_{2^N}[x]$ of degree strictly less than 2^N (univariate representation).

$$\begin{split} \mathcal{W}_{\mathcal{F}}(u,v) &= \sum_{x \in \mathbb{F}_{2}^{N}} (-1)^{v \cdot \mathcal{F}(x) + u \cdot x} \text{ Walsh transform evaluated in } u \in \mathbb{F}_{2}^{N} v \in \mathbb{F}_{2}^{M} \\ \mathsf{nl}(\mathcal{F}) &= 2^{N-1} - \frac{1}{2} \max_{u \in \mathbb{F}_{2}^{N}, v \in \mathbb{F}_{2}^{M} \setminus \{0\}} |\mathcal{W}_{\mathcal{F}}(u,v)| \text{ Nonlinearity} \\ D_{a}\mathcal{F}(x) &= \mathcal{F}(x+a) + \mathcal{F}(x) \text{ derivative through direction } a \in \mathbb{F}_{2}^{N} \setminus \{0\}. \\ \delta_{\mathcal{F}} &= \max_{a \in \mathbb{F}_{2}^{N} \setminus \{0\}, b \in \mathbb{F}_{2}^{M}} |\{x \in \mathbb{F}_{2}^{N} \mid D_{a}\mathcal{F}(x) = b\}| \text{ Differential Uniformity.} \\ \mathcal{F} \text{ is called } \delta \text{-uniform if } \delta_{\mathcal{F}} \leq \delta. \\ 2\text{-uniform functions are called APN.} \end{split}$$

 $\mathcal{F}, \mathcal{G}, \mathcal{H}$ Vectorial Boolean functions $\mathbb{F}_2^N \to \mathbb{F}_2^M$ (occasionally F, G, H)

If N = M, we can represent a function as a polynomial in $\mathbb{F}_{2^N}[x]$ of degree strictly less than 2^N (univariate representation).

$$\begin{split} & \mathcal{W}_{\mathcal{F}}(u,v) = \sum_{x \in \mathbb{F}_{2}^{N}} (-1)^{v \cdot \mathcal{F}(x) + u \cdot x} \text{ Walsh transform evaluated in } u \in \mathbb{F}_{2}^{N} v \in \mathbb{F}_{2}^{M} \\ & \mathsf{nl}(\mathcal{F}) = 2^{N-1} - \frac{1}{2} \max_{u \in \mathbb{F}_{2}^{N}, v \in \mathbb{F}_{2}^{M} \setminus \{0\}} |\mathcal{W}_{\mathcal{F}}(u,v)| \text{ Nonlinearity} \\ & D_{a}\mathcal{F}(x) = \mathcal{F}(x+a) + \mathcal{F}(x) \text{ derivative through direction } a \in \mathbb{F}_{2}^{N} \setminus \{0\}. \\ & \delta_{\mathcal{F}} = \max_{a \in \mathbb{F}_{2}^{N} \setminus \{0\}, b \in \mathbb{F}_{2}^{M}} |\{x \in \mathbb{F}_{2}^{N} \mid D_{a}\mathcal{F}(x) = b\}| \text{ Differential Uniformity.} \\ & \mathcal{F} \text{ is called } \delta \text{-uniform if } \delta_{\mathcal{F}} \leq \delta. \\ & 2\text{-uniform functions are called APN.} \end{split}$$

 $\mathbb{1}_{\mathcal{F}}(x,y) = 1$ if $y = \mathcal{F}(x)$ and $\mathbb{1}_{\mathcal{F}}(x,y) = 0$ otherwise.

 ${\mathcal F}$ and ${\mathcal F}'$ are

Affine equivalent if $\exists A_1, A_2$ affine permutations: $\mathcal{F} = A_1 \circ \mathcal{F}' \circ A_2$, EA equivalent if $\exists A$ affine: $\mathcal{F} + A$ and \mathcal{F}' are Affine equivalent, CCZ equivalent if $\mathbb{1}_{\mathcal{F}}$ and $\mathbb{1}_{\mathcal{F}'}$ are Affine equivalent.

Let \mathcal{F} be permutation polynomial over \mathbb{F}_{2^N} .

Let $A \subseteq \mathbb{F}_{2^N}$ *n*-dimensional (n < N) affine subspace such that $\mathcal{F}(A) = A'$ is an affine space. Then we construct a normalization as how might $\Sigma = T$, by identifying A and A' with \mathbb{F} .

• If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.

• Cryptographic properties of F depends on \mathcal{F} .

- \mathcal{F} being an (N, M)-function
- $\mathcal{F}(A) \subseteq A'$
- $A' \subseteq \mathbb{F}_2^M$ being *m*-dimensional (m < M)

Let \mathcal{F} be permutation polynomial over \mathbb{F}_{2^N} .

Let $A \subseteq \mathbb{F}_{2^N}$ *n*-dimensional (n < N) affine subspace such that $\mathcal{F}(A) = A'$ is an affine space.

Then we construct a permutation polynomial $F=\mathcal{F}_A$ by identifying A and A' with \mathbb{F}_{2^n} .

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.
- Cryptographic properties of F depends on \mathcal{F} .

- \mathcal{F} being an (N, M)-function
- $\mathcal{F}(A) \subseteq A'$
- $A' \subseteq \mathbb{F}_2^M$ being *m*-dimensional (m < M)

Let \mathcal{F} be permutation polynomial over \mathbb{F}_{2^N} .

Let $A \subseteq \mathbb{F}_{2^N}$ *n*-dimensional (n < N) affine subspace such that $\mathcal{F}(A) = A'$ is an affine space.

Then we construct a permutation polynomial $F = \mathcal{F}_A$ by identifying A and A' with \mathbb{F}_{2^n} .

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.
- Cryptographic properties of F depends on \mathcal{F} .

- \mathcal{F} being an (N, M)-function
- $\mathcal{F}(A) \subseteq A'$
- $A' \subseteq \mathbb{F}_2^M$ being *m*-dimensional (m < M)

Let \mathcal{F} be permutation polynomial over \mathbb{F}_{2^N} .

