On vectorial functions mapping strict affine subspaces of their domain into strict affine subspaces of their co-domain, and the strong D-property

Enrico Piccione ${ }^{1}$
(Joint work with Claude Carlet ${ }^{1,2}$)
${ }^{1}$ University of Bergen, ${ }^{2}$ University of Paris 8
Selmer Seminar
January 22, 2024

Overview

1. Preliminaries and Introduction
2. Restricting vectorial functions to affine spaces
3. Restricting (N, N)-functions over affine hyperplanes and the strong D-property
4. Revisiting two infinite families of differentially 4-uniform ($N-1, N-1$)-permutations
5. Conclusions

Preliminaries and Introduction

$\mathbb{F}_{2^{N}}$ is the finite field of order 2^{N}
\mathbb{F}_{2}^{N} is a vector space over \mathbb{F}_{2}
$\operatorname{Tr}_{N}(x)=x+x^{2}+\cdots+x^{2^{N-1}}$ is the (absolute) trace function over $\mathbb{F}_{2^{N}}$.
We also write $\operatorname{Tr}=\operatorname{Tr}_{N}$
A set $A \subseteq \mathbb{F}_{2}^{N}$ is called affine if $x+y+z \in A$ for all $x, y, z \in A$.
The dimension of A is given by the dimension of the vector space $a+A$ for any $a \in A$

Vectorial Boolean functions

$\mathcal{F}, \mathcal{G}, \mathcal{H}$ Vectorial Boolean functions $\mathbb{F}_{2}^{N} \rightarrow \mathbb{F}_{2}^{M}$ (occasionally F, G, H) If $N=M$, we can represent a function as a polynomial in $\mathbb{F}_{2^{N}}[x]$ of degree strictly less than 2^{N} (univariate representation).

Vectorial Boolean functions

$$
\begin{aligned}
& \mathcal{F}, \mathcal{G}, \mathcal{H} \text { Vectorial Boolean functions } \mathbb{F}_{2}^{N} \rightarrow \mathbb{F}_{2}^{M} \text { (occasionally } F, G, H \text {) } \\
& \text { If } N=M \text {, we can represent a function as a polynomial in } \mathbb{F}_{2^{N}}[x] \text { of degree strictly less than } 2^{N} \text { (univariate } \\
& \text { representation). } \\
& W_{\mathcal{F}}(u, v)=\sum_{x \in \mathbb{F}_{2}^{N}}(-1)^{v \cdot \mathcal{F}(x)+u \cdot x} \text { Walsh transform evaluated in } u \in \mathbb{F}_{2}^{N} v \in \mathbb{F}_{2}^{M} \\
& \mathrm{nl}(\mathcal{F})=2^{N-1}-\frac{1}{2} \max _{u \in \mathbb{F}_{2}^{N}, v \in \mathbb{F}_{2}^{M} \backslash\{0\}}\left|W_{\mathcal{F}}(u, v)\right| \text { Nonlinearity } \\
& D_{a} \mathcal{F}(x)=\mathcal{F}(x+a)+\mathcal{F}(x){\text { derivative through direction a } \in \mathbb{F}_{2}^{N} \backslash\{0\} .}_{\delta_{\mathcal{F}}=\max _{a \in \mathbb{F}^{N} \backslash\{0\}, b \in \mathbb{F}_{2}^{M}\left|\left\{x \in \mathbb{F}_{2}^{N} \mid D_{a} \mathcal{F}(x)=b\right\}\right| \text { Differential Uniformity. }}^{\mathcal{F} \text { is called } \delta \text {-uniform if } \delta_{\mathcal{F}} \leq \delta .}}^{\text {2-uniform functions are called APN. }} \text {. }
\end{aligned}
$$

Vectorial Boolean functions

```
F,G,\mathcal{H}\mathrm{ Vectorial Boolean functions }\mp@subsup{\mathbb{F}}{2}{N}->\mp@subsup{\mathbb{F}}{2}{M}\mathrm{ (occasionally F,G,H)}\=\mp@code{M}
If N=M, we can represent a function as a polynomial in }\mp@subsup{\mathbb{F}}{\mp@subsup{2}{}{N}}{}[x]\mathrm{ of degree strictly less than 2}\mp@subsup{2}{}{N}\mathrm{ (univariate
representation).
W\mathcal{F}(u,v)=\mp@subsup{\sum}{x\in\mp@subsup{\mathbb{F}}{2}{N}}{}(-1\mp@subsup{)}{}{v\cdot\mathcal{F}(x)+u\cdotx}\mathrm{ Walsh transform evaluated in }u\in\mp@subsup{\mathbb{F}}{2}{N}v\in\mp@subsup{\mathbb{F}}{2}{M}
nl(\mathcal{F})=\mp@subsup{2}{}{N-1}-\frac{1}{2}\mp@subsup{\operatorname{max}}{u\in\mp@subsup{\mathbb{F}}{2}{N},v\in\mp@subsup{\mathbb{F}}{2}{M}\{0}}{}|\mp@subsup{W}{\mathcal{F}}{}(u,v)| Nonlinearity
Da}\mathcal{F}(x)=\mathcal{F}(x+a)+\mathcal{F}(x)\mathrm{ derivative through direction }a\in\mp@subsup{\mathbb{F}}{2}{N}\{0}
\delta\mathcal{F}}=\mp@subsup{\operatorname{max}}{a\in\mp@subsup{\mathbb{F}}{2}{N}\{00,b\in\mp@subsup{\mathbb{P}}{2}{M}}{}|{x\in\mp@subsup{\mathbb{F}}{2}{N}|\mp@subsup{D}{\textrm{a}}{}\mathcal{F}(x)=b}| Differential Uniformity
F}\mathrm{ is called }\delta\mathrm{ -uniform if }\mp@subsup{\delta}{\mathcal{F}}{}\leq\delta\mathrm{ .
2-uniform functions are called APN.
```


Equivalence relations

$\mathbb{1}_{\mathcal{F}}(x, y)=1$ if $y=\mathcal{F}(x)$ and $\mathbb{1}_{\mathcal{F}}(x, y)=0$ otherwise.
\mathcal{F} and \mathcal{F}^{\prime} are
Affine equivalent if $\exists \mathcal{A}_{1}, \mathcal{A}_{2}$ affine permutations: $\mathcal{F}=\mathcal{A}_{1} \circ \mathcal{F}^{\prime} \circ \mathcal{A}_{2}$, EA equivalent if $\exists \mathcal{A}$ affine: $\mathcal{F}+\mathcal{A}$ and \mathcal{F}^{\prime} are Affine equivalent, $C C Z$ equivalent if $\mathbb{1}_{\mathcal{F}}$ and $\mathbb{1}_{\mathcal{F}^{\prime}}$ are Affine equivalent.

