
The 8th International Workshop on
Boolean Functions and their Applications

BFA2023

Book of Abstracts

September 3-8, 2023
Voss, Norway

IN MEMORIAM

Kai-Uwe Schmidt

Prof. Dr. Kai-Uwe Schmidt (1978 - 2023) worked at Paderborn University where he was head of
the Discrete Mathematics research group. His research focused on topics in combinatorics, algebra,
and number theory, and he also contributed significantly to the theory of Boolean functions.

Contents

Invited Talks 3

Uni/Multi variate polynomial embeddings for zkSNARKs
Guang Gong . 3

On Division Property and Degree Bounds
Aleksei Udovenko . 5

An optimal universal construction of threshold implementation
Enrico Piccione . 7

Relevant classes of polynomial functions with applications to Cryptography
Daniele Bartoli . 9

Side-channel analysis of cryptographic implementations: Lessons learned and fu-
ture directions

Lejla Batina . 11

On round functions of permutations
Joan Daemen . 13

Resemblance
Robert Coulter . 15

Accepted Abstracts 19

Truncated rotation symmetric Boolean functions
Thomas W. Cusick, Younhwan Cheon . 19

A new method to represent the inverse map as a composition of quadratics in a
binary finite field

Florian Luca, Santanu Sarkar, Pantelinom Stănică . 25

A class of Weightwise Almost Perfectly Balanced Boolean Functions with High
Weightwise Nonlinearity

Deepak Kumar Dalai, Krishna Mallick . 31

i

ii CONTENTS

The second-order zero differential spectra of some power maps
Kirpa Garg, Sartaj Ul Hasan, Constanza Riera, Pantelinmon Stănică 39

Optimizing Implementations of Boolean Functions
Meltem Sönmez Turan . 45

On the matrix equation MX = X̄ and self-dual Butson bent
J. A. Armario, R. Egan, P. Ó Catháin . 53

Upper bounds on the numbers of binary plateaued and bent functions
V. N. Potapov . 59

On bent functions satisfying the dual bent condition
Alexander Polujan, Enes Pasalic, Sadmir Kudin, Fengrong Zhang 65

Asymptotic Lower Bounds On The Number Of Bent Functions Having Odd Many
Variables Over Finite Fields of Odd characteristic

V. N. Potapov, Ferruh Özbudak . 73

Normality of Boolean bent functions in eight variables, revisited
Alexander Polujan, Luca Mariot, Stjepan Picek . 79

S0−equivalent classes, a new direction to find better weightwise perfectly balanced
functions, and more

Agnese Gini, Pierrick Méaux . 85

Orientable sequences over nonbinary alphabet
Abbas Alhakim, Chris J. Mitchell, Janusz Szmidt, Peter R. Wild 93

Improving differential properties of S-boxes with local changes of DDT
Pavol Zajac . 99

Counting unate and balanced monotone Boolean functions
Aniruddha Biswas and Palash Sarkar . 103

More De Bruijn Sequences as Concatenation of Lyndon Words
Abbas Alhakim . 109

A Nonlinear Mapping Based on Squaring
Denise Verbakel, Daniel Kuijsters, Silvia Mella, Stjepan Picek, Luca
Mariot, Joan Daemen . 115

On quadratic APN functions F (x) + Tr(x)L(x)
Hiroaki Taniguchi . 123

On the Spread Sets of Planar Dembowski-Ostrom Monomials
Christof Beierle, Patrick Felke . 129

CONTENTS iii

A computation of D(9) using FPGA Supercomputing
Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, To-
bias Kenter, Heinrich Riebler, Michael Lass, Christian Plessl 135

A family of optimal linear codes from simplicial complexes
Zhao Hu, Zhexin Wang, Nian Li, Xiangyong Zeng, Xiaohu Tang 145

Stability of x3 + x2 + 1 from the perspective of periodic sequences
Tong Lin, Qiang Wang . 151

Invited Talks

1

Uni/Multi variate polynomial embeddings for

zkSNARKs

Guang Gong

University of Waterloo, Canada

A zero-knowledge proof is a cryptographic primitive that enables a prover
to convince a verifier the validity of a mathematical statement (an NP state-
ment) without reveal any secret inputs. A special case, called zero-knowledge
Succinct Non-interactive ARgument of Knowledge (zkSNARK) is particularly
designed for arithmetic circuit proof systems which have important applications
in blockchain privacy. The major computations in the type of zkSNARK proofs
with post-quantum security are polynomial evaluations and Lagrange interpo-
lations over finite fields. In this talk, I will show our new work on deviation
of the concrete complexities of provers, proof sizes and verifiers instead of just
using big notation. Given a sequence over a finite field, in coding and sequences
research, we understand that there are two representations of the sequence, one
is a univariate polynomial and the other, a multivariate polynomial. This is
exactly what is done in those proof systems to transform the proof of a R1CS
system (more general than a circuit system) to evaluate uni/multi variate poly-
nomials at some random points in the finite field. We will use two zkSNARK
schemes, i.e., Polaris, univariate polynomial representation and Spartan, multi-
variate polynomial representation, as examples to show our analysis.

1

3

On Division Property and Degree Bounds

Aleksei Udovenko

Abstract

Computing or bounding the algebraic degree of iterated functions is
a fundamental problem in Boolean functions. Especially important it is
in symmetric-key cryptography, where a low algebraic degree of a cipher
leads to the so-called integral distinguishers and key recovery attacks.
Furthermore, fine-grained algebraic deficiencies such as missing monomials
in the algebraic normal form can also be exploited and therefore need to
be detected by the designers.

Techniques for estimating the algebraic degree and finding missing
monomials significantly evolved in the recent decade. Classic approaches
require only a small amount of information about the iterated functions,
such as their algebraic degree, the algebraic degree of their compositional
inverse, or the algebraic degree of their graph indicator. However, full
knowledge of a function’s structure leads to much more precise bounds.
The state-of-the-art technique for exploiting this information is the so-
called division property, alternatively described as monomial trails.

This talk will summarize the most influential degree bounds and show
their relation to division property variants, as well as describe techniques
for proving lower bounds.