Let $A \subseteq \mathbb{F}_{2^N}$ *n*-dimensional (n < N) affine subspace such that $\mathcal{F}(A) = A'$ is an affine space.

Then we construct a permutation polynomial $F = \mathcal{F}_A$ by identifying A and A' with \mathbb{F}_{2^n} .

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.
- Cryptographic properties of F depends on \mathcal{F} .

- \mathcal{F} being an (N, M)-function
- $\mathcal{F}(A) \subseteq A'$
- $A' \subseteq \mathbb{F}_2^M$ being *m*-dimensional (m < M)

Let \mathcal{F} be permutation polynomial over \mathbb{F}_{2^N} .

Let $A \subseteq \mathbb{F}_{2^N}$ *n*-dimensional (n < N) affine subspace such that $\mathcal{F}(A) = A'$ is an affine space.

Then we construct a permutation polynomial $F = \mathcal{F}_A$ by identifying A and A' with \mathbb{F}_{2^n} .

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.
- Cryptographic properties of F depends on \mathcal{F} .

- \mathcal{F} being an (N, M)-function
- $\mathcal{F}(A) \subseteq A'$
- $A' \subseteq \mathbb{F}_2^M$ being *m*-dimensional (m < M)

Let \mathcal{F} be permutation polynomial over \mathbb{F}_{2^N} .

Let $A \subseteq \mathbb{F}_{2^N}$ *n*-dimensional (n < N) affine subspace such that $\mathcal{F}(A) = A'$ is an affine space.

Then we construct a permutation polynomial $F = \mathcal{F}_A$ by identifying A and A' with \mathbb{F}_{2^n} .

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.
- Cryptographic properties of F depends on \mathcal{F} .

This is possible because we are restricting over an affine space.

We can have more flexibility:

- \mathcal{F} being an (N, M)-function
- $\mathcal{F}(A) \subseteq A'$
- $A' \subseteq \mathbb{F}_2^M$ being *m*-dimensional (m < M)

Let \mathcal{F} be permutation polynomial over \mathbb{F}_{2^N} .

Let $A \subseteq \mathbb{F}_{2^N}$ *n*-dimensional (n < N) affine subspace such that $\mathcal{F}(A) = A'$ is an affine space.

Then we construct a permutation polynomial $F = \mathcal{F}_A$ by identifying A and A' with \mathbb{F}_{2^n} .

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.
- Cryptographic properties of F depends on \mathcal{F} .

- \mathcal{F} being an (N, M)-function
- $\mathcal{F}(A) \subseteq A'$
- $A' \subseteq \mathbb{F}_2^M$ being *m*-dimensional (m < M)

- $\bullet\,$ Study the cryptographic properties of functions mapping affine spaces to affine spaces
- Construct new "good" functions (and families)
- Study the D-property further

- Study the cryptographic properties of functions mapping affine spaces to affine spaces
- Construct new "good" functions (and families)
- Study the D-property further

- Study the cryptographic properties of functions mapping affine spaces to affine spaces
- Construct new "good" functions (and families)
- Study the D-property further

• 1st and 2nd Poisson's summation formula¹

- Trimming of APN functions²
- Taniguchi's introduction of the D-property³
- Two infinite families of 4-uniform permutations⁴⁵

¹Claude Carlet. "Boolean functions for cryptography and coding theory". In: (2021).

²Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions". In: Designs, Codes and Cryptography 90.4 (2022), pp. 1009–1036.

³Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} ". In: Cryptography and Communications (2023), pp. 1–21.

⁴Claude Carlet. "On known and new differentially uniform functions". In: *Australasian Conference on Information Security and Privacy*. Springer. 2011, pp. 1–15.

⁵Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over $GF(2^{2m})$ from quadratic APN permutations over $GF(2^{2m+1})$ ". In: *Designs, codes and cryptography* 72.2 (2014), pp. 249–264.

- 1st and 2nd Poisson's summation formula¹
- Trimming of APN functions²
- Taniguchi's introduction of the D-property³
- Two infinite families of 4-uniform permutations⁴⁵

¹Claude Carlet. "Boolean functions for cryptography and coding theory". In: (2021). ²Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions". In: *Designs, Codes and Cryptography* 90.4 (2022), pp. 1009–1036.

³Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} ". In: *Cryptography and Communications* (2023), pp. 1–21.

⁴Claude Carlet. "On known and new differentially uniform functions". In: *Australasian Conference on Information Security and Privacy*. Springer. 2011, pp. 1–15.

⁵Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over $GF(2^{2m})$ from quadratic APN permutations over $GF(2^{2m+1})$ ". In: *Designs, codes and cryptography* 72.2 (2014), pp. 249–264.

- 1st and 2nd Poisson's summation formula¹
- Trimming of APN functions²
- Taniguchi's introduction of the D-property³

• Two infinite families of 4-uniform permutations⁴⁵

¹Claude Carlet. "Boolean functions for cryptography and coding theory". In: (2021).

²Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions". In: *Designs, Codes and Cryptography* 90.4 (2022), pp. 1009–1036.

³Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} ". In: Cryptography and Communications (2023), pp. 1–21.

⁴Claude Carlet. "On known and new differentially uniform functions". In: Australasian Conference on Information Security and Privacy. Springer. 2011, pp. 1–15.

⁵Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over $GF(2^{2m})$ from quadratic APN permutations over $GF(2^{2m+1})$ ". In: *Designs, codes and cryptography* 72.2 (2014), pp. 249–264.

- 1st and 2nd Poisson's summation formula¹
- Trimming of APN functions²
- Taniguchi's introduction of the D-property³
- Two infinite families of 4-uniform permutations⁴⁵

¹Claude Carlet. "Boolean functions for cryptography and coding theory". In: (2021).

²Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions". In: *Designs, Codes and Cryptography* 90.4 (2022), pp. 1009–1036.

³Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} ". In: Cryptography and Communications (2023), pp. 1–21.

⁴Claude Carlet. "On known and new differentially uniform functions". In: *Australasian Conference on Information Security and Privacy*. Springer. 2011, pp. 1–15.

⁵Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over $GF(2^{2m})$ from quadratic APN permutations over $GF(2^{2m+1})$ ". In: *Designs, codes and cryptography* 72.2 (2014), pp. 249–264.