Introduction

Let \mathcal{F} be permutation polynomial over $\mathbb{F}_{2^{N}}$.
Let $A \subseteq \mathbb{F}_{2^{N}} n$-dimensional $(n<N)$ affine subspace such that $\mathcal{F}(A)=A^{\prime}$ is an affine space. Then we construct a permutation polynomial $F=\mathcal{F}_{A}$ by identifying A and A^{\prime} with $\mathbb{F}_{2^{n}}$

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F
- Cryptographic properties of F depends on \mathcal{F}

This is possible because we are restricting over an affine space. We can have more flexibility:

- \mathcal{F} being an (N, M)-function
- $\mathcal{F}(A) \subseteq A^{\prime}$
- $A^{\prime} \subseteq \mathbb{F}_{2}^{M}$ being m-dimensional $(m<M)$

Introduction

Let \mathcal{F} be permutation polynomial over $\mathbb{F}_{2^{N}}$.
Let $A \subseteq \mathbb{F}_{2^{N}} n$-dimensional $(n<N)$ affine subspace such that $\mathcal{F}(A)=A^{\prime}$ is an affine space.
Then we construct a permutation polynomial $F=\mathcal{F}_{A}$ by identifying A and A^{\prime} with $\mathbb{F}_{2^{n}}$

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F
- Cryptographic properties of F depends on F

```
This is possible because we are restricting over an affine space
We can have more flexibility:
    - F}\mathrm{ being an ( N,M)-function
    - \mathcal{F}}(A)\subseteq\mp@subsup{A}{}{\prime
    - }\mp@subsup{A}{}{\prime}\subset\mp@subsup{\mathbb{F}}{2}{M}\mathrm{ being m-dimensional ( }m<M
```


Introduction

Let \mathcal{F} be permutation polynomial over $\mathbb{F}_{2^{N}}$.
Let $A \subseteq \mathbb{F}_{2^{N}} n$-dimensional $(n<N)$ affine subspace such that $\mathcal{F}(A)=A^{\prime}$ is an affine space. Then we construct a permutation polynomial $F=\mathcal{F}_{A}$ by identifying A and A^{\prime} with $\mathbb{F}_{2^{n}}$.

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F
- Cryptographic properties of F depends on \mathcal{F}

```
This is possible because we are restricting over an affine space
We can have more flexibility:
    - F}\mathrm{ being an ( N,M)-function
    - \mathcal{F}}(A)\subseteq\mp@subsup{A}{}{\prime
    - \mp@subsup{A}{}{\prime}\subseteq\mp@subsup{\mathbb{F}}{2}{M}\mathrm{ being m-dimensional }(m<M)
```


Introduction

Let \mathcal{F} be permutation polynomial over $\mathbb{F}_{2^{N}}$.
Let $A \subseteq \mathbb{F}_{2^{N}} n$-dimensional $(n<N)$ affine subspace such that $\mathcal{F}(A)=A^{\prime}$ is an affine space. Then we construct a permutation polynomial $F=\mathcal{F}_{A}$ by identifying A and A^{\prime} with $\mathbb{F}_{2^{n}}$.

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.
- Cryptographic properties of F depends on F

```
This is possible because we are restricting over an affine space
We can have more flexibility:
    - F}\mathrm{ being an ( N,M)-function
    - \mathcal{F}}(A)\subseteq\mp@subsup{A}{}{\prime
    - \mp@subsup{A}{}{\prime}\subseteq\mp@subsup{\mathbb{F}}{2}{M}\mathrm{ being m-dimensional }(m<M)
```


Introduction

Let \mathcal{F} be permutation polynomial over $\mathbb{F}_{2^{N}}$.
Let $A \subseteq \mathbb{F}_{2^{N}} n$-dimensional $(n<N)$ affine subspace such that $\mathcal{F}(A)=A^{\prime}$ is an affine space. Then we construct a permutation polynomial $F=\mathcal{F}_{A}$ by identifying A and A^{\prime} with $\mathbb{F}_{2^{n}}$.

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.
- Cryptographic properties of F depends on \mathcal{F}.

```
This is possible because we are restricting over an affine space
We can have more flexibility:
    - F being an ( N, M)-function
    - \mathcal{F}}(A)\subseteq\mp@subsup{A}{}{\prime
    - \mp@subsup{A}{}{\prime}\subseteq\mp@subsup{\mathbb{F}}{2}{M}\mathrm{ being m-dimensional }(m<M)
```


Introduction

Let \mathcal{F} be permutation polynomial over $\mathbb{F}_{2^{N}}$.
Let $A \subseteq \mathbb{F}_{2^{N}} n$-dimensional $(n<N)$ affine subspace such that $\mathcal{F}(A)=A^{\prime}$ is an affine space. Then we construct a permutation polynomial $F=\mathcal{F}_{A}$ by identifying A and A^{\prime} with $\mathbb{F}_{2^{n}}$.

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.
- Cryptographic properties of F depends on \mathcal{F}.

This is possible because we are restricting over an affine space.

```
We can have more flexibility:
- \mathcal{F}}\mathrm{ being an ( }N,M)\mathrm{ -function
- \mathcal{F}}(A)\subset\mp@subsup{A}{}{\prime
- A}\subseteq\subseteq\mp@subsup{\mathbb{F}}{2}{M}\mathrm{ being m-dimensional (m<M)
```


Introduction

Let \mathcal{F} be permutation polynomial over $\mathbb{F}_{2^{N}}$.
Let $A \subseteq \mathbb{F}_{2^{N}} n$-dimensional $(n<N)$ affine subspace such that $\mathcal{F}(A)=A^{\prime}$ is an affine space.
Then we construct a permutation polynomial $F=\mathcal{F}_{A}$ by identifying A and A^{\prime} with $\mathbb{F}_{2^{n}}$.

- If \mathcal{F} belongs to an infinite family of functions, we could construct an infinite family of functions F.
- Cryptographic properties of F depends on \mathcal{F}.

This is possible because we are restricting over an affine space. We can have more flexibility:

- \mathcal{F} being an (N, M)-function
- $\mathcal{F}(A) \subseteq A^{\prime}$
- $A^{\prime} \subseteq \mathbb{F}_{2}^{M}$ being m-dimensional $(m<M)$

Aim of the paper

- Study the cryptographic properties of functions mapping affine spaces to affine spaces - Construct new "good" functions (and families)
- Study the D-property further

Aim of the paper

- Study the cryptographic properties of functions mapping affine spaces to affine spaces
- Construct new "good" functions (and families)
- Study the D-property further

Aim of the paper

- Study the cryptographic properties of functions mapping affine spaces to affine spaces
- Construct new "good" functions (and families)
- Study the D-property further

Previous works on the topic

- 1st and 2nd Poisson's summation formula ${ }^{1}$
- Trimming of APN functions ${ }^{2}$
- Taniguchi's introduction of the D-property ${ }^{3}$
- Two infinite families of 4 -uniform permutations ${ }^{45}$

[^0]${ }^{5}$ Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over $\operatorname{GF}\left(2^{2 m}\right)$ from quadratic APN permutations over GF (2

Previous works on the topic

- 1st and 2nd Poisson's summation formula ${ }^{1}$
- Trimming of APN functions ${ }^{2}$
- Taniguchi's introduction of the D-property ${ }^{3}$
- Two infinite families of 4-uniform permutations ${ }^{45}$

[^1]${ }^{5}$ Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over GF $\left(2^{2 m}\right)$ from quadratic APN permutations over GF (2 2^{2}

Previous works on the topic

- 1st and 2nd Poisson's summation formula ${ }^{1}$
- Trimming of APN functions ${ }^{2}$
- Taniguchi's introduction of the D-property ${ }^{3}$
- Two infinite families of 4-uniform permutations ${ }^{45}$

