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Reed-Muller codes

Every m-variable Boolean function f : Fm2 7→ F2 admits a unique

representation as a polynomial:∑
I⊆{1,...,m}

aI
∏
i∈I

xi ∈ F2[x1, . . . , xm]/(x
2
1+x1, . . . , x

2
m+xm); aI ∈ F2

called the algebraic normal form (ANF) of f . The (global) degree of

the ANF of f is called its algebraic degree.

The (binary) Reed-Muller code RM(r,m), of length 2m and order

r, has for codewords the m-variable Boolean functions f of algebraic

degree at most r (identified with binary vectors of length 2m).
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A linear code of length n over a field K is a K-subspace of Kn.

This allows to define its dimension (as a K-vector space).

The Hamming weight (in brief, the weight) of a codeword is the

size of its support. The Hamming distance between two codewords

equals the Hamming weight of their difference.

The minimum distance of a code is the minimum Hamming

distance between distinct codewords. When the code is linear, it

equals the minimum Hamming weight of the nonzero codewords.

Weight spectrum of a code: set of all possible codeword weights.

Weight distribution: the number of codewords of each weight.
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The Reed-Muller code RM(r,m) is linear and has dimension
r∑
i=0

(
m
i

)
and minimum distance 2m−r.

The minimum weight codewords are the indicators of the (m− r)-
dimensional affine subspaces of Fm2 .

All weights in the Reed-Muller codes of length 2m and orders

0, 1, 2,m − 2,m − 1,m are well-known (as well as the weight

distributions of these codes).
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The low Hamming weights are also known in all Reed-Muller

codes: Kasami and Tokura have shown that, for r ≥ 2, the only

Hamming weights in RM(r,m) in the range [2m−r; 2m−r+1[ are of

the form 2m−r+1−2m−r+1−i where i ≤ max(min(m−r, r), m−r+2
2 ).

Kasami, Tokura and Azumi determined later all the weights lying

between the minimum distance d = 2m−r and 2.5 times d.

The McEliece theorem states that the weights in RM(r,m) are

multiples of 2b
m−1
r c.

This divisibility bound is tight: for each pair (r,m), there is a

codeword of RM(r,m) with weight divisible by 2b
m−1
r c only.

The weight spectrum of RM(r,m) is unknown for 3 ≤ r ≤ m−5.
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The weight spectrum of RM(r,m) has been determined for r ∈
{m− 4,m− 3} (C.C. and P. Solé, Discrete Mathematics, 2023):

• we obtain all the codewords in RM(r,m) by concatenating any

codeword u of RM(r,m− 1) and the sum of u and of a codeword

v of RM(r− 1,m− 1) (this is called the (u, u+ v) construction),

- if we take u also in RM(r − 1,m− 1), then u and u+ v range

freely and independently in RM(r − 1,m− 1),

- RM(r,m) contains then the concatenations of any two codewords

of RM(r − 1,m− 1), and

- sums of two weights in RM(r−1,m−1) are weights in RM(r,m).

This allows to obtain weights in RM(m− c,m) by induction.
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• The Kasami-Tokura’s result allows to show that all weights in

RM(r,m) are obtained, when all even weights between 2d and

2m − 2d are obtained.

Concretely:

Determining the weights in the codes RM(m− c,m) for a given

c > 0 needs in practice, for starting an induction, to determine the

weights in the code RM(m− c,m) for which m is the smallest such

that
⌊
m−1
m−c

⌋
(in the McEliece divisiblity result) has value 1.

That is, m = 2c = 2r. Taking m smaller than 2c allows by

computing sums of two weights in RM(m − c,m) to obtain only

weights that are divisible by 4 in RM(m+ 1− c,m+ 1).
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• Starting from the weights in RM(3, 6), obtained by Magma, and

applying an induction, we have that, for every m ≥ 6, the weights

in RM(m− 3,m) are the elements of

{0, 8, 12 + 2i, 2m − 8, 2m}; i ∈ [0, 2m−1 − 12].

• Starting from the weights in RM(4, 8), which are known from

the Online Encyclopedia of Integer Sequences, and applying an

induction as well, we have that for every m ≥ 8, the set of all

weights in RM(m− 4,m) equals:

{0, 16, 24, 28 + 2i, 2m − 24, 2m − 16, 2m}; i ∈ [0, 2m−1 − 28].

8



The weight distributions of these codes seem out of reach currently

(despite the fact that the weight distribution of the dual RM(2,m)

of RM(m − 3,m) is known: the number of codewords of weight

2m−1 in RM(2,m) is too complex).

The weight spectra of RM(m− c,m) could not be addressed for

c ≥ 5, mainly because the weights that are not divisible by 4 in

RM(5, 10) could not be determined.

Here, we address the case c = 5, by constructing codewords in

RM(5, 10) achieving all the weights allowed by Kasami, Tokura and

Azumi and by obtaining as weights all even numbers between 2.5 d

and 2m − 2.5 d, and thanks to an induction on m.
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The weights in RM(m− 5,m) for every m ≥ 10

The knowledge of the weight spectrum of RM(m − 4,m) does

not help in determining that of RM(m− 5,m), even if the latter is

a subset of the former.