Restricting vectorial functions to affine spaces

 $A = a + E \subseteq \mathbb{F}_2^N \text{ affine space of dimension } n.$ $A' = a' + E' \subseteq \mathbb{F}_2^M \text{ affine space of dimension } m.$ $\mathcal{F}(A) \subseteq A'$

We say that the tuple (ϕ, a, ϕ', a') is a representation of $\mathcal{F}_{\mathcal{A}}$ if

$$\mathcal{F}_A(x) = \phi' \left(\mathcal{F}(\phi(x) + a) + a' \right)$$

 $\phi \colon \mathbb{F}_2^n \to E$ linear bijective $\phi' \colon \mathbb{F}_2^M \to \mathbb{F}_2^m$ linear and such that $\phi'(E') = \mathbb{F}_2^m$

Beierle et al. 6 use a more general definition where ϕ' is just surjective.

⁶Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions". In: *Designs, Codes and Cryptography* 90.4 (2022), pp. 1009–1036.

 $A = a + E \subseteq \mathbb{F}_2^N \text{ affine space of dimension } n.$ $A' = a' + E' \subseteq \mathbb{F}_2^M \text{ affine space of dimension } m.$ $\mathcal{F}(A) \subseteq A'$

We say that the tuple (ϕ, a, ϕ', a') is a representation of \mathcal{F}_A if

$$\mathcal{F}_{\mathcal{A}}(x) = \phi' \left(\mathcal{F}(\phi(x) + a) + a' \right)$$

 $\phi \colon \mathbb{F}_2^n \to E$ linear bijective $\phi' \colon \mathbb{F}_2^M \to \mathbb{F}_2^m$ linear and such that $\phi'(E') = \mathbb{F}_2^m$

Beierle et al.⁶ use a more general definition where ϕ' is just surjective.

⁶Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions". In: *Designs, Codes and Cryptography* 90.4 (2022), pp. 1009–1036.

и

$$\delta_{\mathcal{F}_{A}} = \max_{\alpha \in E \setminus \{0\}, \beta \in E'} \left| \{ x \in \mathbb{F}_{2}^{N} \mid D_{\alpha}\mathcal{F}(x) = \beta \} \right|$$

$$\in \mathbb{F}_{2}^{n}, v \in \mathbb{F}_{2}^{m}, u' = (\phi^{-1})^{*}(u), v' = \psi^{*}(v)$$

$$/_{\mathcal{F}_{A}}(u, v) = 2^{-(N-n)}(-1)^{\epsilon} \sum_{z \in E^{\perp}} (-1)^{z \cdot a} W_{\mathcal{F}}(u' + z, v') \text{ where } \epsilon = v' \cdot a' + a \cdot u'.$$

$$\operatorname{nl}(\mathcal{F}_{A}) = 2^{n-1} - \frac{1}{2^{N-n+1}} \max_{u' \in E_{1}, v' \in (E_{2} \setminus \{0\})} \left| \sum_{z \in E^{\perp}} (-1)^{z \cdot a} W_{\mathcal{F}}(u' + z, v') \right|,$$

where $E^{\perp} \oplus E_1 = \mathbb{F}_2^N$ and $(E')^{\perp} \oplus E_2 = \mathbb{F}_2^M$.

$$\begin{split} \delta_{\mathcal{F}_{A}} &= \max_{\alpha \in E \setminus \{0\}, \beta \in E'} \left| \{ x \in \mathbb{F}_{2}^{N} \mid D_{\alpha} \mathcal{F}(x) = \beta \} \right| \\ u \in \mathbb{F}_{2}^{n}, \ v \in \mathbb{F}_{2}^{m}, \ u' &= (\phi^{-1})^{*}(u), \ v' = \psi^{*}(v) \\ W_{\mathcal{F}_{A}}(u,v) &= 2^{-(N-n)}(-1)^{\epsilon} \sum_{z \in E^{\perp}} (-1)^{z \cdot a} W_{\mathcal{F}}(u'+z,v') \text{ where } \epsilon = v' \cdot a' + a \cdot u'. \\ & \mathsf{nl}(\mathcal{F}_{A}) = 2^{n-1} - \frac{1}{2^{N-n+1}} \max_{u' \in E_{1}, \ v' \in (E_{2} \setminus \{0\})} \left| \sum_{z \in E^{\perp}} (-1)^{z \cdot a} W_{\mathcal{F}}(u'+z,v') \right|, \end{split}$$

where $E^{\perp} \oplus E_1 = \mathbb{F}_2^N$ and $(E')^{\perp} \oplus E_2 = \mathbb{F}_2^M$.

$$\mathsf{nl}(\mathcal{F}_A) \ge \mathsf{nl}(\mathcal{F}) - (2^{N-1} - 2^{n-1})$$

Proposition

$$nl(\mathcal{F}) > 2^{N-1} - 2^{n-1} \implies \mathcal{F}(A) \not\subseteq A'$$

for all A with dimension n and all A' of dimension $m < M$.

Proposition

 $\max_{u \in \mathbb{F}_2^N, v \in \mathbb{F}_2^M \setminus (\mathcal{E}')^{\perp}} |W_{\mathcal{F}}(u, v)| < 2^n \implies \mathsf{nl}(\mathcal{F}_A) \neq 0$

$$\mathsf{nl}(\mathcal{F}_A) \ge \mathsf{nl}(\mathcal{F}) - (2^{N-1} - 2^{n-1})$$

Proposition

$$nl(\mathcal{F}) > 2^{N-1} - 2^{n-1} \implies \mathcal{F}(A) \not\subseteq A'$$

for all A with dimension n and all A' of dimension $m < M$.

Proposition

 $\max_{u\in\mathbb{F}_2^N,\;v\in\mathbb{F}_2^M\setminus(E')^\perp}ert W_\mathcal{F}(u,v)ert <2^n\implies \mathsf{nl}(\mathcal{F}_\mathcal{A})
eq0$

$$\mathsf{nl}(\mathcal{F}_A) \ge \mathsf{nl}(\mathcal{F}) - (2^{N-1} - 2^{n-1})$$

Proposition

$$nl(\mathcal{F}) > 2^{N-1} - 2^{n-1} \implies \mathcal{F}(A) \not\subseteq A'$$

for all A with dimension n and all A' of dimension $m < M$.