[^2]${ }^{4}$ Claude Carlet. "On known and new differentially uniform functions"
${ }^{5}$ Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over GF $\left(2^{2 m}\right)$ from quadratic APN permutations over $\operatorname{GF}\left(2^{2 m+1}\right)$ "

Previous works on the topic

- 1st and 2 nd Poisson's summation formula ${ }^{1}$
- Trimming of APN functions ${ }^{2}$
- Taniguchi's introduction of the D-property ${ }^{3}$
- Two infinite families of 4 -uniform permutations ${ }^{45}$

[^3]
Restricting vectorial functions to affine spaces

Restriction of a vectorial Boolean function

$$
\begin{gathered}
A=a+E \subseteq \mathbb{F}_{2}^{N} \text { affine space of dimension } n . \\
A^{\prime}=a^{\prime}+E^{\prime} \subseteq \mathbb{F}_{2}^{M} \text { affine space of dimension } m . \\
\mathcal{F}(A) \subseteq A^{\prime}
\end{gathered}
$$

We say that the tuple $\left(\phi, a, \phi^{\prime}, a^{\prime}\right)$ is a representation of \mathcal{F}_{A} if

$$
\mathcal{F}_{A}(x)=\phi^{\prime}\left(\mathcal{F}(\phi(x)+a)+a^{\prime}\right)
$$

$\phi: \mathbb{F}_{2}^{n} \rightarrow E$ linear bijective
$\phi^{\prime}: \mathbb{F}_{2}^{M} \rightarrow \mathbb{F}_{2}^{m}$ linear and such that $\phi^{\prime}\left(E^{\prime}\right)=\mathbb{F}_{2}^{m}$
Beierle et al. ${ }^{6}$ use a more general definition where ϕ^{\prime} is just surjective

Restriction of a vectorial Boolean function

$$
\begin{gathered}
A=a+E \subseteq \mathbb{F}_{2}^{N} \text { affine space of dimension } n . \\
A^{\prime}=a^{\prime}+E^{\prime} \subseteq \mathbb{F}_{2}^{M} \text { affine space of dimension } m . \\
\mathcal{F}(A) \subseteq A^{\prime}
\end{gathered}
$$

We say that the tuple $\left(\phi, a, \phi^{\prime}, a^{\prime}\right)$ is a representation of \mathcal{F}_{A} if

$$
\mathcal{F}_{A}(x)=\phi^{\prime}\left(\mathcal{F}(\phi(x)+a)+a^{\prime}\right)
$$

$\phi: \mathbb{F}_{2}^{n} \rightarrow E$ linear bijective
$\phi^{\prime}: \mathbb{F}_{2}^{M} \rightarrow \mathbb{F}_{2}^{m}$ linear and such that $\phi^{\prime}\left(E^{\prime}\right)=\mathbb{F}_{2}^{m}$
Beierle et al. ${ }^{6}$ use a more general definition where ϕ^{\prime} is just surjective.

[^4]
Cryptographic Properties

$$
\delta_{\mathcal{F}_{A}}=\max _{\alpha \in E \backslash\{0\}, \beta \in E^{\prime}}\left|\left\{x \in \mathbb{F}_{2}^{N} \mid D_{\alpha} \mathcal{F}(x)=\beta\right\}\right|
$$

$u \in \mathbb{F}_{2}^{n}, v \in \mathbb{F}_{2}^{m}, u^{\prime}=\left(\phi^{-1}\right)^{*}(u), v^{\prime}=\psi^{*}(v)$
$W_{\mathcal{F}_{A}}(u, v)=2^{-(N-n)}(-1)^{\epsilon} \sum_{z \in E^{\perp}}(-1)^{z \cdot a} W_{\mathcal{F}}\left(u^{\prime}+z, v^{\prime}\right)$ where $\epsilon=v^{\prime} \cdot a^{\prime}+a \cdot u^{\prime}$

where $E^{\perp} \oplus E_{1}=\mathbb{F}_{2}^{N}$ and $\left(E^{\prime}\right)^{\perp} \oplus E_{2}=\mathbb{F}_{2}^{M}$.

Cryptographic Properties

$$
\delta_{\mathcal{F}_{A}}=\max _{\alpha \in E \backslash\{0\}, \beta \in E^{\prime}}\left|\left\{x \in \mathbb{F}_{2}^{N} \mid D_{\alpha} \mathcal{F}(x)=\beta\right\}\right|
$$

$u \in \mathbb{F}_{2}^{n}, v \in \mathbb{F}_{2}^{m}, u^{\prime}=\left(\phi^{-1}\right)^{*}(u), v^{\prime}=\psi^{*}(v)$
$W_{\mathcal{F}_{A}}(u, v)=2^{-(N-n)}(-1)^{\epsilon} \sum_{z \in E^{\perp}}(-1)^{z \cdot a} W_{\mathcal{F}}\left(u^{\prime}+z, v^{\prime}\right)$ where $\epsilon=v^{\prime} \cdot a^{\prime}+a \cdot u^{\prime}$.

$$
n \mathrm{nl}\left(\mathcal{F}_{A}\right)=2^{n-1}-\frac{1}{2^{N-n+1}} \max _{u^{\prime} \in E_{1}, v^{\prime} \in\left(E_{2} \backslash\{0\}\right)}\left|\sum_{z \in E^{\perp}}(-1)^{z \cdot a} W_{\mathcal{F}}\left(u^{\prime}+z, v^{\prime}\right)\right|
$$

where $E^{\perp} \oplus E_{1}=\mathbb{F}_{2}^{N}$ and $\left(E^{\prime}\right)^{\perp} \oplus E_{2}=\mathbb{F}_{2}^{M}$.

How to have $\operatorname{nl}\left(\mathcal{F}_{A}\right) \neq 0$

$$
\operatorname{nl}\left(\mathcal{F}_{A}\right) \geq \operatorname{nl}(\mathcal{F})-\left(2^{N-1}-2^{n-1}\right)
$$

Proposition

$$
\begin{aligned}
& \qquad n l(\mathcal{F})>2^{N-1}-2^{n-1} \Longrightarrow \mathcal{F}(A) \not \subset A^{\prime} \\
& \text { for all } A \text { with dimension } n \text { and all } A^{\prime} \text { of dimension } m<M \text {. }
\end{aligned}
$$

Proposition

max
$\left|W_{\mathcal{F}}(u, v)\right|<2^{n} \Longrightarrow \operatorname{nl}\left(\mathcal{F}_{A}\right) \neq 0$

How to have $\operatorname{nl}\left(\mathcal{F}_{A}\right) \neq 0$

$$
n \mathrm{l}\left(\mathcal{F}_{A}\right) \geq \mathrm{nl}(\mathcal{F})-\left(2^{N-1}-2^{n-1}\right)
$$

Proposition

$$
\mathrm{nl}(\mathcal{F})>2^{N-1}-2^{n-1} \Longrightarrow \mathcal{F}(A) \nsubseteq A^{\prime}
$$

for all A with dimension n and all A^{\prime} of dimension $m<M$.