1

5

An optimal universal construction of threshold

implementation

Enrico Piccione

University of Bergen, Norway

Threshold implementation is a method based on secret sharing to secure the
hardware implementation of cryptographic ciphers against di↵erential power
analysis (DPA) side-channel attacks. This method was proposed by Nikova,
Rechberger, and Rijmen in 2006 to mitigate the leakage caused by glitches.
Mathematically, a threshold implementation is a vectorial Boolean function F
with some properties strictly related to another vectorial Boolean function F
which is the target function we want to implement. There is a special interest
in implementing permutations F over Fn

2 because of their application in SPN
ciphers. The need to satisfy those properties make constructing F a challenging
problem especially when F is large in size. Another problem, is to provide
threshold implementations with the theoretical minimum number of Boolean
shares s, which must be greater or equal than t + 1 where t is the algebraic
degree of F . In this talk, we present the first universal threshold implementation
with t + 2 shares and we discuss some problems related to the construction of
threshold implementations with t + 1 shares.

1

7

Relevant classes of polynomial functions with
applications to Cryptography

Daniele Bartoli
Università degli Studi di Perugia - Dipartimento di Matematica e Informatica

Abstract

A number of di↵erent polynomial functions over finite fields have relevant
applications in applied areas of Mathematics, as Cryptography or Coding The-
ory. Among them, APN functions, PN functions, APN permutations, permu-
tation polynomials have been widely studied in the recent years.

In order to investigate non-existence of such functions or to provide con-
structions of infinite families, algebraic varieties over finite fields are a useful
tool. In this direction, a key ingredient is an estimate of the number of ratio-
nal points of such algebraic varieties and therefore Hasse-Weil type theorems
(Lang-Weil, Serre,. . .) play a fundamental role.

The aim of this talk is to summarize recent results in this direction.

1

9

Side-channel analysis of cryptographic

implementations: Lessons learned and future

directions

Lejla Batina

Radboud University, The Netherlands

Side-channel analysis has changed the field of cryptography and it became
the most common cause of real-world security applications failing today. It has
also shaped the way crypto competitions are run such as recently finished NIST
Post-quantum and Lightweight crypto standardization processes. In this talk
we give an overview of side-channel attacks on implementations of cryptography
and countermeasures. We also discuss the ways in which Machine learning and
AI changed the side-channel analysis landscape and attackers’ capabilities in
particular. We survey several examples of AI assisting with leakage evaluation
and discuss the impact of it on the field and security evaluations. Finally, we
also describe the way side-channel analysis threatens AI implementations e.g.
neural nets architectures that are commonly used in practice. In the end, we
identify some avenues for future research.

1

11

On round functions of permutation

Joan Daemen

Radboud University, The Netherlands

Permutation-based cryptography was successful the NIST SHA-3 competi-
tion and more recently also in the NIST lighweight cryptography competition.
Building an e�cient permutation is similar to building a good block cipher, but
not quite. In this talk we take a closer look at the structure and components of
round functions of successful permutations with a focus on symmetry properties.

1

13

Resemblance

Robert S. Coulter

Department of Mathematical Sciences
University of Delaware

joint work with Li-An Chen

One of the main problems in our area is that of constructing bijections with
low di↵erential uniformity. Indeed, the “Big APN problem” is familiar to all
of us. In this talk we will introduce the notion of resemblance, which is a way
of comparing how close two functions are from each other. One can apply the
concept in a variety of situations. We will concentrate mostly (if not exclusively)
on the concept of permutation resemblance (P-Res), which provides a new way
of measuring how close a function is to being a permutation. P-Res provides
some advantages over historical tools for measuring a function’s “bijectiveness”,
especially in the case where one is concerned about constructing bijections with
low di↵erentially uniformity. However, it also o↵ers some disadvantages, perhaps
most notably being that it is not immediately clear how to compute the P-Res
of a function. To this end, we will describe a linear programming method
showing how to resolve this issue. We will also present some computational and
theoretical results.

1

15

Accepted Abstracts

17

Truncated rotation symmetric Boolean functions

Extended Abstract

Thomas W. Cusicka ∗, Younhwan Cheonb †

aDepartment of Mathematics, University at Bu↵alo

244 Mathematics Bldg., Bu↵alo, NY 14260
bDepartment of Defence System Science, Korea Army Academy at YeongCheon

135-9, Hoguk-ro, Gogyeong-myeon, Yeongcheon-si, Gyeongsangbuk-do, Republic of Korea,38900

June 26, 2023

1 Introduction

Let Vn denote the set of all n�tuples (x1, . . . , xn) with entries in GF (2)
and let Bn denote the set of all Boolean functions gn in n variables. We use
wt(g) for the (Hamming) weight of a Boolean function g and we say that
any function in Bn is balanced if its weight is 2n�1.

Definition 1. Let ⇢ denote the cyclic shift defined on Vn by ⇢((x1, . . . , xn)) =
(x2, . . . , xn, x1). A function g 2 Bn is called rotation symmetric (RS) if and
only if for any (x1, · · · , xn) 2 Vn, g(x1, · · · , xn) = g(⇢k(x1, · · · , xn)) for
any 1  k  n. It is called monomial rotation symmetric (MRS) if it is
generated by a single monomial.

Rotation symmetric functions are important because of their applica-
tions in cryptography (see [10, Section 6.2], which has about 16 pages de-
voted to the history of the research on these functions), and more generally
in some algorithms using Boolean functions whose e�cient evaluation is
necessary.

Any quadratic MRS function g(x) in n variables can be written as

(1, j)n = gn,j(x) = x1xj + x2xj+1 + · · · + xnxj�1 (1)

∗email: cusick@bu↵alo.edu
†email: yhcrypt@gmail.com

1

19

for some j with 2  j  dn+1
2 e, or, in the special case when n is even and

j = n
2 + 1, as

gn, n
2
+1(x) = x1xn

2
+1 + x2xn

2
+2 + · · · + xn

2
xn. (2)

These functions gn are called bent functions and this is equivalent to saying
wt(gn) = 2n�1 ± 2(n/2)�1 (see [10, Def. 5.1, p. 84]).

Definition 2. A modified MRS function f 2 Bn is called truncated rotation
symmetric (TRS) if the function stops the expansion for the n-variable MRS
function at the term where xn first occurs.