Proposition

$$\max_{u \in \mathbb{F}_2^N, v \in \mathbb{F}_2^M \setminus (\mathcal{E}')^{\perp}} |W_{\mathcal{F}}(u, v)| < 2^n \implies \mathsf{nl}(\mathcal{F}_A) \neq 0$$

Restricting vectorial functions with affine components

$$\psi$$
 is a linear (M, M) -function
 $A' = \operatorname{Im} \psi$
 $\mathcal{F}(x) = \psi(\mathcal{G}(x))$
Then $\mathcal{F}(A) \subseteq A'$ for all affine spaces A .

Theorem

$$I (\mathcal{F}_{\mathcal{A}}) \geq \mathsf{nl}(\mathcal{G}) - (2^{N-1} - 2^{n-1}).$$

where \mathcal{G}_A is the restriction of $\mathcal G$ over A with co-domain $\mathbb F_2^M$

Restricting vectorial functions with affine components

$$\psi$$
 is a linear (M, M) -function
 $A' = \operatorname{Im} \psi$
 $\mathcal{F}(x) = \psi(\mathcal{G}(x))$
Then $\mathcal{F}(A) \subset A'$ for all affine spaces A .

Theorem

•
$$nl(\mathcal{F}_A) \ge nl(\mathcal{G}) - (2^{N-1} - 2^{n-1}).$$

where \mathcal{G}_A is the restriction of \mathcal{G} over A with co-domain \mathbb{F}_2^M

Suppose M = N and m = n.

$$\delta_{\mathcal{G}_A} \leq \delta_{\mathcal{F}_A} \leq 2^{N-n} \delta_{\mathcal{G}_A}.$$

If \mathcal{G} belongs to an infinite family of (N, N)-functions, then computing $\delta_{\mathcal{G}_A}$ could be hard.

If \mathcal{G} is APN, then we have that $\delta_{\mathcal{G}_A} = 2$ and that $2 \leq \delta_{\mathcal{F}_A} \leq 2^{N-n+1}$.

With n = N - 1 we have that \mathcal{F}_A is at most 4-uniform.

Restricting (N, N)-functions over affine hyperplanes and the strong D-property

The D(illon)-property of APN (n, n)-functions⁷

$$\Phi_F(x, y, z) = F(x + y + z) + F(x) + F(y) + F(z)$$

Lemma

Let F be an (n, n)-function. Then F is APN if and only if all the solutions (x, y, z) to the equation $\Phi_F(x, y, z) = 0$ are such that $|\{x, y, z, x + y + z\}| \neq 4$.

Lemma

Let F be an APN (n, n)-function, then $nl(F) \neq 0$.

Theorem (Dillon)

Let F be an APN (n, n)-function, then $\operatorname{Im} \Phi_F = \mathbb{F}_2^n$.

⁷Claude Carlet. "Boolean functions for cryptography and coding theory". In: (2021). Enrico Piccione (joint work with C. Carlet)

Proof of the D-property

Proof.

For simplicity, we consider F in its univariate representation. Suppose there exists $c \in \mathbb{F}_{2^n}$ not in $\operatorname{Im} \Phi_F$. We can assume $c \neq 0$. Then F'(x) = F(x) + cf(x) is APN for any Boolean function f. Indeed, let (x, y, z) be such that $\Phi_{F'}(x, y, z) = 0$ that we can rewrite as

 $\Phi_F(x, y, z) = c \Phi_f(x, y, z).$

If $\Phi_f(x, y, z) = 1$, then the equation has no solution If $\Phi_f(x, y, z) = 0$, then all the solutions (x, y, z) are such that $|\{x, y, z, x + y + z\}| \neq 4$ because F is APN.

Let $c' \in \mathbb{F}_{2^n}$ be such that $\operatorname{Tr}(cc') = 1$ and set $f(x) = \operatorname{Tr}(c'F(x))$. Then

$$\operatorname{Tr}(c'F'(x)) = \operatorname{Tr}(c'F(x)) + \operatorname{Tr}(c'c)\operatorname{Tr}(c'F(x)) = 0$$

and so nl(F') = 0. A contradiction.
Definition (D-property)

An (n, m)-function F has the D-property if $\Phi_F((\mathbb{F}_2^n)^3) = \mathbb{F}_2^m$.

 $\mathsf{In}^8\mathsf{,}$ there is a focus on the case m=n+1 and $\mathcal{F}=\mathcal{G}_{\mathsf{E}_0}$ where

- G is an APN (n+1, n+1)-function
- $E_0 = \{x \in \mathbb{F}_{2^{n+1}} : \operatorname{Tr}(x) = 0\}$

A recent paper⁹, investigates this property further.

We consider it in relation to the problem of constructing APN (N-1, N-1)-functions

⁸Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} ". In: *Cryptography and Communications* (2023), pp. 1–21.

⁹Matteo Abbondati, Marco Calderini, and Irene Villa. "On Dillon's property of (*n*, *m*)-functions". In: *arXiv* preprint *arXiv*:2302.13922 (2023).

Definition (D-property)

An (n, m)-function F has the D-property if $\Phi_F((\mathbb{F}_2^n)^3) = \mathbb{F}_2^m$.

 $\mathsf{In}^8\mathsf{,}$ there is a focus on the case m=n+1 and $\mathcal{F}=\mathcal{G}_{\mathsf{E}_0}$ where

- G is an APN (n+1, n+1)-function
- $E_0 = \{x \in \mathbb{F}_{2^{n+1}} : \operatorname{Tr}(x) = 0\}$

A recent paper $\!\!^9$, investigates this property further.

We consider it in relation to the problem of constructing APN (N-1, N-1)-functions

⁸Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} ". In: *Cryptography and Communications* (2023), pp. 1–21.

⁹Matteo Abbondati, Marco Calderini, and Irene Villa. "On Dillon's property of (*n*, *m*)-functions". In: *arXiv* preprint arXiv:2302.13922 (2023).