Proposition

max
$\left|W_{\mathcal{F}}(u, v)\right|<2^{n}$
$n l\left(\mathcal{F}_{A}\right) \neq 0$

How to have $\operatorname{nl}\left(\mathcal{F}_{A}\right) \neq 0$

$$
n \mathrm{l}\left(\mathcal{F}_{A}\right) \geq \mathrm{nl}(\mathcal{F})-\left(2^{N-1}-2^{n-1}\right)
$$

Proposition

$$
\mathrm{nl}(\mathcal{F})>2^{N-1}-2^{n-1} \Longrightarrow \mathcal{F}(A) \nsubseteq A^{\prime}
$$

for all A with dimension n and all A^{\prime} of dimension $m<M$.

Proposition

$$
\max _{u \in \mathbb{F}_{2}^{N}, v \in \mathbb{F}_{2}^{M} \backslash\left(E^{\prime}\right)^{\perp}}\left|W_{\mathcal{F}}(u, v)\right|<2^{n} \Longrightarrow \operatorname{nl}\left(\mathcal{F}_{A}\right) \neq 0
$$

Restricting vectorial functions with affine components

$$
\begin{gathered}
\psi \text { is a linear }(M, M) \text {-function } \\
A^{\prime}=\operatorname{Im} \psi \\
\mathcal{F}(x)=\psi(\mathcal{G}(x))
\end{gathered}
$$

Then $\mathcal{F}(A) \subseteq A^{\prime}$ for all affine spaces A.

Theorem

(9) $n!\left(F_{A}\right) \geq n!(G)-\left(2^{N-1}-2^{n-1}\right)$.
(2) $\delta_{\mathcal{G}_{A}} \leq \delta_{\mathcal{F}_{A}} \leq 2^{M-m} \delta_{\mathcal{G}_{A}}$.
where \mathcal{G}_{A} is the restriction of \mathcal{G} over A with co-domain \mathbb{F}_{2}^{M}

Restricting vectorial functions with affine components

$$
\begin{gathered}
\psi \text { is a linear }(M, M) \text {-function } \\
A^{\prime}=\operatorname{Im} \psi \\
\mathcal{F}(x)=\psi(\mathcal{G}(x))
\end{gathered}
$$

Then $\mathcal{F}(A) \subseteq A^{\prime}$ for all affine spaces A.

Theorem

(1) $\operatorname{nl}\left(\mathcal{F}_{A}\right) \geq \mathrm{nl}(\mathcal{G})-\left(2^{N-1}-2^{n-1}\right)$.
(2) $\delta_{\mathcal{G}_{A}} \leq \delta_{\mathcal{F}_{A}} \leq 2^{M-m} \delta_{\mathcal{G}_{A}}$.
where \mathcal{G}_{A} is the restriction of \mathcal{G} over A with co-domain \mathbb{F}_{2}^{M}

Observations on the differential uniformity

Suppose $M=N$ and $m=n$.

$$
\delta_{\mathcal{G}_{A}} \leq \delta_{\mathcal{F}_{A}} \leq 2^{N-n} \delta_{\mathcal{G}_{A}} .
$$

If \mathcal{G} belongs to an infinite family of (N, N)-functions, then computing $\delta_{\mathcal{G}_{A}}$ could be hard.
If \mathcal{G} is APN, then we have that $\delta_{\mathcal{G}_{A}}=2$ and that $2 \leq \delta_{\mathcal{F}_{A}} \leq 2^{N-n+1}$.
With $n=N-1$ we have that \mathcal{F}_{A} is at most 4-uniform.

Restricting (N, N)-functions over affine hyperplanes and the strong D-property

The D(illon)-property of APN (n, n)-functions ${ }^{7}$

$$
\Phi_{F}(x, y, z)=F(x+y+z)+F(x)+F(y)+F(z)
$$

Lemma

Let F be an (n, n)-function. Then F is APN if and only if all the solutions (x, y, z) to the equation $\Phi_{F}(x, y, z)=0$ are such that $|\{x, y, z, x+y+z\}| \neq 4$.

Lemma

Let F be an $A P N(n, n)$-function, then $\mathrm{nl}(F) \neq 0$.

Theorem (Dillon)

Let F be an $A P N(n, n)$-function, then $\operatorname{Im} \Phi_{F}=\mathbb{F}_{2}^{n}$.

[^5]
Proof of the D-property

Proof.

For simplicity, we consider F in its univariate representation.
Suppose there exists $c \in \mathbb{F}_{2^{n}}$ not in $\operatorname{Im} \Phi_{F}$. We can assume $c \neq 0$.
Then $F^{\prime}(x)=F(x)+c f(x)$ is APN for any Boolean function f. Indeed, let (x, y, z) be such that $\Phi_{F^{\prime}}(x, y, z)=0$ that we can rewrite as

$$
\Phi_{F}(x, y, z)=c \Phi_{f}(x, y, z)
$$

If $\Phi_{f}(x, y, z)=1$, then the equation has no solution
If $\Phi_{f}(x, y, z)=0$, then all the solutions (x, y, z) are such that $|\{x, y, z, x+y+z\}| \neq 4$ because F is APN.
Let $c^{\prime} \in \mathbb{F}_{2^{n}}$ be such that $\operatorname{Tr}\left(c c^{\prime}\right)=1$ and set $f(x)=\operatorname{Tr}\left(c^{\prime} F(x)\right)$. Then

$$
\operatorname{Tr}\left(c^{\prime} F^{\prime}(x)\right)=\operatorname{Tr}\left(c^{\prime} F(x)\right)+\operatorname{Tr}\left(c^{\prime} c\right) \operatorname{Tr}\left(c^{\prime} F(x)\right)=0
$$

and so $\mathrm{nl}\left(F^{\prime}\right)=0$. A contradiction.

The D-property by Taniguchi

Definition (D-property)

An (n, m)-function F has the D-property if $\Phi_{F}\left(\left(\mathbb{F}_{2}^{n}\right)^{3}\right)=\mathbb{F}_{2}^{m}$.
In^{8}, there is a focus on the case $m=n+1$ and $F=\mathcal{G}_{E_{0}}$ where

- \mathcal{G} is an APN $(n+1, n+1)$-function
- $E_{0}=\left\{x \in \mathbb{F}_{2^{n+1}}: \operatorname{Tr}(x)=0\right\}$

A recent paper ${ }^{9}$, investigates this property further.
We consider it in relation to the problem of constructing APN ($N-1, N-1$)-functions

[^6]
The D-property by Taniguchi

Definition (D-property)

An (n, m)-function F has the D-property if $\Phi_{F}\left(\left(\mathbb{F}_{2}^{n}\right)^{3}\right)=\mathbb{F}_{2}^{m}$.
In^{8}, there is a focus on the case $m=n+1$ and $F=\mathcal{G}_{E_{0}}$ where

- \mathcal{G} is an $\operatorname{APN}(n+1, n+1)$-function
- $E_{0}=\left\{x \in \mathbb{F}_{2^{n+1}}: \operatorname{Tr}(x)=0\right\}$

A recent paper ${ }^{9}$, investigates this property further.
We consider it in relation to the problem of constructing APN ($N-1, N-1$)-functions

[^7]
The D-property by Taniguchi

Definition (D-property)

An (n, m)-function F has the D-property if $\Phi_{F}\left(\left(\mathbb{F}_{2}^{n}\right)^{3}\right)=\mathbb{F}_{2}^{m}$.
In^{8}, there is a focus on the case $m=n+1$ and $F=\mathcal{G}_{E_{0}}$ where

- \mathcal{G} is an $\operatorname{APN}(n+1, n+1)$-function
- $E_{0}=\left\{x \in \mathbb{F}_{2^{n+1}}: \operatorname{Tr}(x)=0\right\}$

A recent paper ${ }^{9}$, investigates this property further.
We consider it in relation to the problem of constructing APN ($N-1, N-1$)-functions

[^8]
Constructing APN ($N-1, N-1$)-functions as restrictions

Let \mathcal{G} be an $\operatorname{APN}(N, N)$-function.
Let ψ be a linear (N, N)-function with ker $\psi=\langle c\rangle$.
Let $A \subseteq \mathbb{F}_{2}^{N}$ be an affine hyperplane.
Let $\mathcal{F}(x)=\psi(\mathcal{G}(x))$.