Thus any quadratic TRS function f(x) in n variables can be written as

[1, j]n = fn,j(x) = x1xj + x2xj+1 + · · · + xn�j+1xn (3)

for some j with 2  j  dn+1
2 e.

For example, (1, 2)5 = g5,2(x) = x1x2 + x2x3 + x3x4 + x4x5 + x5x1 and
[1, 2]5 = f5,2(x) = x1x2 + x2x3 + x3x4 + x4x5.

The TRS functions are important because they play an important role
in the algorithm that enables the computation of linear recursion relations
for the weights of any MRS or TRS function. The algorithm is explained in
detail in [9] and a Mathematica program which performs the algorithm is
given in [8]. It turns out that the recursion relations for any MRS function
also apply to the corresponding TRS function (with di↵erent weights for
the two functions), but it is much simpler to describe (and program) the
algorithm for the TRS case. This was first observed, for degree 3 MRS func-
tions only, in [2], but the generalization to arbitrary RS and TRS functions
of any degree was not achieved until [8, 9]. There has been much work on
various extensions and generalizations of this work since 2012, for instance
[3, 4, 5, 11, 12].

It seemed for some time that the algorithm of [9] was not needed in the
quadratic MRS case, since the work of [13] in 2009 already gave easy ways
to directly compute the weight and nonlinearity for the functions (1, j)n

in (1). However it was shown in [6, 7], using new ideas, that combining
the algorithm with the results of [13] leads to very complete information
about the weight and nonlinearity of the quadratic MRS functions, and
also a complete determination of those n for which any function (1, j)n is
balanced. The purpose of this paper is to obtain new results about the TRS
functions [1, j]n in order to more fully understand the connections between

2

20

those functions and the MRS functions. This paper shows that in some ways
the TRS theory is more complicated than the MRS theory, but in other ways
it is simpler. In particular we prove a precise formula for the generating
function of the sequence of weights for the TRS functions which is simpler
than the corresponding formula for the weights of the MRS functions. For
details of the latter formula, see [7, Theorem 5.4].

2 Preliminaries

We shall also need the concept of Walsh transform. The Walsh transform of
a function g in n variables is the map W (g) : Vn ! R defined for w 2 Vn

by

W (g)(w) =
X

x2Vn

(�1)g(x)+w·x,

where the values of g are taken to be the real numbers 0 and 1. The integers
W (g)(w) are called Walsh values. We are especially interested in the Walsh
values for w = 0 = (0, . . . , 0) because of the well known [10, Lemma 2.10]
fact

wt(gn) = 2n�1 � 1

2
W (gn)(0). (4)

We need the definition of a plateaued Boolean function (see [10, pp. 78-
79] for some history). We say that a Boolean function function g = gn

in n variables is v-plateaued if every Walsh value W (g)(w) is either 0 or
±2(n+v)/2 and we say that v = v(n) is the v-value of gn or that v(n) is one
of the v-values for g. It is well known that any quadratic Boolean function
is plateaued. A discussion of v-values for ordinary RS quadratic functions is
in [6, pp. 1310-1311] and a discussion for a much broader class of functions
is in [1] (that paper uses s instead of our v(n)).

3 The v-values for quadratic TRS functions

In this section we find all of the v-values for the functions [1, j]n and we
determine every element in the period for those values. Extending this work
to other quadratic TRS functions seems to require new ideas. We first need
the following lemma which gives the values of n for which [1, j]n is a bent
function, and more.

Lemma 1. The functions fn,j = [1, j]n are bent, and in fact W (fn,j)(0) =
2n/2, for n = (2j � 2)k, k � 1. The functions fn,j have W (fn,j)(0) =
2(n+j�1)/2 for n = j � 1 + (2j � 2)k, k � 1.

3

21

Theorem 1. The sequence of the v-values for fn,j = [1, j]n, beginning at
n = 2j � 2, has initial entries 0, 1, 2, . . . , j � 2, j � 1, j � 2, j � 3, . . . , 2, 1 and
is periodic with period 2j � 2.

Theorem 2. The functions fn(x) = [1, j]n are never balanced for n � 2j�2.

We let G(f) denote any closed formula for the generating function gen(f)
of f, where gen(f) =

P1
i=1 wt(fn)xn�1. We shall only use this notation for

truncated RS functions. The next theorem determines G([1, t]) for all t � 2.

Theorem 3. For fn = [1, t]n, t � 2, We have

G(f) =
(
Pt�2

i=0 xi)2t�2xt�1

(1 � 2x)(1 � 2t�1x2(t�1))
=

(1 � xt�1)2t�2xt�1

(1 � x)(1 � 2x)(1 � 2t�1x2(t�1))

The examples below include a sum of two TRS functions, though we
cannot yet prove the extension of Theorem 3 to those cases. The obstacles
include generalizing Theorem 1 and finding a formula for the numerator of
the rational function G(f) when f has more than one TRS function.

Example 1. For fn = [1, 2]n, we have

G(f) =
x

(1 � 2x)(1 � 2x2)

gen([1, 2])(x) = x+2x2+6x3+12x4+28x5+56x6+120x7+240x8+496x9+· · ·

Example 2. For fn = [1, 2]n + [1, 3]n, we have

G(f) =
4x3(2 � 4x + 5x2 � 10x3 + 8x4)

(1 � 2x)(1 � 2x + 2x2 � 4x3 + 4x4)

gen([1, 2] + [1, 3])(x) = 8x3 + 16x4 + 36x5 + 72x6 + 136x7 + 272x8 + 544x9 +
1056x10 + 2080x11 + 4160x12 + 8256x13 + 16384x14 + · · ·

References

[1] N. Anbar, W. Meidl and A. Topuzoglu, Idempotent and p-potent
quadratic functions: distribution of nonlinearity and co-dimension, Des.
Codes Cryptogr. 82 (2017), 265-291.

[2] A. Brown and T. W. Cusick, Recursive weights for some Boolean func-
tions, J. Math. Cryptol. 6 (2012), 105-135.

4

22

[3] F. Castro, R. Chapman,L. Medina, L. Sepulveda and L. Brehsner, Re-
cursions associated to trapezoid, symmetric and rotation symmetric
functions over Galois fields, Discrete Math. 341 (2018), 1915–1931.

[4] F. Castro and L. Medina, Modular periodicity of exponential sums of
symmetric Boolean functions, Discrete Appl. Math 217 (2017), 455-473.