Indeed, determining which of the weights in RM(m − 4,m) are

also weights in RM(m−5,m) is precisely what is difficult, because all

even numbers between 28 and 2m−28 are weights in RM(m−4,m).

As we explained, determining the weights in RM(c, 2c) that are

divisible by 4 is easier than determining those which are not divisible

by 4 (and divisible by 2).

10



The weights in RM(5, 10)

Of course, we only need to determine the weights up to 2m−1 − 2.

The Maiorana-McFarland class is made of the functions

f(x,y) = x · φ(y) + g(y); x ∈ Fk2, y ∈ Fm−k2 ,

where 2 ≤ k ≤ m, (x,y) is the concatenation of x = (x1, . . . , xk)

and y = (y1, . . . , ym−k), φ : Fm−k2 7→ Fk2 and g : Fm−k2 7→ F2, and

where “·” is an inner product in Fk2 (for instance the usual inner

product x · x′ = x1x
′
1 + · · ·+ xkx

′
k).
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f belongs to RM(r,m) if and only if φ has algebraic degree at

most r − 1 and g has algebraic degree at most r.

We have:

2m − 2wH(f) =Wf(0k,0m−k) :=∑
x∈Fk2,y∈Fm−k2

(−1)x·φ(y)+g(y) = 2k
∑

y∈φ−1(0k)

(−1)g(y),

where φ−1(0k) denotes the pre-image by φ of the zero vector in Fk2.

Hence:
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wH(f) = 2m−1 − 2k−1
∑

y∈φ−1(0k)

(−1)g(y).

We want this number to be congruent with 2 mod 4, which obliges

to take k = 2.

We fix now m = 10 and r = 5.

We wish that φ−1(02) is as large as possible for being able to

reach as many weights as possible through proper choices of g.

We take then φ1(y) =
∏4
j=1 yj and φ2(y) =

∏8
j=5 yj.
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With such choices, we have:

φ−1(02) = (F4
2 \ {14})× (F4

2 \ {14}) = (F4
2 \ {14})2.

Denoting by g′ the restriction of g to (F4
2 \ {14})2, we have:

wH(f) = 62 + 4wH(g
′).

- When g ∈ RM(5, 8) has (minimum) weight 8 (i.e. is the

indicator of a 3-dimensional affine space A in F8
2):

Case (i): A ⊂ (F4
2 \{14})2, e.g. A = 〈e1+e5, e2+e6, e3+e7〉 →

weight 62 + 4 · 8 = 94.
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Case (ii): A∩
(
(F4

2×{14})∪ ({14}×F4
2)
)

is an affine subspace of

F4
2×{14}) or of {14}×F4

2→ weights 62+4 · 7 = 90, 62+4 · 6 = 86

and 62 + 4 · 4 = 78.

Case (iii): A∩
(
(F4

2×{14})∪ ({14}×F4
2)
)

is the union of two affine

spaces, one included in F4
2 × {14} and one included in {14} × F4

2.

Case (iii).1: These two affine spaces have the point 18 in common

→ weights 62 + 4 · 5 = 82 and 62 + 4 · 3 = 74.

Case (iii).2: These two affine spaces are disjoint→ no new weight

⇒ weights {62, 74, 78, 82, 86, 90, 94}.

The weights 66 and 70 are missing as expected (not in the list of

Kasami-Tokura-Azumi).
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In particular, we reach all those weights in RM(5, 10) allowed by

Kasami-Tokura-Azumi that are not divisible by 4.

- When g is a codeword of RM(5, 8) having one of the three

weights that come after 8 : 16 − 4 = 12, 16 − 2 = 14 and 16, i.e.

g is the sum of indicators of two 3-dimensional affine spaces; the

intersection of these two spaces can be:

- a 1-dimensional affine space, whose intersection with F8
2 \ (F4

2 \
{14})2 = (F4

2 × {14}) ∪ ({14} × F4
2) has at most 2 elements,

- or a singleton, whose intersection with (F4
2×{14})∪ ({14}×F4

2)

has at most 1 element,

- or the empty set.
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This provides the following additional values for the weight of

g′: {9, 10, 11, 12, 13, 14, 15, 16} and by multiplying by 4 and adding

62, we obtain the weights: 98, 102, 106, 110, 114, 118, 122, 126. This

covers then all the weights in RM(5, 10) that are congruent with 2

modulo 4 and which lie between 98 and 126.

- When g is the sum of (at most) six functions g1, g2, g3, . . . such

that the corresponding functions g′1, g
′
2, g
′
3, . . . have disjoint supports

and their weights w1, w2, w3 . . . sum to w

This provides as weights all the numbers congruent with 2 modulo

4 and lying between 130 and 226.
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- Obtaining all remaining weights congruent with 2 mod 4

Thanks to to a translation by 18, we change (F4
2\{14})×(F4

2\{14})
into (F4

2 \ {04})× (F4
2 \ {04}).