Lemma

Proof.

Constructing APN ($N-1, N-1$)-functions as restrictions

Let \mathcal{G} be an APN (N, N)-function.
Let ψ be a linear (N, N)-function with ker $\psi=\langle c\rangle$.
Let $A \subseteq \mathbb{F}_{2}^{N}$ be an affine hyperplane.
Let $\mathcal{F}(x)=\psi(\mathcal{G}(x))$.

Lemma

$$
\mathcal{F}_{A} \text { is } A P N \text { if and only if } \Phi_{\mathcal{G}}(x, y, z) \neq c \forall x, y, z \in A .
$$

Proof.

Suppose that there exists $x, y, z \in A$ such that $\Phi_{\mathcal{G}}(x, y, z)=c$
Since $\Phi_{\mathcal{G}}(x, y, z) \neq 0$, then $|\{x, y, z, x+y+z\}|=4$.
So we have that $0=\psi(c)=\psi\left(\Phi_{\mathcal{G}}(x, y, z)\right)=\Phi_{\mathcal{F}}(x, y, z)$ and therefore \mathcal{F}_{A} is not APN Suppose that \mathcal{F}_{A} is not APN, then there exists $x, y, z \in A$ such that $\Phi_{\mathcal{F}}(x, y, z)=0$ and So we have that $\Phi_{\mathcal{G}}(x, y, z) \in \operatorname{ker} \psi=\langle c\rangle$ and since \mathcal{G} is APN, then $\Phi_{\mathcal{G}}(x, y, z)=c$.

Constructing APN ($N-1, N-1$)-functions as restrictions

Let \mathcal{G} be an APN (N, N)-function.
Let ψ be a linear (N, N)-function with $\operatorname{ker} \psi=\langle c\rangle$.
Let $A \subseteq \mathbb{F}_{2}^{N}$ be an affine hyperplane.
Let $\mathcal{F}(x)=\psi(\mathcal{G}(x))$.

Lemma

$$
\mathcal{F}_{A} \text { is } A P N \text { if and only if } \Phi_{\mathcal{G}}(x, y, z) \neq c \forall x, y, z \in A .
$$

Proof.

Suppose that there exists $x, y, z \in A$ such that $\Phi_{\mathcal{G}}(x, y, z)=c$.
Since $\Phi_{\mathcal{G}}(x, y, z) \neq 0$, then $|\{x, y, z, x+y+z\}|=4$.
So we have that $0=\psi(c)=\psi\left(\Phi_{\mathcal{G}}(x, y, z)\right)=\Phi_{\mathcal{F}}(x, y, z)$ and therefore \mathcal{F}_{A} is not APN. Suppose that \mathcal{F}_{A} is not APN, then there exists $x, y, z \in A$ such that $\Phi_{\mathcal{F}}(x, y, z)=0$ and $|\{x, y, z, x+y+z\}|=4$.
So we have that $\Phi_{\mathcal{G}}(x, y, z) \in \operatorname{ker} \psi=\langle c\rangle$ and since \mathcal{G} is APN, then $\Phi_{\mathcal{G}}(x, y, z)=c$.

The strong D-property

Let \mathcal{G} be an (N, N)-function.
Definition (strong D-property)
\mathcal{G} has the strong D-property if the $(N-1, N)$-function \mathcal{G}_{A} has the D-property for any affine hyperplane A.

```
Proposition
If G}\mathrm{ is APN, then
G has the strong D-property if and only if F}\mp@subsup{\mathcal{F}}{A}{}\mathrm{ is not APN ( }\mp@subsup{\delta}{\mp@subsup{F}{A}{}}{}=4)\mathrm{ where }\mathcal{F}(x)=\psi(\mathcal{G}(x)
for all \psi linear function with kernel of dimension 1
for all affine hyperplane A.
```


The strong D-property

Let \mathcal{G} be an (N, N)-function.

Definition (strong D-property)

\mathcal{G} has the strong D-property if the $(N-1, N)$-function \mathcal{G}_{A} has the D-property for any affine hyperplane A.

Proposition

If \mathcal{G} is $A P N$, then
\mathcal{G} has the strong D-property if and only if \mathcal{F}_{A} is not $A P N\left(\delta_{\mathcal{F}_{A}}=4\right)$ where $\mathcal{F}(x)=\psi(\mathcal{G}(x))$
for all ψ linear function with kernel of dimension 1 for all affine hyperplane A.

Open problems/questions

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

\square
Proposition

```
Let G be a quadratic APN (N,N)-function with N even.
If G}\mathrm{ has the strong D-property, then }\textrm{nl}(\mathcal{G})>\mp@subsup{2}{}{N-2
```

```
The minimum known nonlinearity is 2}\mp@subsup{2}{}{N-2}\mathrm{ for an N-variable APN function, achieved by some
quadratic APN functions in dimension 6 and 8
```


Open Problem

\square
Find non-quadratic APN functions with nonlinearity 2^{N-2}, or less, if possible an infinite class.

Open problems/questions

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

```
Let G be a quadratic APN (N,N)-function with N even.
If G}\mathrm{ has the strong D-property, then nl(G)>> 2
```

```
The minimum known nonlinearity is 2 N-2 for an N-variable APN function, achieved by some
quadratic APN functions in dimension 6 and 8
```


Open Problem

\square

Open problems/questions

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let \mathcal{G} be a quadratic $A P N(N, N)$-function with N even.
If \mathcal{G} has the strong D-property, then $\mathrm{nl}(\mathcal{G})>2^{\mathrm{N}-2}$.

```
The minimum known nonlinearity is 2 2N-2 for an N-variable APN function, achieved by some
quadratic APN functions in dimension 6 and 8.
```


Open problems/questions

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let \mathcal{G} be a quadratic $A P N(N, N)$-function with N even.
If \mathcal{G} has the strong D-property, then $\mathrm{nl}(\mathcal{G})>2^{\mathrm{N}-2}$.
The minimum known nonlinearity is 2^{N-2} for an N-variable APN function, achieved by some quadratic APN functions in dimension 6 and 8.

Open problems/questions

Open Question

Do all APN power functions in dimension big enough have the strong D-property?