[5] F. Castro, L. Medina and P. Stănică, Generalized Walsh transforms of
symmetric and rotation symmetric boolean functions are linear recur-
rent, Appl. Algebra Eng. Commun. Comput. 29 (2018), 433-453.

[6] A. Chirvasitu and T. W. Cusick, A�ne equivalence for quadratic rota-
tion symmetric functions, Des. Codes Cryptogr. 88 (2020), 1301-1329.

[7] A. Chirvasitu and T. W. Cusick, Symbolic dynamics and rotation sym-
metric Boolean functions, Cryptogr. Commun. 14 (2022), 1091-1115.

[8] T. W. Cusick, Weight recursions for any rotation symmetric Boolean
functions, https://arxiv.org/abs/1701.06648, 18 pp., 2017.

[9] T. W. Cusick, Weight recursions for any rotation symmetric Boolean
functions, IEEE Trans. Inform. Theory 64 (2018), 2962-2968.

[10] T. W. Cusick and P. Stănică, Cryptographic Boolean Functions and Ap-
plications, second ed. (San Diego: Academic Press, 2017). First edition
2009.

[11] A. Gomez-Flores, L. Medina, L. Pomales and C. Santiago-Calderon,
Recurrences in terms of special polynomials for exponential sums of
elementary symmetric polynomials over finite fields, Integers 23 Paper
No. A11, 17 pp., 2023.

[12] A. Gomez-Flores, L. Medina and P. Stănică, Recursions for modified
Walsh transforms of some families of Boolean functions, Rocky Moun-
tain J. Math. 52 (4) (2022), 1355-1373.

[13] H. Kim, S.-M. Park and S. G. Hahn, On the weight and nonlinearity of
homogeneous rotation symmetric Boolean functions of degree 2, Discr.
Appl. Math. 157 (2009), 428-432.

5

23

A new method to represent the inverse map as a

composition of quadratics in a binary finite field

Florian Luca1,2, Santanu Sarkar3, Pantelimon Stănică4

1 School of Mathematics, University of the Witwatersrand,

Private Bag X3, Wits 2050, Johannesburg, South Africa; and
2 Centro de Ciencias Matemáticas, UNAM,

Morelia, Mexico; Florian.Luca@wits.ac.za,
3 Department of Mathematics, Indian Institute of Technology Madras,

Sardar Patel Road, Chennai TN 600036, INDIA; santanu@iitm.ac.in,
4 Applied Mathematics Department, Naval Postgraduate School,

Monterey 93943, USA; pstanica@nps.edu

June 24, 2023

1 Introduction

Carlitz [1] showed that all permutation polynomials over Fq, where q > 2 is a power of a prime, are
generated by the special permutation polynomials xq�2 (the inversion) and ax + b (a�ne functions,
where 0 6= a, b 2 Fq). The smallest number of inversions in such a decomposition is called the Carlitz
rank.

Here, we ask whether the inverse in F2n (the finite field of dimension n over the two-element prime
field F2) can be written as a composition of quadratics (and suggest an extension allowing quadratics and
cubics). That is, we ask if there are integers r � 1 and a1 � 0, . . . , ar � 0 such that �1 ⌘Qr

i=1(2
ai +1)

(mod 2n � 1). Nikova, Nikov, Rijmen [8] proposed an algorithm to find such a decomposition. Via
Carlitz [1], they were able to use the algorithm and show that for n  16 any permutation can be
decomposed in quadratic permutations, when n is not multiple of 4 and in cubic permutations, when n
is multiple of 4. Petrides [9], in addition to a theoretical result, which we will discuss below, improved
the complexity of the algorithm and presented a computational table of shortest decompositions for
n  32, allowing also cubic permutations in addition to quadratics. Here, we extend Petrides’ result,
as well as we propose a number theoretical approach, which allows us to cover easily all (surely, odd)
exponents up to 100, at least, with weight 2 factorizations (in the full paper we will cover up to n a
few hundred). Our method is based on some hard number theoretical conjectures we propose, which
allow us some inferences in our algorithmic approach. The algorithm easily extends the table of Nikova,
Nikov, Rijmen [8] and Petrides [9] that covered the mentioned factorizations up to n = 32.

2 Our results

Let ⌫2 be the 2-valuation, that is, the largest power of 2 dividing the argument. We start with a
proposition, extending one of Petrides’ results [9], which stated that if n is an odd integer and n�1

2⌫2(n�1) ⌘

1

25

2k (mod 2n � 1), for some k, then,

2n � 2 = 2

 ✓
2

n�1

2⌫2(n�1)

◆2⌫2(n�1)

� 1

!
= 2

✓
2

n�1

2⌫2(n�1) � 1

◆ ⌫2(n�1)Y

j=1

⇣
2

n�1

2j + 1
⌘

⌘ 2
⇣
22k � 1

⌘ ⌫2(n�1)Y

j=1

⇣
2

n�1

2j + 1
⌘

= 2

k�1Y

j=0

⇣
22j

+ 1
⌘ ⌫2(n�1)Y

j=1

⇣
2

n�1

2j + 1
⌘

.

This implies, via Carlitz [1], that for all odd integers (coined good integers, with the counterparts
named bad integers in [6]) satisfying the congruence n�1

2⌫2(n�1) ⌘ 2k (mod 2n � 1), one can decompose
any permutation polynomial in F2n into a�ne and quadratic power permutations.

The smallest odd positive integer that is not good is n = 7. We note however that in that case
27�2 = 2(26�1) = 2(22�1)(24 +22 +1) = 2(2+1)(24 +22 +1), and so, any permutation in F27 can be
decomposed into a�ne, quadratic and cubic permutations. We are ready to generalize this observation.

Theorem 1. Let n be an odd integer satisfying n�1
2⌫2(n�1) ⌘ 2k3s (mod 2n � 1), for some non-negative

integers r, s. Then, the inverse power permutation in F2n has a decomposition into a�ne, quadratic
and cubic power permutations of length k + s + ⌫2(n � 1).