Let g be the 8-variable Maiorana-McFarland function:

g(z, t) = z · ψ(t) + h(t); z, t ∈ F4
2,

where ψ is any function from F4
2 to F4

2 and h is any Boolean function

over F4
2. And we still take:

f(x, z, t) = x1

4∏
j=1

(zj+1)+x2

4∏
j=1

(tj+1)+g(z, t); x ∈ F2
2, z, t ∈ F4

2.
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Then the algebraic degree of any such 10-variable Boolean function

f is at most 5 and the set of the weights of such functions include

all those integers between 230 and 510 that are congruent with 2

modulo 4.

The weight spectrum of RM(5, 10)

Proposition 1. The set of all weights in RM(5, 10) equals

{0, 32, 48, 56, 60, 62, 64, 68, 72 + 2i,

210−68, 210−64, 210−62, 210−60, 210−56, 210−48, 210−32, 210},
where i ∈ [0, 29 − 72].
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The weight spectrum of RM(m− 5,m) for m ≥ 10

Theorem 2. For every m ≥ 10, the set of all weights in RM(m−
5,m) equals

{0, 32, 48, 56, 60, 62, 64, 68, 72 + 2i,

2m− 68, 2m− 64, 2m− 62, 2m− 60, 2m− 56, 2m− 48, 2m− 32, 2m},
where i ∈ [0, 2m−1 − 72].

Proof by induction.
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Open question: Let c be any positive integer. For m ≥ 2c, is the

weight spectrum of RM(m− c,m) of the form:

{0} ∪A ∪B ∪ C ∪B ∪A ∪ {2m}

where:

- A ⊆ [2c, 2c+1], is given by Kasami and Tokura,

- B ⊆ [2c+1, 2c+1 + 2c−1], is given by Kasami, Tokura, and Azumi,

- C ⊆ [2c+1 + 2c−1, 2m − 2c+1 − 2c−1], consists of all consecutive

even integers,

- A stands for the complement to 2m of A, and B stands for the

complement to 2m of B ?
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Extending the result to RM(m− c,m) for c ≥ 6?

The smallest value of m we can take, which may allow determining

all weights in RM(m− c,m), is m = 2c.

We can again consider functions

f(x,y) = x · φ(y) + g(y); x ∈ Fk2, y ∈ Fm−k2 , (1)

with k = 2, m − k = 2(c − 1), where φ equals (φ1, φ2), with

φ1(y) =
∏c−1
i=1 yi and φ2(y) =

∏2c−2
i=c yi, and g ∈ RM(c, 2c− 2).

We have wH(f) = 2c+1 − 2 + 4wH(g
′) where g′ is the restriction

of g to (Fc−12 \ {1c−1})2.
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We could check in the case of RM(6, 12) that the weights of g′

that can be reached this way are 7,8,9,11,12,13,14,15,16.

The number 10 is then missing.

Hence, the weight 27 − 2 + 4 · 10 = 166 is missing for f .

We could reach it with f equal to the sum of three minimum

weight codewords of RM(6, 12).
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We continue with

f(x, z, t) = x1

c−1∏
j=1

(zj+1)+x2

c−1∏
j=1

(tj+1)+g(z, t); x ∈ F2
2, z, t ∈ Fc−12 ,

g(z, t) = z · ψ(t) + h(t); z, t ∈ Fc−12 ,

where ψ is any function from Fc−12 to Fc−12 and h is any Boolean

function over Fc−12 .
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Taking ψ(0c−1) = 0c−1 and h(0c−1) = 0, we have:

wH(f) = 2c+1 − 2 + 22c−1 − 2c
∑

t∈ψ−1(0c−1)

(−1)h(t) − 4wH(h).

Work in progress
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Conclusion

Determining the weight distributions of the Reed-Muller codes

RM(r,m) for r ∈ {3, . . . ,m− 4} and every m seems out of reach.

The weight distribution of RM(m−3,m) may be found if we ever

manage to get a simpler expression for the number of codewords of

weight 2m−1 in RM(2,m), but there has been no progress on this

for half a century.

The weight spectra of RM(r,m) (without the knowledge of the

number of codewords of each weight) are currently what seems the

least unattainable for r ∈ {3, . . . ,m− 4).
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Determining the weight spectra of RM(m− 3,m) for m ≥ 6 and

RM(m− 4,m) for m ≥ 8 was not too difficult.

Determining the weight spectrum of RM(m − 5,m) for m ≥ 10

has needed more work, but it could be done thanks to the fact

that, surprisingly, the Maiorana-McFarland construction (with rather

specific parameters) allows to reach all weights.

This is not the case for RM(m − c,m) with c ≥ 6 and m ≥ 2c,

whose weight spectra may pose big problems.
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If the weight spectra of all codes RM(m − c,m) for c ≥ 6 and

m ≥ 2c are determined (which would be a breakthrough), this will

give the weight spectra of all RM(r,m) with r ≥ m
2 .

Then determining those such that r < m
2 will remain an open

question. In particular, the weight spectrum of RM(3,m) will

remain wide open, probably.

An old result (1990) shows that the weights of all Boolean

functions are simply related to the weights of cubic Boolean functions

(in many more variables); this shows that the weights of cubics are

complex, contrary to those of quadratic functions (even if, according

to McEliece’s theorem, those weights are all divisible by 2b
m−1
3 c).
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