Definition (D-property)

An (n, m)-function F has the D-property if $\Phi_F((\mathbb{F}_2^n)^3) = \mathbb{F}_2^m$.

 $\mathsf{In}^8\mathsf{,}$ there is a focus on the case m=n+1 and $\mathcal{F}=\mathcal{G}_{\mathcal{E}_0}$ where

- G is an APN (n+1, n+1)-function
- $E_0 = \{x \in \mathbb{F}_{2^{n+1}} : \operatorname{Tr}(x) = 0\}$

A recent paper $\!\!^9$, investigates this property further.

We consider it in relation to the problem of constructing APN (N-1, N-1)-functions

⁸Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} ". In: *Cryptography and Communications* (2023), pp. 1–21.

⁹Matteo Abbondati, Marco Calderini, and Irene Villa. "On Dillon's property of (*n*, *m*)-functions". In: *arXiv* preprint *arXiv:2302.13922* (2023).

Constructing APN (N - 1, N - 1)-functions as restrictions

Let \mathcal{G} be an APN (N, N)-function. Let ψ be a linear (N, N)-function with ker $\psi = \langle c \rangle$. Let $A \subseteq \mathbb{F}_2^N$ be an affine hyperplane. Let $\mathcal{F}(x) = \psi(\mathcal{G}(x))$.

Lemma

 \mathcal{F}_A is APN if and only if $\Phi_{\mathcal{G}}(x, y, z) \neq c \ \forall x, y, z \in A$.

Proof.

Suppose that there exists $x, y, z \in A$ such that $\Phi_{\mathcal{G}}(x, y, z) = c$. Since $\Phi_{\mathcal{G}}(x, y, z) \neq 0$, then $|\{x, y, z, x + y + z\}| = 4$. So we have that $0 = \psi(c) = \psi(\Phi_{\mathcal{G}}(x, y, z)) = \Phi_{\mathcal{F}}(x, y, z)$ and therefore \mathcal{F}_A is not APN. Suppose that \mathcal{F}_A is not APN, then there exists $x, y, z \in A$ such that $\Phi_{\mathcal{F}}(x, y, z) = 0$ and $|\{x, y, z, x + y + z\}| = 4$. So we have that $\Phi_{\mathcal{G}}(x, y, z) \in \ker \psi = \langle c \rangle$ and since \mathcal{G} is APN, then $\Phi_{\mathcal{G}}(x, y, z) = c$.

Constructing APN (N - 1, N - 1)-functions as restrictions

Let \mathcal{G} be an APN (N, N)-function. Let ψ be a linear (N, N)-function with ker $\psi = \langle c \rangle$. Let $A \subseteq \mathbb{F}_2^N$ be an affine hyperplane. Let $\mathcal{F}(x) = \psi(\mathcal{G}(x))$.

Lemma

 \mathcal{F}_A is APN if and only if $\Phi_{\mathcal{G}}(x, y, z) \neq c \ \forall x, y, z \in A$.

Proof.

Suppose that there exists $x, y, z \in A$ such that $\Phi_{\mathcal{G}}(x, y, z) = c$. Since $\Phi_{\mathcal{G}}(x, y, z) \neq 0$, then $|\{x, y, z, x + y + z\}| = 4$. So we have that $0 = \psi(c) = \psi(\Phi_{\mathcal{G}}(x, y, z)) = \Phi_{\mathcal{F}}(x, y, z)$ and therefore \mathcal{F}_A is not APN. Suppose that \mathcal{F}_A is not APN, then there exists $x, y, z \in A$ such that $\Phi_{\mathcal{F}}(x, y, z) = 0$ and $|\{x, y, z, x + y + z\}| = 4$. So we have that $\Phi_{\mathcal{G}}(x, y, z) \in \ker \psi = \langle c \rangle$ and since \mathcal{G} is APN, then $\Phi_{\mathcal{G}}(x, y, z) = c$.

Constructing APN (N - 1, N - 1)-functions as restrictions

Let \mathcal{G} be an APN (N, N)-function. Let ψ be a linear (N, N)-function with ker $\psi = \langle c \rangle$. Let $A \subseteq \mathbb{F}_2^N$ be an affine hyperplane. Let $\mathcal{F}(x) = \psi(\mathcal{G}(x))$.

Lemma

 \mathcal{F}_A is APN if and only if $\Phi_{\mathcal{G}}(x, y, z) \neq c \ \forall x, y, z \in A$.

Proof.

Suppose that there exists $x, y, z \in A$ such that $\Phi_{\mathcal{G}}(x, y, z) = c$. Since $\Phi_{\mathcal{G}}(x, y, z) \neq 0$, then $|\{x, y, z, x + y + z\}| = 4$. So we have that $0 = \psi(c) = \psi(\Phi_{\mathcal{G}}(x, y, z)) = \Phi_{\mathcal{F}}(x, y, z)$ and therefore \mathcal{F}_A is not APN. Suppose that \mathcal{F}_A is not APN, then there exists $x, y, z \in A$ such that $\Phi_{\mathcal{F}}(x, y, z) = 0$ and $|\{x, y, z, x + y + z\}| = 4$. So we have that $\Phi_{\mathcal{G}}(x, y, z) \in \ker \psi = \langle c \rangle$ and since \mathcal{G} is APN, then $\Phi_{\mathcal{G}}(x, y, z) = c$.

The strong D-property

Let \mathcal{G} be an (N, N)-function.

Definition (strong D-property)

 \mathcal{G} has the strong D-property if the (N - 1, N)-function \mathcal{G}_A has the D-property for any affine hyperplane A.

Proposition

If \mathcal{G} is APN, then

 \mathcal{G} has the strong D-property if and only if \mathcal{F}_A is not APN ($\delta_{\mathcal{F}_A} = 4$) where $\mathcal{F}(x) = \psi(\mathcal{G}(x))$

for all ψ linear function with kernel of dimension 1 for all affine hyperplane A.

The strong D-property

Let \mathcal{G} be an (N, N)-function.

Definition (strong D-property)

 \mathcal{G} has the strong D-property if the (N - 1, N)-function \mathcal{G}_A has the D-property for any affine hyperplane A.