Proof. We use the di↵erence of cubes factorization, a3 � b3 = (a � b)(a2 + ab + b2), and write

2n � 2 = 2

✓
2

n�1

2⌫2(n�1) � 1

◆ ⌫2(n�1)Y

j=1

⇣
2

n�1

2j + 1
⌘
⌘ 2

⇣
22k3s � 1

⌘ ⌫2(n�1)Y

j=1

⇣
2

n�1

2j + 1
⌘

= 2
⇣
22k3s�1 � 1

⌘⇣
22k+13s�1

+ 22k3s�1
+ 1
⌘ ⌫2(n�1)Y

j=1

⇣
2

n�1

2j + 1
⌘

· · · · · · · · · · · ·

= 2
⇣
22k � 1

⌘ s�1Y

j=0

⇣
22k+13j

+ 22k3j
+ 1
⌘ ⌫2(n�1)Y

j=1

⇣
2

n�1

2j + 1
⌘

⌘ 2
k�1Y

j=0

⇣
22j

+ 1
⌘ s�1Y

j=0

⇣
22k+13j

+ 22k3j
+ 1
⌘ ⌫2(n�1)Y

j=1

⇣
2

n�1

2j + 1
⌘

.

The claim is shown.

Example 1. It is natural to investigate the counting function B(x) of superbad integers (that is,
integers n such that n�1

2⌫2(n�1) 6⌘ 2k3s (mod 2n � 1)), with B(x) = {n  x : n is superbad}, or the

complement A(x) = {n  x : n�1
2⌫2(n�1) ⌘ 2k3s (mod 2n � 1)}. As an example, |B(50)| = 16, more

precisely, B(50) = {1, 2, 3, 4, 5, 7, 9, 10, 13, 17, 19, 25, 28, 33, 37, 49} (Petrides [9] noted that 25 integers
up to 50 are bad, so our extension surely prunes the integers better).

Let p � 3 be prime, N := Np = 2p � 1. It is known that if q | Np, then q ⌘ 1 (mod p). We ask if we
can say anything about the number of distinct prime factors !(Np) of Np. Recall that, via Mihailescu’s
theorem (which solves Catalan’s conjecture from 1844) [5], we know that 2p � 1 is not a (nontrivial)
prime power, if p � 3. In general, we propose the following conjecture.

Conjecture 1. There exists p0 such that for p > p0, !(Np) < 1.36 log p.

2

26

Similar type of heuristics regarding lower bounds for ⌦(2n � 1) and !(2n � 1) can be found in [3]
and [4]. Conjecture 1 is based on statistical arguments originating from sieve methods. It is shown in
[2, Exercise 04] that for fixed � > 0 we have

#{n  x : !(n) � (1 + �) log log x} ⌧�
x

(log x)Q(�)
,

where Q(�) := (1 + �) log((1 + �)/e) + 1. We apply such heuristics to Np = 2p � 1. Note that if q | Np,

then 2p ⌘ 1 (mod q). In particular,

✓
2

q

◆
= 1, so q ⌘ ±1 (mod 8). Using a similar approach as in [2,

Exercise 04] we can infer that the probability that a number having only prime factors congruent to

±1 (mod 8) to have more than 1.36 log log n distinct prime factors is O
⇣

1
(log n)1.00008

⌘
. Applying this

to Np, we get O
⇣

1
(log(2p�1))1.0008

⌘
⌧ 1

p1.0008 , and since the series
P

p�3
1

p1.0008 is convergent, we are led

to believe that there are at most finitely many prime numbers p such that !(Np) � 1.36 log p. Perhaps
infinitely often !(Np) � 2. For example, this is the case if p ⌘ 3 (mod 4) is such that q = 2p + 1 is
prime. Indeed, then 2 is a quadratic residue modulo q so 2(q�1)/2 ⌘ 1 (mod q), showing that q | Np.
Since Np is never a perfect power, in particular it cannot be a power of q, we get the desired conclusion
that !(Np) � 2. The next conjecture is proposed based upon some results of Murata and Pomerance,
under the Generalized Riemann Hypothesis (GRH).

Conjecture 2. There exists p0 such that if p > p0, then Np is squarefree.

So, assuming Conjecture 1 and 2, let Np := q1 · · · qk for some distinct primes q1, . . . , qk with k 
1.36 log p. We take numbers of the form 2a +1 with an odd a 2 [5, p�2]. We want to compute

⇣
2a+1
2p�1

⌘
,

and use a method by Rotkiewicz [10]. Precisely, we write the Euclidean algorithm with even quotients
and signed remainders:

p = (2k1)a + "1r1, "1 2 {±1}, 1  r1  a � 1

a = (2k2)r1 + "2r2, "2 2 {±1}, 1  r2  r1 � 1,

. . . = . . .

r`�2 = (2k`)r`�1 + "`r`, "` 2 {±1}, r` = 1,

where ` := `(a, p) is minimal with r` = 1. We show in the full paper that
⇣

2a+1
2p�1

⌘
= (�1)`+1. We select

the subset A(p) of odd a in the interval [5, p� 2] such that ` ⌘ 0 (mod 2). We assume that there are a
positive proportion of such, namely that there is a constant c1 > 0 such that for large p, there are > c1p

odd numbers a 2 [5, p � 2] such that `(a, p) ⌘ 0 (mod 2). So, we have
Qk

i=1

⇣
2a+1

qi

⌘
= �1 for a 2

A(p). We next conjecture that for such a, the values are
⇣⇣

2a+1
qi

⌘
, 1  i  k

⌘
are uniformly distributed

among the 2k vectors (±1, ±1, · · · , ±1)| {z }
k times

. That is, 2ai + 1 is a quadratic residue modulo pj for all j 6= i

but it is not a quadratic residue modulo qi. In the full paper we provide an argument why we expect
to find it and under the previous two conjectures the following should hold. The rest of our method is
unconditional and we summarize it in the next algorithm.

Algorithm 1 works for most primes (and odd integers), and we applied it for n  100. But there are

a few primes like 47 for which there is no aj 2 [5, p � 2] such that
⇣

2aj +1
qi

⌘
= (�1)�ij , with Kronecker

symbols as exponents. If that happens, the system may not be solvable (it has even determinant).
However, experimentally, we observed that if it fails, we can always get suitable ai’s such that the
corresponding matrix has odd determinant, and is therefore invertible. The factorization of 2n �2 with
weight 2 factors for odd 33  n  100 is given in Table 1.

