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Preliminaries and Introduction



F2N is the finite field of order 2N

FN
2 is a vector space over F2

TrN(x) = x + x2 + · · ·+ x2
N−1

is the (absolute) trace function over F2N .
We also write Tr = TrN

A set A ⊆ FN
2 is called affine if x + y + z ∈ A for all x , y , z ∈ A.

The dimension of A is given by the dimension of the vector space a+ A for any a ∈ A
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Vectorial Boolean functions

F , G, H Vectorial Boolean functions FN
2 → FM

2 (occasionally F ,G ,H)

If N = M, we can represent a function as a polynomial in F2N [x ] of degree strictly less than 2N (univariate
representation).

WF (u, v) =
∑

x∈FN2
(−1)v·F(x)+u·x Walsh transform evaluated in u ∈ FN

2 v ∈ FM
2

nl(F) = 2N−1 − 1
2
maxu∈FN2 ,v∈FM2 \{0} |WF (u, v)| Nonlinearity

DaF(x) = F(x + a) + F(x) derivative through direction a ∈ FN
2 \ {0}.

δF = maxa∈FN2 \{0},b∈FM2

∣∣{x ∈ FN
2 |DaF(x) = b}

∣∣ Differential Uniformity.

F is called δ-uniform if δF ≤ δ.
2-uniform functions are called APN.
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Equivalence relations

1F (x , y) = 1 if y = F(x) and 1F (x , y) = 0 otherwise.

F and F ′ are

Affine equivalent if ∃A1,A2 affine permutations : F = A1 ◦ F ′ ◦ A2,

EA equivalent if ∃A affine: F +A and F ′ are Affine equivalent,

CCZ equivalent if 1F and 1F ′ are Affine equivalent.
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Introduction

Let F be permutation polynomial over F2N .

Let A ⊆ F2N n-dimensional (n < N) affine subspace such that F(A) = A′ is an affine space.

Then we construct a permutation polynomial F = FA by identifying A and A′ with F2n .

If F belongs to an infinite family of functions, we could construct an infinite family of
functions F .

Cryptographic properties of F depends on F .

This is possible because we are restricting over an affine space.
We can have more flexibility:

F being an (N,M)-function

F(A) ⊆ A′

A′ ⊆ FM
2 being m-dimensional (m < M)
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Aim of the paper

Study the cryptographic properties of functions mapping affine spaces to affine spaces

Construct new ”good” functions (and families)

Study the D-property further
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Restricting vectorial functions to affine spaces



Restriction of a vectorial Boolean function

A = a+ E ⊆ FN
2 affine space of dimension n.

A′ = a′ + E ′ ⊆ FM
2 affine space of dimension m.
F(A) ⊆ A′

We say that the tuple (ϕ, a, ϕ′, a′) is a representation of FA if

FA(x) = ϕ′
(
F(ϕ(x) + a) + a′

)
ϕ : Fn

2 → E linear bijective
ϕ′ : FM

2 → Fm
2 linear and such that ϕ′(E ′) = Fm

2

Beierle et al.6 use a more general definition where ϕ′ is just surjective.

6Christof Beierle, Gregor Leander, and Léo Perrin. “Trims and extensions of quadratic APN functions”. In:
Designs, Codes and Cryptography 90.4 (2022), pp. 1009–1036.
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Cryptographic Properties

δFA
= max

α∈E\{0},β∈E ′

∣∣∣{x ∈ FN
2 |DαF(x) = β}

∣∣∣
u ∈ Fn

2, v ∈ Fm
2 , u

′ = (ϕ−1)∗(u), v ′ = ψ∗(v)

WFA
(u, v) = 2−(N−n)(−1)ϵ

∑
z∈E⊥(−1)z·aWF (u

′ + z , v ′) where ϵ = v ′ · a′ + a · u′.

nl(FA) = 2n−1 − 1

2N−n+1
max

u′∈E1, v ′∈(E2\{0})

∣∣∣∣∣∣
∑
z∈E⊥

(−1)z·aWF (u
′ + z , v ′)

∣∣∣∣∣∣ ,
where E⊥ ⊕ E1 = FN

2 and (E ′)⊥ ⊕ E2 = FM
2 .
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How to have nl(FA) ̸= 0

nl(FA) ≥ nl(F)− (2N−1 − 2n−1)

Proposition

nl(F) > 2N−1 − 2n−1 =⇒ F(A) ̸⊆ A′

for all A with dimension n and all A′ of dimension m < M.