Proposition

If \mathcal{G} is APN, then

 \mathcal{G} has the strong D-property if and only if \mathcal{F}_A is not APN ($\delta_{\mathcal{F}_A} = 4$) where $\mathcal{F}(x) = \psi(\mathcal{G}(x))$

for all ψ linear function with kernel of dimension 1 for all affine hyperplane A.

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let \mathcal{G} be a quadratic APN (N, N)-function with N even. If \mathcal{G} has the strong D-property, then $nl(\mathcal{G}) > 2^{N-2}$.

The minimum known nonlinearity is 2^{N-2} for an *N*-variable APN function, achieved by some quadratic APN functions in dimension 6 and 8.

Open Problem

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let \mathcal{G} be a quadratic APN (N, N)-function with N even. If \mathcal{G} has the strong D-property, then $nl(\mathcal{G}) > 2^{N-2}$.

The minimum known nonlinearity is 2^{N-2} for an *N*-variable APN function, achieved by some quadratic APN functions in dimension 6 and 8.

Open Problem

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let \mathcal{G} be a quadratic APN (N, N)-function with N even. If \mathcal{G} has the strong D-property, then $nl(\mathcal{G}) > 2^{N-2}$.

The minimum known nonlinearity is 2^{N-2} for an *N*-variable APN function, achieved by some quadratic APN functions in dimension 6 and 8.

Open Problem

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let \mathcal{G} be a quadratic APN (N, N)-function with N even. If \mathcal{G} has the strong D-property, then $nl(\mathcal{G}) > 2^{N-2}$.

The minimum known nonlinearity is 2^{N-2} for an *N*-variable APN function, achieved by some quadratic APN functions in dimension 6 and 8.

Open Problem

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let \mathcal{G} be a quadratic APN (N, N)-function with N even. If \mathcal{G} has the strong D-property, then $nl(\mathcal{G}) > 2^{N-2}$.

The minimum known nonlinearity is 2^{N-2} for an *N*-variable APN function, achieved by some quadratic APN functions in dimension 6 and 8.

Open Problem

Definition (Crooked function)

An (N, N)-function \mathcal{G} is crooked if $\operatorname{Im}(D_a \mathcal{G})$ is an affine hyperplane for all $a \in \mathbb{F}_2^N \setminus \{0\}$.

Conjecture

 \mathcal{G} is a crooked function if and only if \mathcal{G} is a quadratic APN function.

$\varphi_{\mathcal{G}}(a,b) = \mathcal{G}(a+b) + \mathcal{G}(a) + \mathcal{G}(b) + \mathcal{G}(0)$

The ortho-derivative of \mathcal{G} is the (N, N)-function $\pi_{\mathcal{G}}$ such that $\pi_{\mathcal{G}}(0) = 0$ and that $\pi_{\mathcal{G}}(a) \cdot \varphi_{\mathcal{G}}(a, b) = 0 \, \forall a, b \in \mathbb{F}_2^N \setminus \{0\}.$

¹⁰Gohar M Kyureghyan. "Crooked maps in \mathbb{F}_2^{n} ". In: *Finite Fields and their applications* 13.3 (2007), pp. 713–726.

Definition (Crooked function)

An (N, N)-function \mathcal{G} is crooked if $\operatorname{Im}(D_a \mathcal{G})$ is an affine hyperplane for all $a \in \mathbb{F}_2^N \setminus \{0\}$.

Conjecture

 \mathcal{G} is a crooked function if and only if \mathcal{G} is a quadratic APN function.

$$\varphi_{\mathcal{G}}(a, b) = \mathcal{G}(a + b) + \mathcal{G}(a) + \mathcal{G}(b) + \mathcal{G}(0)$$

The ortho-derivative of \mathcal{G} is the (N, N)-function $\pi_{\mathcal{G}}$ such that $\pi_{\mathcal{G}}(0) = 0$ and that $\pi_{\mathcal{G}}(a) \cdot \varphi_{\mathcal{G}}(a, b) = 0 \, \forall a, b \in \mathbb{F}_2^N \setminus \{0\}.$

¹⁰Gohar M Kyureghyan. "Crooked maps in \mathbb{F}_2^{n} ". In: *Finite Fields and their applications* 13.3 (2007), pp. 713–726.

The strong D-property of crooked functions

Let \mathcal{G} be crooked. Let $\Gamma_{v,c}^{(1)} = \{ a \in \mathbb{F}_2^N \mid c \cdot \pi_{\mathcal{G}}(a) = 0, v \cdot a = 1 \}$ and let $\Lambda_c = \{ (a, b) \in (\mathbb{F}_2^N)^2 \mid \varphi_{\mathcal{G}}(a, b) = c \}$

Lemma

 $\mathcal G$ has the strong D-property if and only if, for all $v, c \in \mathbb F_2^N \setminus \{0\}$, we have that

$$|\Gamma_{\nu,c}^{(1)}| < rac{|\Lambda_c|}{3}.$$

$$|\Lambda_{c}| = W_{\pi_{\mathcal{G}}}(0, c) + 2^{N} - 2$$
$$|\Gamma_{c,v}^{(1)}| = \frac{|\Lambda_{c}| + 2 - W_{\pi_{\mathcal{G}}}(v, c)}{4}$$

The strong D-property of crooked functions

Let \mathcal{G} be crooked. Let $\Gamma_{v,c}^{(1)} = \{ a \in \mathbb{F}_2^N \mid c \cdot \pi_{\mathcal{G}}(a) = 0, v \cdot a = 1 \}$ and let $\Lambda_c = \{ (a, b) \in (\mathbb{F}_2^N)^2 \mid \varphi_{\mathcal{G}}(a, b) = c \}$

Lemma

 $\mathcal G$ has the strong D-property if and only if, for all $v, c \in \mathbb F_2^N \setminus \{0\}$, we have that

$$|\Gamma_{\nu,c}^{(1)}| < rac{|\Lambda_c|}{3}.$$

$$|\Lambda_c| = W_{\pi_G}(0, c) + 2^N - 2$$

 $|\Gamma_{c,v}^{(1)}| = rac{|\Lambda_c| + 2 - W_{\pi_G}(v, c)}{4}$

Theorem

Let
$$\mathcal{G}$$
 be a crooked (N, N) -function with $N \geq 3$. Let $\lambda^{\min} = \min_{c \in \mathbb{F}_2^N \setminus \{0\}} |\Lambda_c|$.