3

27

Algorithm 1:

1 for prime (or odd) p  B (suitable bound) do
2 Factor 2p � 1 = q1 · · · qk, where qi is prime for 1  i  k;
3 for j = 1 to k do

4 Find odd aj 2 [5, p � 2] such that the Legendre symbol
⇣

2aj +1
qi

⌘
= (�1)�ij where �ij is

the Kronecker symbol.
5 end
6 Take a primitive root ⇢i modulo qi for 1  i  k;

7 Find bij such that 2ai + 1 = ⇢
bij

j (mod qj) for 1  i, j  k;

8 Find largest ↵i such that 2↵i is a divisior of qi � 1 for 1  i  k;
9 Calculate ↵ = max{↵i : 1  i  k};

10 Solve the system of linear equations
Pk

i=1 yibij = 2↵j�1 for j = 1, 2, . . . , k. in Z↵

11 end

References

[1] L. Carlitz, “Permutations in a finite field”, Proc. Amer. Math. Soc. 4 (1953), 538.

[2] R. T. Hall and G. Tenenbaum, Divisors, Cambridge Tracts in Mathematics, 90. Cambridge
University Press, Cambridge, 1988.

[3] A. Kontorovich and J. Lagarias, “On toric orbits in the a�ne sieve”, Exp. Math. 30 (2021),
575–587.

[4] F. Luca and P. Stănică, “Prime divisors of Lucas sequences and a conjecture of Ska lba”, Int. J.
Number Theory 1 (2005), no. 4, 583–591.

[5] P. Mihăilescu, Preda (2004), “Primary Cyclotomic Units and a Proof of Catalan’s Conjecture”,
J. Reine Angew. Math. 572 (2004), 167–195.

[6] P. Moree, “On the divisors of ak + bk”, Acta Arith. LXXX.3 (1997), 197–212.

[7] L. Murata and C. Pomerance, “On the largest prime factor of a Mersenne number”, in Number
Theory, 209–218, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., Providence, RI, 2004.

[8] S. Nicoka, V. Nikov, V. Rijmen, “Decomposition of permutations in a finite field”, Cryptogr.
Commun. 11 (2019), 379–384.

[9] G. Petrides, “On decompositions of permutation polynomials into quadratic and cubic power
permutations”, Cryptogr. Commun. 15 (2023), 199–207.

[10] A. Rotkiewicz, “Applications of Jacobi’s symbol to Lehmer’s numbers”, Acta Arith. 42 (1983),
163–187.

4

28

Table 1: Factorization of 2n � 2 (mod 2n � 1) for odd 33  n  99.

n = 33 (25 + 1)599478 · (213 + 1)299739 · (229 + 1)1798434

n = 35
⇣
(2 + 1)(217 + 1)

⌘967995 · (229 + 1)276570

n = 37 (25 + 1)77039772 · (213 + 1)19259943

n = 39
⇣
(211 + 1)(221 + 1)

⌘1592955

n = 41 (29 + 1)20111512782 · (213 + 1)3351918797

n = 43
⇣
(25 + 1)(217 + 1)(223 + 1)

⌘593211015

n = 45 (2 + 1)407925 · (213 + 1)349650 ·
⇣
(225 + 1)(233 + 1)(241 + 1)

⌘116550

n = 47 (211 + 1)1927501725 · (237 + 1)435242325 · (241 + 1)1616614350

n = 49 (29 + 1)34630287489 · (211 + 1)3393768173922

n = 51 (1 + 229)150009615

n = 53 (1 + 25)6512186850 · (1 + 215)3506562150 · (1 + 221)250468725

n = 55
(1 + 2)6588945 · (1 + 211)5856840 · (1 + 217)732105

·(1 + 225)1464210 · (1 + 233)10249470 · (1 + 247)732105

n = 57
(1 + 25)396029391534 · (1 + 217)1188088174602 · (1 + 221)594044087301

·(1 + 247)198014695767

n = 59 (1 + 27)3663925098759300 · (1 + 213)305327091563275

n = 61 (1 + 29)1152921504606846975

n = 63
(1 + 2)42958503 · (1 + 25)3735522 · (1 + 239)56032830·

(1 + 243)44826264 · (1 + 247)29884176

n = 65 (1 + 217)72647571779055 · (1 + 223)72647571779055 · (1 + 229)72647571779055

n = 67 (1 + 25)15295807610659665

n = 69
(1 + 211)36566619637113225 · (1 + 217)2437774642474215·
(1 + 253)19502197139793720 · (1 + 267)21939971782267935

n = 71 (1 + 211)3659326099961865 · (1 + 213)14637304399847460

n = 73 (1 + 231)1726845200475585 · (1 + 245)107064402429486270

n = 75
(1 + 2)36654975 · (1 + 239)17832150 · (1 + 241)9906750·

(1 + 243)7925400 · (1 + 253)57459150 · (1 + 255)15850800 · (1 + 263)43589700

n = 77
(1 + 225)290641821624556479 · (1 + 231)290641821624556479·
(1 + 241)290641821624556479 · (1 + 267)581283643249112958

n = 79 (1 + 29)12102186118644337359 · (1 + 215)12102186118644337359·
(1 + 241)12102186118644337359

n = 81
(1 + 2)106331083505919 · (1 + 225)155626336778778 · (1 + 237)105108887143782·

(1 + 239)155626336778778 · (1 + 243)4073987873790

n = 83 (1 + 211)7239076764159456135965

n = 85
(1 + 29)4760486403166879215 · (1 + 213)4760486403166879215·

(1 + 223)4760486403166879215

n = 87
(1 + 239)3371346107168004 · (1 + 241)280945508930667 · (1 + 253)2809455089306670·
(1 + 261)4214182633960005 · (1 + 271)1685673053584002 · (1 + 283)280945508930667

n = 89 (1 + 213)309485009821345068724781055

n = 91
(1 + 259)280368506850705 · (1 + 267)1682211041104230 · (1 + 271)280368506850705·

(1 + 273)280368506850705 · (1 + 281)3364422082208460

n = 93 (1 + 217)2305843010287435773

n = 95 (1 + 243)7354378117756963125 · (1 + 251)7354378117756963125

n = 97 (1 + 25)612535370185410489825162846 · (1 + 29)102089228364235081637527141

n = 99
(1 + 2)160190876329840719 · (1 + 223)160190876329840719 · (1 + 235)58251227756305716·
(1 + 257)29125613878152858 · (1 + 259)101939648573535003 · (1 + 275)58251227756305716