Proposition

max
u∈FN

2 , v∈FM
2 \(E ′)⊥

|WF (u, v)| < 2n =⇒ nl(FA) ̸= 0
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Restricting vectorial functions with affine components

ψ is a linear (M,M)-function
A′ = Imψ

F(x) = ψ(G(x))
Then F(A) ⊆ A′ for all affine spaces A.

Theorem

1 nl(FA) ≥ nl(G)− (2N−1 − 2n−1).

2 δGA
≤ δFA

≤ 2M−mδGA
.

where GA is the restriction of G over A with co-domain FM
2
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Observations on the differential uniformity

Suppose M = N and m = n.
δGA

≤ δFA
≤ 2N−nδGA

.

If G belongs to an infinite family of (N,N)-functions, then computing δGA
could be hard.

If G is APN, then we have that δGA
= 2 and that 2 ≤ δFA

≤ 2N−n+1.

With n = N − 1 we have that FA is at most 4-uniform.
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Restricting (N ,N)-functions over affine hyperplanes and the strong
D-property



The D(illon)-property of APN (n, n)-functions7

ΦF (x , y , z) = F (x + y + z) + F (x) + F (y) + F (z)

Lemma

Let F be an (n, n)-function. Then F is APN if and only if all the solutions (x , y , z) to the
equation ΦF (x , y , z) = 0 are such that |{x , y , z , x + y + z}| ≠ 4.

Lemma

Let F be an APN (n, n)-function, then nl(F ) ̸= 0.

Theorem (Dillon)

Let F be an APN (n, n)-function, then ImΦF = Fn
2.

7Claude Carlet. “Boolean functions for cryptography and coding theory”. In: (2021).
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Proof of the D-property

Proof.

For simplicity, we consider F in its univariate representation.
Suppose there exists c ∈ F2n not in ImΦF . We can assume c ̸= 0.
Then F ′(x) = F (x) + cf (x) is APN for any Boolean function f . Indeed, let (x , y , z) be such
that ΦF ′(x , y , z) = 0 that we can rewrite as

ΦF (x , y , z) = cΦf (x , y , z).

If Φf (x , y , z) = 1, then the equation has no solution
If Φf (x , y , z) = 0, then all the solutions (x , y , z) are such that |{x , y , z , x + y + z}| ≠ 4
because F is APN.
Let c ′ ∈ F2n be such that Tr(cc ′) = 1 and set f (x) = Tr(c ′F (x)). Then

Tr(c ′F ′(x)) = Tr(c ′F (x)) + Tr(c ′c)Tr(c ′F (x)) = 0

and so nl(F ′) = 0. A contradiction.

Enrico Piccione (joint work with C. Carlet) 14 / 29



The D-property by Taniguchi

Definition (D-property)

An (n,m)-function F has the D-property if ΦF ((Fn
2)

3) = Fm
2 .

In8, there is a focus on the case m = n + 1 and F = GE0 where

G is an APN (n + 1, n + 1)-function

E0 = {x ∈ F2n+1 : Tr(x) = 0}

A recent paper9, investigates this property further.

We consider it in relation to the problem of constructing APN (N − 1,N − 1)-functions

8Hiroaki Taniguchi. “D-property for APN functions from Fn
2 to Fn+1

2 ”. In: Cryptography and
Communications (2023), pp. 1–21.

9Matteo Abbondati, Marco Calderini, and Irene Villa. “On Dillon’s property of (n,m)-functions”. In: arXiv
preprint arXiv:2302.13922 (2023).
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Constructing APN (N − 1,N − 1)-functions as restrictions

Let G be an APN (N,N)-function.
Let ψ be a linear (N,N)-function with kerψ = ⟨c⟩.

Let A ⊆ FN
2 be an affine hyperplane.

Let F(x) = ψ(G(x)).

Lemma

FA is APN if and only if ΦG(x , y , z) ̸= c ∀x , y , z ∈ A.

Proof.

Suppose that there exists x , y , z ∈ A such that ΦG(x , y , z) = c .
Since ΦG(x , y , z) ̸= 0, then |{x , y , z , x + y + z}| = 4.
So we have that 0 = ψ(c) = ψ(ΦG(x , y , z)) = ΦF (x , y , z) and therefore FA is not APN.
Suppose that FA is not APN, then there exists x , y , z ∈ A such that ΦF (x , y , z) = 0 and
|{x , y , z , x + y + z}| = 4.
So we have that ΦG(x , y , z) ∈ kerψ = ⟨c⟩ and since G is APN, then ΦG(x , y , z) = c .