Open Problem

Find an infinite class of APN functions that do not have the strong D-property.

Proposition

Let \mathcal{G} be a quadratic $A P N(N, N)$-function with N even.
If \mathcal{G} has the strong D-property, then $\mathrm{nl}(\mathcal{G})>2^{N-2}$.
The minimum known nonlinearity is 2^{N-2} for an N-variable APN function, achieved by some quadratic APN functions in dimension 6 and 8.

Open Problem

Find non-quadratic APN functions with nonlinearity 2^{N-2}, or less, if possible an infinite class.

The case of crooked functions ${ }^{10}$

Definition (Crooked function)

An (N, N)-function \mathcal{G} is crooked if $\operatorname{Im}\left(D_{a} \mathcal{G}\right)$ is an affine hyperplane for all $a \in \mathbb{F}_{2}^{N} \backslash\{0\}$.

Conjecture

\mathcal{G} is a crooked function if and only if \mathcal{G} is a quadratic $A P N$ function.

$$
\varphi_{\mathcal{G}}(a, b)=\mathcal{G}(a+b)+\mathcal{G}(a)+\mathcal{G}(b)+\mathcal{G}(0)
$$

The ortho-derivative of \mathcal{G} is the (N, N)-function $\pi_{\mathcal{G}}$ such that
$\pi_{\mathcal{G}}(0)=0$ and that $\pi_{\mathcal{G}}(a) \cdot \varphi_{\mathcal{G}}(a, b)=0 \forall a, b \in \mathbb{F}_{2}^{N} \backslash\{0\}$.

[^9]
The case of crooked functions ${ }^{10}$

Definition (Crooked function)

An (N, N)-function \mathcal{G} is crooked if $\operatorname{Im}\left(D_{a} \mathcal{G}\right)$ is an affine hyperplane for all $a \in \mathbb{F}_{2}^{N} \backslash\{0\}$.

Conjecture

\mathcal{G} is a crooked function if and only if \mathcal{G} is a quadratic APN function.

$$
\varphi_{\mathcal{G}}(a, b)=\mathcal{G}(a+b)+\mathcal{G}(a)+\mathcal{G}(b)+\mathcal{G}(0)
$$

The ortho-derivative of \mathcal{G} is the (N, N)-function $\pi_{\mathcal{G}}$ such that $\pi_{\mathcal{G}}(0)=0$ and that $\pi_{\mathcal{G}}(a) \cdot \varphi_{\mathcal{G}}(a, b)=0 \forall a, b \in \mathbb{F}_{2}^{N} \backslash\{0\}$.

[^10]
The strong D-property of crooked functions

Let \mathcal{G} be crooked.
Let $\Gamma_{v, c}^{(1)}=\left\{a \in \mathbb{F}_{2}^{N} \mid c \cdot \pi_{\mathcal{G}}(a)=0, v \cdot a=1\right\}$ and let $\Lambda_{c}=\left\{(a, b) \in\left(\mathbb{F}_{2}^{N}\right)^{2} \mid \varphi_{\mathcal{G}}(a, b)=c\right\}$

Lemma

\mathcal{G} has the strong D-property if and only if, for all $v, c \in \mathbb{F}_{2}^{N} \backslash\{0\}$, we have that

$$
\left|\Gamma_{v, c}^{(1)}\right|<\frac{\left|\Lambda_{c}\right|}{3} .
$$

The strong D-property of crooked functions

Let \mathcal{G} be crooked.
Let $\Gamma_{v, c}^{(1)}=\left\{a \in \mathbb{F}_{2}^{N} \mid c \cdot \pi_{\mathcal{G}}(a)=0, v \cdot a=1\right\}$ and let $\Lambda_{c}=\left\{(a, b) \in\left(\mathbb{F}_{2}^{N}\right)^{2} \mid \varphi_{\mathcal{G}}(a, b)=c\right\}$

Lemma

\mathcal{G} has the strong D-property if and only if, for all $v, c \in \mathbb{F}_{2}^{N} \backslash\{0\}$, we have that

$$
\left|\Gamma_{v, c}^{(1)}\right|<\frac{\left|\Lambda_{c}\right|}{3} .
$$

$$
\begin{gathered}
\left|\Lambda_{c}\right|=W_{\pi_{\mathcal{G}}}(0, c)+2^{N}-2 \\
\left|\Gamma_{c, v}^{(1)}\right|=\frac{\left|\Lambda_{c}\right|+2-W_{\pi_{\mathcal{G}}}(v, c)}{4}
\end{gathered}
$$

The strong D-property of the Gold APN function

Theorem

Let \mathcal{G} be a crooked (N, N)-function with $N \geq 3$. Let $\lambda^{\text {min }}=\min _{c \in \mathbb{F}_{2}^{N} \backslash\{0\}}\left|\Lambda_{c}\right|$.
If $\mathrm{nl}\left(\pi_{\mathcal{G}}\right)>2^{N-1}-\frac{\lambda^{\text {min }}}{6}+2$, then \mathcal{G} has the strong D-property.

Theorem

Let $N \geq 3$ and i be such that $\operatorname{gcd}(i, N)=1$. Then the Gold APN function $x^{2^{\prime}+1}$ has the strong D-property if and only if $N=6$ or $N \geq 8$.

We proved the case N odd, while the case N even follows from the work of Taniguchi ${ }^{11}$

[^11]
The strong D-property of the Gold APN function

Theorem

Let \mathcal{G} be a crooked (N, N)-function with $N \geq 3$. Let $\lambda^{\text {min }}=\min _{c \in \mathbb{F}_{2}^{N} \backslash\{0\}}\left|\Lambda_{c}\right|$.
If $\mathrm{nl}\left(\pi_{\mathcal{G}}\right)>2^{N-1}-\frac{\lambda^{\text {min }}}{6}+2$, then \mathcal{G} has the strong D-property.

Theorem

Let $N \geq 3$ and i be such that $\operatorname{gcd}(i, N)=1$.
Then the Gold APN function $x^{2^{i}+1}$ has the strong D-property if and only if $N=6$ or $N \geq 8$.
$\pi_{\mathcal{G}}(x)=x^{-\left(2^{i}+1\right)}$
We proved the case N odd, while the case N even follows from the work of Taniguchi ${ }^{11}$.

[^12]
The (partial) strong D-property of the Dobbertin APN function

Proposition

Let $\mathcal{G}(x)=x^{2^{2 t}+2^{3 t}+2^{2 t}+2^{t}-1}$ be the Dobbertin APN function over $\mathbb{F}_{2^{5 t}}$.
Let $E=\left\{x \in \mathbb{F}_{2^{5 t}} \mid \operatorname{Tr}_{5 t}(x)=0\right\}$.
Then \mathcal{G}_{E} has the D-property if and only if $t \geq 2$.

```
Conjecture
\(\square\)
```


The (partial) strong D-property of the Dobbertin APN function

Proposition

Let $\mathcal{G}(x)=x^{2^{4 t}+2^{3 t}+2^{2 t}+2^{t}-1}$ be the Dobbertin APN function over $\mathbb{F}_{2^{5 t}}$.
Let $E=\left\{x \in \mathbb{F}_{2^{5 t}} \mid \operatorname{Tr}_{5 t}(x)=0\right\}$.
Then \mathcal{G}_{E} has the D-property if and only if $t \geq 2$.