If $nl(\pi_{\mathcal{G}}) > 2^{N-1} - rac{\lambda^{min}}{6} + 2$, then \mathcal{G} has the strong D-property.

Theorem

Let $N \ge 3$ and *i* be such that gcd(i, N) = 1. Then the Gold APN function x^{2^i+1} has the strong D-property if and only

 $\pi_{\mathcal{G}}(x) = x^{-(2^i+1)}$ We proved the case *N* odd, while the case *N* even follows from the work of Taniguchi¹¹.

¹¹Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} ". In: Cryptography and Communications (2023), pp. 1–21.

Theorem

Let
$$\mathcal{G}$$
 be a crooked (N, N) -function with $N \geq 3$. Let $\lambda^{\min} = \min_{c \in \mathbb{F}_2^N \setminus \{0\}} |\Lambda_c|$.

If $nl(\pi_{\mathcal{G}}) > 2^{N-1} - rac{\lambda^{min}}{6} + 2$, then \mathcal{G} has the strong D-property.

Theorem

Let $N \ge 3$ and *i* be such that gcd(i, N) = 1. Then the Gold APN function x^{2^i+1} has the strong D-property if and only if N = 6 or $N \ge 8$.

 $\pi_{\mathcal{G}}(x) = x^{-(2^i+1)}$

We proved the case N odd, while the case N even follows from the work of Taniguchi¹¹.

¹¹Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} ". In: *Cryptography and Communications* (2023), pp. 1–21.

Enrico Piccione (joint work with C. Carlet)

Proposition

Let $\mathcal{G}(x) = x^{2^{4t}+2^{3t}+2^{2t}+2^{t}-1}$ be the Dobbertin APN function over $\mathbb{F}_{2^{5t}}$. Let $E = \{x \in \mathbb{F}_{2^{5t}} \mid \operatorname{Tr}_{5t}(x) = 0\}$. Then \mathcal{G}_E has the D-property if and only if $t \ge 2$.

Conjecture

For $t \ge 2$, the Dobbertin APN function in dimension N = 5t has the strong D-property.

Proposition

Let $\mathcal{G}(x) = x^{2^{4t}+2^{3t}+2^{2t}+2^{t}-1}$ be the Dobbertin APN function over $\mathbb{F}_{2^{5t}}$. Let $E = \{x \in \mathbb{F}_{2^{5t}} \mid \operatorname{Tr}_{5t}(x) = 0\}$. Then \mathcal{G}_E has the D-property if and only if $t \ge 2$.

Conjecture

For $t \ge 2$, the Dobbertin APN function in dimension N = 5t has the strong D-property.

We use the following Lemma by Taniguchi¹²

Lemma

Let $\mathcal{G}(x) = x^d$ be an APN power function over $\mathbb{F}_{2^{5t}}$. Let us denote $E_K = \{x \in \mathbb{F}_{2^K} \mid \operatorname{Tr}_K(x) = 0\}$. If either \mathcal{G}_{E_t} or \mathcal{G}_{E_5} has the D-property, then $\mathcal{G}_{E_{5t}}$ has the D-property.

Let $d = 2^{4t} + 2^{3t} + 2^{2t} + 2^t - 1$.

The cases $t \le 5$ can be verified computationally. Assume t > 5. Let us prove the case $t \ne 7$. Observe that $d = 3 \pmod{2^t - 1}$ and so we can use the strong D-property of x^3 . Assume t = 7. In this case, the D-property of \mathcal{G}_{E_5} can be verified computationally.

¹²Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_2^n to \mathbb{F}_2^{n+1} ". In: *Cryptography and Communications* (2023), pp. 1–21.

Enrico Piccione (joint work with C. Carlet)

Revisiting two infinite families of differentially 4-uniform (N-1, N-1)-permutations

The setting

 $\mathcal{G}(x) = x^d$ APN power permutation over \mathbb{F}_{2^N} (*N* is odd). ψ linear with kernel of dimension 1 generated by $c \in \mathbb{F}_{2^N} \setminus \{0\}$ $A = \{x \in \mathbb{F}_{2^N} \mid \operatorname{Tr}(x) = \epsilon\}$ where $\epsilon \in \mathbb{F}_2$.

$$\mathcal{F}(x) = \psi(\mathcal{G}(x))$$

 $\mathcal{F}'(x) = \psi(\mathcal{G}(x)) + x$

Either \mathcal{F}_A or \mathcal{F}'_A is a permutation.

If the system

$$\begin{cases} x^d + y^d + z^d + (x + y + z)^d = 0\\ \operatorname{Tr}(x) = \operatorname{Tr}(y) = \operatorname{Tr}(z) = \epsilon \end{cases}$$

(1)

has at least one solution, then \mathcal{F}_A and \mathcal{F}'_A are not APN.

Family of 4-uniform permutations \mathcal{F}'_A by Carlet¹³

$$egin{aligned} &N\geq 5 ext{ odd}, \ &A=\{x\in \mathbb{F}_{2^N}\mid \mathrm{Tr}(x)=1\}, \ \mathcal{G}(x)=x^{2^N-2}. \ &\mathcal{F}'(x)=\psi(\mathcal{G}(x))+x \end{aligned}$$

Theorem

 \mathcal{F}'_A is not APN.

The proof of the theorem uses the Hasse-Weil bound.

Conjecture

For $N \ge 5$ odd, the inverse function has the strong D-property.

¹³Claude Carlet. "On known and new differentially uniform functions". In: *Australasian Conference on Information Security and Privacy*. Springer. 2011, pp. 1–15. Enrico Piccione (joint work with C. Carlet)

Family of 4-uniform permutations \mathcal{F}'_A by Carlet¹³

$$egin{aligned} &N\geq 5 ext{ odd}, \ &A=\{x\in \mathbb{F}_{2^N}\mid \operatorname{Tr}(x)=1\}, \ \mathcal{G}(x)=x^{2^N-2}. \ &\mathcal{F}'(x)=\psi(\mathcal{G}(x))+x \end{aligned}$$

Theorem

 \mathcal{F}'_A is not APN.