Enrico Piccione (joint work with C. Carlet) 16 / 29
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The strong D-property

Let G be an (N,N)-function.

Definition (strong D-property)

G has the strong D-property if the (N − 1,N)-function GA has the D-property for any affine
hyperplane A.

Proposition

If G is APN, then

G has the strong D-property if and only if FA is not APN (δFA
= 4) where F(x) = ψ(G(x))

for all ψ linear function with kernel of dimension 1
for all affine hyperplane A.

Enrico Piccione (joint work with C. Carlet) 17 / 29



The strong D-property

Let G be an (N,N)-function.

Definition (strong D-property)

G has the strong D-property if the (N − 1,N)-function GA has the D-property for any affine
hyperplane A.

Proposition

If G is APN, then

G has the strong D-property if and only if FA is not APN (δFA
= 4) where F(x) = ψ(G(x))

for all ψ linear function with kernel of dimension 1
for all affine hyperplane A.

Enrico Piccione (joint work with C. Carlet) 17 / 29



Open problems/questions

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let G be a quadratic APN (N,N)-function with N even.
If G has the strong D-property, then nl(G) > 2N−2.

The minimum known nonlinearity is 2N−2 for an N-variable APN function, achieved by some
quadratic APN functions in dimension 6 and 8.

Open Problem

Find non-quadratic APN functions with nonlinearity 2N−2, or less, if possible an infinite class.

Enrico Piccione (joint work with C. Carlet) 18 / 29



Open problems/questions

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let G be a quadratic APN (N,N)-function with N even.
If G has the strong D-property, then nl(G) > 2N−2.

The minimum known nonlinearity is 2N−2 for an N-variable APN function, achieved by some
quadratic APN functions in dimension 6 and 8.

Open Problem

Find non-quadratic APN functions with nonlinearity 2N−2, or less, if possible an infinite class.

Enrico Piccione (joint work with C. Carlet) 18 / 29



Open problems/questions

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let G be a quadratic APN (N,N)-function with N even.
If G has the strong D-property, then nl(G) > 2N−2.

The minimum known nonlinearity is 2N−2 for an N-variable APN function, achieved by some
quadratic APN functions in dimension 6 and 8.

Open Problem

Find non-quadratic APN functions with nonlinearity 2N−2, or less, if possible an infinite class.

Enrico Piccione (joint work with C. Carlet) 18 / 29



Open problems/questions

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let G be a quadratic APN (N,N)-function with N even.
If G has the strong D-property, then nl(G) > 2N−2.

The minimum known nonlinearity is 2N−2 for an N-variable APN function, achieved by some
quadratic APN functions in dimension 6 and 8.

Open Problem

Find non-quadratic APN functions with nonlinearity 2N−2, or less, if possible an infinite class.

Enrico Piccione (joint work with C. Carlet) 18 / 29



Open problems/questions

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let G be a quadratic APN (N,N)-function with N even.
If G has the strong D-property, then nl(G) > 2N−2.

The minimum known nonlinearity is 2N−2 for an N-variable APN function, achieved by some
quadratic APN functions in dimension 6 and 8.

Open Problem

Find non-quadratic APN functions with nonlinearity 2N−2, or less, if possible an infinite class.

Enrico Piccione (joint work with C. Carlet) 18 / 29



The case of crooked functions10

Definition (Crooked function)

An (N,N)-function G is crooked if Im (DaG) is an affine hyperplane for all a ∈ FN
2 \ {0}.

Conjecture

G is a crooked function if and only if G is a quadratic APN function.

φG(a, b) = G(a+ b) + G(a) + G(b) + G(0)

The ortho-derivative of G is the (N,N)-function πG such that
πG(0) = 0 and that πG(a) · φG(a, b) = 0 ∀a, b ∈ FN

2 \ {0}.

10Gohar M Kyureghyan. “Crooked maps in Fn
2”. In: Finite Fields and their applications 13.3 (2007),

pp. 713–726.
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The strong D-property of crooked functions

Let G be crooked.
Let Γ

(1)
v ,c = {a ∈ FN

2 | c · πG(a) = 0, v · a = 1} and let Λc = {(a, b) ∈ (FN
2 )

2 | φG(a, b) = c}

Lemma

G has the strong D-property if and only if, for all v , c ∈ FN
2 \ {0}, we have that

|Γ(1)v ,c | <
|Λc |
3
.

|Λc | = WπG (0, c) + 2N − 2

|Γ(1)c,v | =
|Λc |+2−WπG (v ,c)

4
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The strong D-property of the Gold APN function

Theorem

Let G be a crooked (N,N)-function with N ≥ 3. Let λmin = min
c∈FN

2 \{0}
|Λc |.