Conjecture

For $t \geq 2$, the Dobbertin APN function in dimension $N=5 t$ has the strong D-property.

Sketch of the proof

We use the following Lemma by Taniguchi ${ }^{12}$

Lemma

Let $\mathcal{G}(x)=x^{d}$ be an APN power function over $\mathbb{F}_{2^{5 t}}$.
Let us denote $E_{K}=\left\{x \in \mathbb{F}_{2^{K}} \mid \operatorname{Tr}_{K}(x)=0\right\}$.
If either $\mathcal{G}_{E_{t}}$ or $\mathcal{G}_{E_{5}}$ has the D-property, then $\mathcal{G}_{E_{5 t}}$ has the D-property.
Let $d=2^{4 t}+2^{3 t}+2^{2 t}+2^{t}-1$.
The cases $t \leq 5$ can be verified computationally. Assume $t>5$. Let us prove the case $t \neq 7$. Observe that $d=3\left(\bmod 2^{t}-1\right)$ and so we can use the strong D-property of x^{3}. Assume $t=7$. In this case, the D-property of $\mathcal{G}_{E_{5}}$ can be verified computationally.

[^13]Revisiting two infinite families of differentially 4-uniform ($N-1, N-1$)-permutations

The setting

$\mathcal{G}(x)=x^{d}$ APN power permutation over $\mathbb{F}_{2^{N}}(N$ is odd $)$. ψ linear with kernel of dimension 1 generated by $c \in \mathbb{F}_{2^{N}} \backslash\{0\}$ $A=\left\{x \in \mathbb{F}_{2^{N}} \mid \operatorname{Tr}(x)=\epsilon\right\}$ where $\epsilon \in \mathbb{F}_{2}$.

$$
\begin{aligned}
& \mathcal{F}(x)=\psi(\mathcal{G}(x)) \\
& \mathcal{F}^{\prime}(x)=\psi(\mathcal{G}(x))+x
\end{aligned}
$$

Either \mathcal{F}_{A} or \mathcal{F}_{A}^{\prime} is a permutation.
If the system

$$
\left\{\begin{array}{l}
x^{d}+y^{d}+z^{d}+(x+y+z)^{d}=0 \tag{1}\\
\operatorname{Tr}(x)=\operatorname{Tr}(y)=\operatorname{Tr}(z)=\epsilon
\end{array}\right.
$$

has at least one solution, then \mathcal{F}_{A} and \mathcal{F}_{A}^{\prime} are not APN.

Family of 4 -uniform permutations \mathcal{F}_{A}^{\prime} by Carlet ${ }^{13}$

$$
\begin{aligned}
& N \geq 5 \text { odd, } A=\left\{x \in \mathbb{F}_{2^{N}} \mid \operatorname{Tr}(x)=1\right\}, \mathcal{G}(x)=x^{2^{N}-2} . \\
& \mathcal{F}^{\prime}(x)=\psi(\mathcal{G}(x))+x
\end{aligned}
$$

Theorem

The proof of the theorem uses the Hasse-Weil bound

Conjecture

For $N \geq 5$ odd, the inverse function has the strong D-property.

[^14]
Family of 4 -uniform permutations \mathcal{F}_{A}^{\prime} by Carlet ${ }^{13}$

$$
\begin{aligned}
& N \geq 5 \text { odd, } A=\left\{x \in \mathbb{F}_{2^{N}} \mid \operatorname{Tr}(x)=1\right\}, \mathcal{G}(x)=x^{2^{N}-2} . \\
& \mathcal{F}^{\prime}(x)=\psi(\mathcal{G}(x))+x
\end{aligned}
$$

Theorem

\mathcal{F}_{A}^{\prime} is not $A P N$.
The proof of the theorem uses the Hasse-Weil bound.

Conjecture

\square
For $N \geq 5$ odd, the inverse function has the strong D-property.

[^15]
Family of 4-uniform permutations \mathcal{F}_{A}^{\prime} by Carlet ${ }^{13}$

$$
\begin{aligned}
& N \geq 5 \text { odd, } A=\left\{x \in \mathbb{F}_{2^{N}} \mid \operatorname{Tr}(x)=1\right\}, \mathcal{G}(x)=x^{2^{N}-2} . \\
& \mathcal{F}^{\prime}(x)=\psi(\mathcal{G}(x))+x
\end{aligned}
$$

Theorem

\mathcal{F}_{A}^{\prime} is not $A P N$.
The proof of the theorem uses the Hasse-Weil bound.

Conjecture

For $N \geq 5$ odd, the inverse function has the strong D-property.

[^16]
Family of 4-uniform permutations \mathcal{F}_{E} by Li and Wang ${ }^{14}$

$$
\begin{aligned}
& N \geq 5 \text { odd, } E=\left\{x \in \mathbb{F}_{2^{N}} \mid \operatorname{Tr}(x)=0\right\} \\
& c \in \mathbb{F}_{2^{N}} \backslash\{0\}, \psi(x)=c x^{2^{i}}+c^{2^{i}} x, \mathcal{G}(x)=x^{\frac{1}{2^{i+1}}} \text { with } \operatorname{gcd}(i, N)=1 \\
& \mathcal{F}(x)=\psi(\mathcal{G}(x))
\end{aligned}
$$

Theorem

\mathcal{F}_{E} is not APN.
The proof of the theorem uses the ortho-derivative $\pi(x)=x^{-\left(2^{i}+1\right)}$

Conjecture

For $N \geq 5$ odd, the inverse of the Gold APN function has the strong D-property.

[^17]
Family of 4-uniform permutations \mathcal{F}_{E} by Li and Wang ${ }^{14}$

$$
\begin{aligned}
& N \geq 5 \text { odd, } E=\left\{x \in \mathbb{F}_{2^{N}} \mid \operatorname{Tr}(x)=0\right\} \\
& c \in \mathbb{F}_{2^{N}} \backslash\{0\}, \psi(x)=c x^{2^{i}}+c^{2^{i}} x, \mathcal{G}(x)=x^{\frac{1}{2^{i}+1}} \text { with } \operatorname{gcd}(i, N)=1 \\
& \mathcal{F}(x)=\psi(\mathcal{G}(x))
\end{aligned}
$$

Theorem

\mathcal{F}_{E} is not $A P N$.

The proof of the theorem uses the ortho-derivative $\pi(x)=x^{-\left(2^{i}+1\right)}$.

Conjecture

For $N \geq 5$ odd, the inverse of the Gold APN function has the strong D-property.

[^18]
Family of 4-uniform permutations \mathcal{F}_{E} by Li and Wang ${ }^{14}$

$$
\begin{aligned}
& N \geq 5 \text { odd, } E=\left\{x \in \mathbb{F}_{2^{N}} \mid \operatorname{Tr}(x)=0\right\} \\
& c \in \mathbb{F}_{2^{N}} \backslash\{0\}, \psi(x)=c x^{2^{i}}+c^{2^{i}} x, \mathcal{G}(x)=x^{\frac{1}{2^{i+1}}} \text { with } \operatorname{gcd}(i, N)=1 \\
& \mathcal{F}(x)=\psi(\mathcal{G}(x))
\end{aligned}
$$

Theorem

\mathcal{F}_{E} is not $A P N$.
The proof of the theorem uses the ortho-derivative $\pi(x)=x^{-\left(2^{i}+1\right)}$.