The proof of the theorem uses the Hasse-Weil bound.

Conjecture

For $N \ge 5$ odd, the inverse function has the strong D-property.

¹³Claude Carlet. "On known and new differentially uniform functions". In: *Australasian Conference on Information Security and Privacy*. Springer. 2011, pp. 1–15. Enrico Piccione (joint work with C. Carlet)

Family of 4-uniform permutations \mathcal{F}'_A by Carlet¹³

$$egin{aligned} &N\geq 5 ext{ odd}, \ &A=\{x\in \mathbb{F}_{2^N}\mid \operatorname{Tr}(x)=1\}, \ \mathcal{G}(x)=x^{2^N-2}. \ &\mathcal{F}'(x)=\psi(\mathcal{G}(x))+x \end{aligned}$$

Theorem

 \mathcal{F}'_A is not APN.

The proof of the theorem uses the Hasse-Weil bound.

Conjecture

For $N \ge 5$ odd, the inverse function has the strong D-property.

¹³Claude Carlet. "On known and new differentially uniform functions". In: *Australasian Conference on Information Security and Privacy*. Springer. 2011, pp. 1–15. Enrico Piccione (joint work with C. Carlet)

Family of 4-uniform permutations \mathcal{F}_E by Li and Wang¹⁴

$$egin{aligned} &N\geq 5 ext{ odd}, \ &E=\{x\in \mathbb{F}_{2^N}\mid \operatorname{Tr}(x)=0\}\ &c\in \mathbb{F}_{2^N}\setminus\{0\}, \ &\psi(x)=cx^{2^i}+c^{2^i}x, \ &\mathcal{G}(x)=x^{rac{1}{2^i+1}} ext{ with } \gcd(i,N)=1\ &\mathcal{F}(x)=\psi(\mathcal{G}(x)) \end{aligned}$$

Theorem

 \mathcal{F}_E is not APN.

The proof of the theorem uses the ortho-derivative $\pi(x)=x^{-(2^i+1)}.$

Conjecture

For N \geq 5 odd, the inverse of the Gold APN function has the strong D-property.

¹⁴Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over $GF(2^{2m})$ from quadratic APN permutations over $GF(2^{2m+1})$ ". In: *Designs, codes and cryptography* 72.2 (2014), pp. 249–264. Enrico Piccione (joint work with C. Carlet) 26/29

Family of 4-uniform permutations \mathcal{F}_E by Li and Wang¹⁴

$$egin{aligned} &N\geq 5 ext{ odd}, \ &E=\{x\in \mathbb{F}_{2^N}\mid \operatorname{Tr}(x)=0\}\ &c\in \mathbb{F}_{2^N}\setminus\{0\}, \ &\psi(x)=cx^{2^i}+c^{2^i}x, \ &\mathcal{G}(x)=x^{rac{1}{2^i+1}} ext{ with } \gcd(i,N)=1\ &\mathcal{F}(x)=\psi(\mathcal{G}(x)) \end{aligned}$$

Theorem

 \mathcal{F}_E is not APN.

The proof of the theorem uses the ortho-derivative $\pi(x) = x^{-(2^i+1)}$.

Conjecture

For N \geq 5 odd, the inverse of the Gold APN function has the strong D-property.

¹⁴Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over $GF(2^{2m})$ from quadratic APN permutations over $GF(2^{2m+1})$ ". In: *Designs, codes and cryptography* 72.2 (2014), pp. 249–264. Enrico Piccione (joint work with C. Carlet) 26/29

Family of 4-uniform permutations \mathcal{F}_E by Li and Wang¹⁴

$$egin{aligned} &N\geq 5 ext{ odd}, \ &E=\{x\in \mathbb{F}_{2^N}\mid \operatorname{Tr}(x)=0\}\ &c\in \mathbb{F}_{2^N}\setminus\{0\}, \ &\psi(x)=cx^{2^i}+c^{2^i}x, \ &\mathcal{G}(x)=x^{rac{1}{2^i+1}} ext{ with } \gcd(i,N)=1\ &\mathcal{F}(x)=\psi(\mathcal{G}(x)) \end{aligned}$$

Theorem

 \mathcal{F}_E is not APN.

The proof of the theorem uses the ortho-derivative $\pi(x) = x^{-(2^i+1)}$.

Conjecture

For $N \ge 5$ odd, the inverse of the Gold APN function has the strong D-property.

¹⁴Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over $GF(2^{2m})$ from quadratic APN permutations over $GF(2^{2m+1})$ ". In: *Designs, codes and cryptography* 72.2 (2014), pp. 249–264. Enrico Piccione (joint work with C. Carlet) 26/29

- $\bullet\,$ If ${\cal F}$ does not have affine components, mapping affine to affine is rare
- Fairly easy to construct 4-uniform functions with good cryptographic propertiesThe revisiting of previously known infinite families

- $\bullet\,$ If ${\cal F}$ does not have affine components, mapping affine to affine is rare
- Fairly easy to construct 4-uniform functions with good cryptographic properties
- The revisiting of previously known infinite families

- $\bullet\,$ If ${\cal F}$ does not have affine components, mapping affine to affine is rare
- Fairly easy to construct 4-uniform functions with good cryptographic properties
- The revisiting of previously known infinite families

On the construction of APN functions, and the strong D-property

• Constructing APN functions is hard (also) in this setting

- The strong D-property is hard to prove for a family of APN functions
- Several open problems/questions

On the construction of APN functions, and the strong D-property

- Constructing APN functions is hard (also) in this setting
- The strong D-property is hard to prove for a family of APN functions
- Several open problems/questions
- Constructing APN functions is hard (also) in this setting
- The strong D-property is hard to prove for a family of APN functions
- Several open problems/questions

• Easier to study

• Less equations than proving the strong *D*-property

- Easier to study
- Less equations than proving the strong *D*-property

Thanks for your attention!