If nl(πG) > 2N−1 − λmin

6 + 2, then G has the strong D-property.

Theorem

Let N ≥ 3 and i be such that gcd(i ,N) = 1.

Then the Gold APN function x2
i+1 has the strong D-property if and only if N = 6 or N ≥ 8.

πG(x) = x−(2i+1)

We proved the case N odd, while the case N even follows from the work of Taniguchi11.

11Hiroaki Taniguchi. “D-property for APN functions from Fn
2 to Fn+1

2 ”. In: Cryptography and
Communications (2023), pp. 1–21.
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The (partial) strong D-property of the Dobbertin APN function

Proposition

Let G(x) = x2
4t+23t+22t+2t−1 be the Dobbertin APN function over F25t .

Let E = {x ∈ F25t | Tr5t(x) = 0}.
Then GE has the D-property if and only if t ≥ 2.

Conjecture

For t ≥ 2, the Dobbertin APN function in dimension N = 5t has the strong D-property.
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Sketch of the proof

We use the following Lemma by Taniguchi12

Lemma

Let G(x) = xd be an APN power function over F25t .
Let us denote EK = {x ∈ F2K | TrK (x) = 0}.
If either GEt or GE5 has the D-property, then GE5t has the D-property.

Let d = 24t + 23t + 22t + 2t − 1.
The cases t ≤ 5 can be verified computationally. Assume t > 5. Let us prove the case t ̸= 7.
Observe that d = 3 (mod 2t − 1) and so we can use the strong D-property of x3.
Assume t = 7. In this case, the D-property of GE5 can be verified computationally.

12Hiroaki Taniguchi. “D-property for APN functions from Fn
2 to Fn+1

2 ”. In: Cryptography and
Communications (2023), pp. 1–21.
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Revisiting two infinite families of differentially 4-uniform
(N − 1,N − 1)-permutations



The setting

G(x) = xd APN power permutation over F2N (N is odd).
ψ linear with kernel of dimension 1 generated by c ∈ F2N \ {0}
A = {x ∈ F2N | Tr(x) = ϵ} where ϵ ∈ F2.

F(x) = ψ(G(x))
F ′(x) = ψ(G(x)) + x

Either FA or F ′
A is a permutation.

If the system {
xd + yd + zd + (x + y + z)d = 0

Tr(x) = Tr(y) = Tr(z) = ϵ
(1)

has at least one solution, then FA and F ′
A are not APN.

Enrico Piccione (joint work with C. Carlet) 24 / 29



Family of 4-uniform permutations F ′
A by Carlet13

N ≥ 5 odd, A = {x ∈ F2N | Tr(x) = 1}, G(x) = x2
N−2.

F ′(x) = ψ(G(x)) + x

Theorem

F ′
A is not APN.

The proof of the theorem uses the Hasse-Weil bound.

Conjecture

For N ≥ 5 odd, the inverse function has the strong D-property.

13Claude Carlet. “On known and new differentially uniform functions”. In: Australasian Conference on
Information Security and Privacy. Springer. 2011, pp. 1–15.
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Family of 4-uniform permutations FE by Li and Wang14

N ≥ 5 odd, E = {x ∈ F2N | Tr(x) = 0}
c ∈ F2N \ {0}, ψ(x) = cx2

i
+ c2

i
x , G(x) = x

1

2i+1 with gcd(i ,N) = 1
F(x) = ψ(G(x))

Theorem

FE is not APN.

The proof of the theorem uses the ortho-derivative π(x) = x−(2i+1).

Conjecture

For N ≥ 5 odd, the inverse of the Gold APN function has the strong D-property.

14Yongqiang Li and Mingsheng Wang. “Constructing differentially 4-uniform permutations over GF(22m) from
quadratic APN permutations over GF(22m+1)”. In: Designs, codes and cryptography 72.2 (2014), pp. 249–264.
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Conclusions



On the construction of cryptographically strong functions

If F does not have affine components, mapping affine to affine is rare

Fairly easy to construct 4-uniform functions with good cryptographic properties

The revisiting of previously known infinite families
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On the construction of APN functions, and the strong D-property

Constructing APN functions is hard (also) in this setting

The strong D-property is hard to prove for a family of APN functions

Several open problems/questions
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On the construction of APN permutation

Easier to study

Less equations than proving the strong D-property
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Thanks for your attention!
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