Conjecture

For $N \geq 5$ odd, the inverse of the Gold APN function has the strong D-property.

[^19]
Conclusions

On the construction of cryptographically strong functions

- If \mathcal{F} does not have affine components, mapping affine to affine is rare
- Fairly easy to construct 4-uniform functions with good cryptographic properties
- The revisiting of previously known infinite families

On the construction of cryptographically strong functions

- If \mathcal{F} does not have affine components, mapping affine to affine is rare
- Fairly easy to construct 4-uniform functions with good cryptographic properties - The revisiting of previously known infinite families

On the construction of cryptographically strong functions

- If \mathcal{F} does not have affine components, mapping affine to affine is rare
- Fairly easy to construct 4-uniform functions with good cryptographic properties
- The revisiting of previously known infinite families

On the construction of APN functions, and the strong D-property

- Constructing APN functions is hard (also) in this setting
- The strong D-property is hard to prove for a family of APN functions
- Several open problems/questions

On the construction of APN functions, and the strong D-property

- Constructing APN functions is hard (also) in this setting
- The strong D-property is hard to prove for a family of APN functions
- Several open problems/questions
- Constructing APN functions is hard (also) in this setting
- The strong D-property is hard to prove for a family of APN functions
- Several open problems/questions

On the construction of APN permutation

- Easier to study
- Less equations than proving the strong D-property

On the construction of APN permutation

- Easier to study
- Less equations than proving the strong D-property

Thanks for your attention!

[^0]: ${ }^{1}$ Claude Carlet. "Boolean functions for cryptography and coding theory". In: (2021).
 ${ }^{2}$ Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions"
 ${ }^{3}$ Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{n+1} "
 "Claude Carlet. "On known and new differentially uniform functions"

[^1]: ${ }^{1}$ Claude Carlet. "Boolean functions for cryptography and coding theory". In: (2021).
 ${ }^{2}$ Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions". In: Designs, Codes and Cryptography 90.4 (2022), pp. 1009-1036.
 ${ }^{4}$ Claude Carlet. "On known and new differentially uniform functions"

[^2]: ${ }^{1}$ Claude Carlet. "Boolean functions for cryptography and coding theory". In: (2021).
 ${ }^{2}$ Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions". In: Designs, Codes and Cryptography 90.4 (2022), pp. 1009-1036.
 ${ }^{3}$ Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{n+1} ". In: Cryptography and Communications (2023), pp. 1-21.

[^3]: ${ }^{1}$ Claude Carlet. "Boolean functions for cryptography and coding theory". In: (2021).
 ${ }^{2}$ Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions". In: Designs, Codes and Cryptography 90.4 (2022), pp. 1009-1036.
 ${ }^{3}$ Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{n+1} ". In: Cryptography and Communications (2023), pp. 1-21.
 ${ }^{4}$ Claude Carlet. "On known and new differentially uniform functions". In: Australasian Conference on Information Security and Privacy. Springer. 2011, pp. 1-15.
 ${ }^{5}$ Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over GF $\left(2^{2 m}\right)$ from quadratic APN permutations over GF ($2^{2 m+1}$)". In: Designs, codes and cryptography 72.2 (2014), pp. 249-264.

[^4]: ${ }^{6}$ Christof Beierle, Gregor Leander, and Léo Perrin. "Trims and extensions of quadratic APN functions". In: Designs, Codes and Cryptography 90.4 (2022), pp. 1009-1036.

[^5]: ${ }^{7}$ Claude Carlet. "Boolean functions for cryptography and coding theory". In: (2021).

[^6]: ${ }^{8}$ Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{n+1} ". In: Cryptography and Communications (2023), pp. 1-21.
 ${ }^{9}$ Matteo Abbondati, Marco Calderini, and Irene Villa.
 "On Dillon's property of (n, m)-functions"

[^7]: ${ }^{8}$ Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_{2}^{n} to \mathbb{F}_{2}^{n+1} ". In: Cryptography and Communications (2023), pp. 1-21.
 ${ }^{9}$ Matteo Abbondati, Marco Calderini, and Irene Villa. "On Dillon's property of (n, m)-functions". In: arXiv preprint arXiv:2302.13922 (2023).

[^8]: ${ }^{8}$ Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_{2}^{n} to $\mathbb{F}_{2}^{n+1 "}$. In: Cryptography and Communications (2023), pp. 1-21.
 ${ }^{9}$ Matteo Abbondati, Marco Calderini, and Irene Villa. "On Dillon's property of (n, m)-functions". In: arXiv preprint arXiv:2302.13922 (2023).

[^9]: ${ }^{10}$ Gohar M Kyureghyan. "Crooked maps in $\mathbb{F}_{2}^{n "}$. In: Finite Fields and their applications 13.3 (2007), pp. 713-726.

[^10]: ${ }^{10}$ Gohar M Kyureghyan. "Crooked maps in $\mathbb{F}_{2}^{n "}$. In: Finite Fields and their applications 13.3 (2007), pp. 713-726.

[^11]: ${ }^{11}$ Hiroaki Taniguchi. "D-property for $A P N$ functions from \mathbb{F}_{2}^{n} to $\mathbb{F}_{2}^{n+1 "}$. In: Cryptography anc

[^12]: ${ }^{11}$ Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_{2}^{n} to $\mathbb{F}_{2}^{n+1 "}$. In: Cryptography and Communications (2023), pp. 1-21.

[^13]: ${ }^{12}$ Hiroaki Taniguchi. "D-property for APN functions from \mathbb{F}_{2}^{n} to $\mathbb{F}_{2}^{n+1 "}$. In: Cryptography and Communications (2023), pp. 1-21.

[^14]: ${ }^{13}$ Claude Carlet. "On known and new differentially uniform functions". In: Australasian Conference on Information Security and Privacy. Springer. 2011, pp. 1-15.

[^15]: ${ }^{13}$ Claude Carlet. "On known and new differentially uniform functions". In: Australasian Conference on Information Security and Privacy. Springer. 2011, pp. 1-15.

[^16]: ${ }^{13}$ Claude Carlet. "On known and new differentially uniform functions". In: Australasian Conference on Information Security and Privacy. Springer. 2011, pp. 1-15.

[^17]: ${ }^{14}$ Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over GF $\left(2^{2 m}\right)$ from quadratic APN permutations over GF $\left(2^{2 m+1}\right)$ ". In: Designs, codes and cryptography 72.2 (2014), pp. 249-264.

[^18]: ${ }^{14}$ Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over GF $\left(2^{2 m}\right)$ from quadratic APN permutations over GF($2^{2 m+1}$)". In: Designs, codes and cryptography 72.2 (2014), pp. 249-264.

[^19]: ${ }^{14}$ Yongqiang Li and Mingsheng Wang. "Constructing differentially 4-uniform permutations over GF $\left(2^{2 m}\right)$ from quadratic APN permutations over $\operatorname{GF}\left(2^{2 m+1}\right)$ ". In: Designs, codes and cryptography 72.2 (2014), pp. 249-264.