5

29

A Class of Weightwise Almost Perfectly Balanced Boolean

Functions with High Weightwise Nonlinearity

Deepak Kumar Dalai1 and Krishna Mallick2

1School of Mathematical Sciences,
2School of Computer Sciences,

National Institute of Science Education and Research,
An OCC of Homi Bhabha National Institute,

Bhubaneswar, Odisha 752050, India
Email: {deepak, krishna.mallick}@niser.ac.in

Abstract

A Boolean function with good cryptographic properties over a set of vectors with constant
Hamming weight is significant for stream ciphers like FLIP [MJSC16]. This paper presents a
construction for weightwise almost perfectly balanced (WAPB) Boolean functions with good
nonlinearity and good weightwise nonlinearities. We have presented the comparison of nonlin-
earity and weightwise nonlinearities with other available WAPB Boolean functions, which shows
that this class of WAPB functions has the highest nonlinearities.

Keywords— Boolean function, FLIP cipher, Weightwise perfectly balanced (WPB), Weightwise almost
perfectly balanced (WAPB)

1 Introduction

An n-variable Boolean function f is a mapping from the n-dimensional vector space IFn
2 to IF2, where

IF2 is a finite field with two elements {0, 1}. Depending upon the underlying algebraic structure, the ‘+’
symbol is used for the addition operation in both IF2 and R. In stream ciphers, Boolean functions are used
as a filter function for generating pseudorandom sequences; in some block ciphers, these functions are used
to generate round keys. In these classical ciphers, the inputs to the function reach the whole space IFn

2 ,
whereas for reducing multiplicative depth in lightweight ciphers, the inputs can be restricted to some subsets
of IFn

2 . The inputs to the filter function that has been used in the FLIP cipher introduced in [MJSC16] are
restricted to the vectors of Hamming weight n

2 . The analysis of di↵erent cryptographic criteria of Boolean
functions over restricted domains arises after the work of Carlet, Méaux, and Rotella in [CMR17]. Therefore
to avoid the biased output, one of the important cryptographic criteria for a Boolean function is balancedness
over the defined domain. Moreover, it is desirable to construct Boolean functions over the set of vectors
En,k = {x 2 IFn

2 : wH(x) = k} for 1  k  n � 1 with good cryptographic properties to avoid attacks.
In [CMR17], Carlet et. al introduced the concepts of weightwise perfectly balanced (WPB) and weightwise
almost perfectly balanced (WAPB) functions, which are balanced over En,k for all k and its cryptographic
criteria like nonlinearity and algebraic immunity over En,k .
There are several proposed methods for constructing WAPB and WPB (see [DLR16, CMR17, LM19, MZD19,
TL19, LS20, MS21, MSL21, GM22, GS22, ZS22, ZS23, DM23]) in which the nonlinearity over En,k of the
defined functions have been discussed. Still, there is a noticeable gap in the upper bound of nonlinearity pro-
posed in [CMR17] over En,k (i.e., weightwise nonlinearity) and the known constructions. In our construction,
we have attempted to reduce the gap in weightwise nonlinearity and also nonlinearity over IFn

2 .

1

31

2 Preliminaries

Let Bn be the set of all n-variable Boolean functions. Let us denote [i, j] = {i, i+1, . . . , j} for two integers i, j
with i  j. For any v = (v1, v2, . . . , vn) 2 IFn

2 , the Hamming weight of v is defined as wt(v) = |{i 2 [1, n] : vi =
1}|. The support of a Boolean function f 2 Bn is sup(f) = {v 2 IFn

2 : f(v) = 1} and Hamming weight of f is
wt(f) = |sup(f)|. Let us denote En,k = {v 2 IFn

2 : wt(v) = k} for every k 2 [0, n]. The support and Hamming
weight of f restricted to En,k are denoted as supk(f) = {v 2 En,k : f(v) = 1} and wtk(f) = |supk(f)|
respectively. The Hamming distance between two functions f, g 2 Bn is given as d(f, g) = |{v 2 IFn

2 : f(v) 6=
g(v)}| = wt(f + g) and the Hamming distance between two functions f, g restricted to En,k is given as
dk(f, g) = |{v 2 En,k : f(v) 6= g(v)}| = wtk(f + g). The truth table representation of a Boolean function
f 2 Bn is a 2n-dimensional vector representation, i.e., f = {f(0, 0, . . . , 0), f(0, 0, . . . , 1), . . . , f(1, 1, . . . , 1)}.
The algebraic normal form (ANF) representation is defined as f(x) =

P
u2IFn

2
auxu, where au 2 IF2 and

xu = xu1
1 xu2

2 · · · xun
n for x = (x1, x2, . . . , xn). The algebraic degree of the Boolean function f 2 Bn is defined

as deg(f) = max{wt(u) : u 2 IFn
2 , au 6= 0}. Any f 2 Bn, with deg(f)  1, is said to be an a�ne Boolean

function, and the set of all a�ne Boolean functions in Bn is denoted by An. A Boolean function f 2 Bn is
balanced, if wt(f) = 2n�1. The nonlinearity of f 2 Bn, denoted as nl(f), is the minimum Hamming distance
of f to any a�ne function. That is, nl(f) = ming2An

d(f, g). Similarly, all these cryptographic criteria are
also defined for the n-variable Boolean function when the inputs are restricted to En,k.

Definition 2.1. [CMR17] A Boolean function f 2 Bn is said to be weightwise almost perfectly balanced

(WAPB) if, for every k 2 [0, n], wtk(f) =
(n

k)
2 if

�
n
k

�
is even and wtk(f) =

(n
k)±1

2 if
�
n
k

�
is odd.

Definition 2.2. [CMR17] A Boolean function f 2 Bn is said to be weightwise perfectly balanced (WPB) if

the restriction of f to En,k, is balanced for all k 2 [1, n � 1], i.e.,
�
n
k

�
is even and wtk(f) =

(n
k)
2 .

Therefore, a WPB function fn 2 Bn exists if n = 2m and a WAPB function f 2 Bn is called WPB
Boolean function for n = 2m for a nonnegative integer m. A WPB Boolean function f 2 Bn is balanced, if

f(0, 0, . . . , 0) 6= f(1, 1, . . . , 1). Hence, there are 2
n�1Y

k=1

✓ �
n
k

�
�
n
k

�
/2

◆
balanced WPB Boolean functions.

Definition 2.3. [CMR17] The nonlinearity of f 2 Bn over En,k, denoted as nlk(f), is the Ham-
ming distance of f to the set of all a�ne functions An when evaluated over En,k. That is, nlk(f) =
ming2An

dk(f, g) = ming2An
wtk(f + g).

Let 4 be the symbol represents the symmetric di↵erence between two sets.

Proposition 2.4. [MS21] For a positive integer n = 2m, let fn 2 Bn with support

sup(fn) =

(
{(x, 1) 2 IF2

2 : x 2 IF2} = {(0, 1), (1, 1)} if n = 2,

{(x, y) : x, y 2 IF
n
2
2 , wt(x) is odd}4{(z, z) : z 2 sup(fn

2
)} if n > 2.

Then fn is a WPB Boolean function.

Proposition 2.5. [DM23] For n � 2, let fn 2 Bn with support

sup(fn) =

8
><
>:

{(x, 1) 2 IF2
2 : x 2 IF2} = {(0, 1), (1, 1)} if n = 2,

{(x, 0) 2 IFn
2 : x 2 sup(fn�1)} [{(x, 1) 2 IFn

2 : x /2 sup(fn�1)} if n > 2 and odd,

{(x, y) 2 IFn
2 : x, y 2 IF

n
2
2 , wt(x) is odd}4{(z, z) 2 IFn

2 : z 2 sup(fn
2
)}, if n > 2 and even.

Then fn is a WAPB Boolean function.

The construction proposed in Proposition 2.5 is a generalization of the construction proposed in Propo-
sition 2.4 to get a WAPB Boolean function. The construction proposed in Proposition 2.5 is important for
our study as we will provide a construction that improves its nonlinearity.

2

32

Theorem 2.6. [DM23] Let fn 2 Bn (n > 2), defined as in Proposition 2.5. Then nl(fn) = 2nl(fn�1) if n
is odd and nl(fn)  wt(fn

2
) if n is even.

For n even, the nonlinearity of fn is very low as X1 = {(x, y) 2 IFn
2 : x, y 2 IF

n
2
2 , wt(x) is odd} is the

support of a linear function

n
2X

i=1

xi and the cardinality of X2 = {(z, z) 2 IFn
2 : z 2 sup(fn

2
)} is wt(fn

2
).

Further, for n even and k odd, supk(fn) = sup(fn)\En,k = {(x, y) 2 IFn
2 : x, y 2 IF

n
2
2 , wt(x) is odd}\En,k =

supk(
Pn

2
i=1 xi) and hence nlk(fn) = 0. Therefore, in our technique, we attempt to permute the coordinates

of the vectors of weight k in X1 to improve the nonlinearity by avoiding the linear patterns and preserving
the weightwise balancedness.

3 A class of WAPB Boolean functions with good nonlinearity

In this case, nlk(fn) = 0 as described above. Here, we will present a class of WAPB Boolean functions by
modifying sup(fn) presented in Proposition 2.5. We observed that the nonlinearity becomes weak because
the sup(fn) when n is even is close to a linear function. In our technique, we attempt to increase the
nonlinearity by permuting the coordinates of some vectors in sup(fn) when n is even.

Therefore, it is assumed that n > 2 and is even in this section. Hence, when n is even, as Proposition 2.5,

sup(fn) = {(x, y) 2 IFn
2 : x, y 2 IF

n
2
2 , wt(x) is odd}4{(z, z) 2 IFn

2 : z 2 sup(fn
2
)}. Then

supk(fn) =

8
><
>:

{(x, y) 2 IFn
2 : x, y 2 IF

n
2
2 , wt(x) is odd, wt(x) + wt(y) = k}

4{(z, z) 2 IFn
2 : z 2 sup k

2
(fn

2
)} if k is even

{(x, y) 2 IFn
2 : x, y 2 IF

n
2
2 , wt(x) is odd, wt(x) + wt(y) = k} if k is odd

Now we will consider both cases of k (i.e., odd or even) and will propose to permute the coordinates of some
vectors in supk(fn).

3.1 When k is odd

In this case, supk(fn) = {(x, y) 2 IFn
2 : x, y 2 IF

n
2
2 , wt(x) is odd, wt(x) + wt(y) = k} = supk(

Pn
2
i=1 xi) as we

discussed at the end of Section 2. The linear function l =
Pn

2
i=1 xi is independent of y. We attempt to break

the independence and linearity on the cordinates in y using the support of a nonlinear function a 2 Bn
2
.

That is, for every x 2 IF
n
2
2 satisfying l (i.e., wt(x) is odd), we keep (x, y) if y 2 sup(a) otherwise we replace

(x, y) by (y, x). If a is a highly nonlinear function, then the component y is expected to be far from the
linear functions and results a high nonlinearity in f .

Here, if wt((x, y)) = k then wt((y, x)) = k. Further, if (x, y) 2 supk(fn) then wt(y) is even as wt(x) is
odd. So, (y, x) 62 supk(fn) if (x, y) 2 supk(fn). Therefore, replacement of (x, y) 2 supk(fn) by (y, x) does
not change the weight of the resultant function in the domain En,k.

Lemma 3.1. Let a 2 Bn
2
. A function f 2 Bn such that for every k 2 [0, n] and odd,

supk(fa) = {(x, y) 2 IFn
2 : x, y 2 IF

n
2
2 , wt(x) is odd, y 2 sup(a), wt(y) = k � wt(x)}

[{(y, x) 2 IFn
2 : x, y 2 IF

n
2
2 , wt(x) is odd, y 62 sup(a), wt(y) = k � wt(x)}. (1)

Then wtk(fa) = 1
2

�
n
k

�
.

3.2 When k is even

In this case, supk(fn) = {(x, y) 2 IFn
2 : x, y 2 IF

n
2
2 , wt(x) is odd, wt(x) + wt(y) = k}4{(z, z) 2 IFn

2 :

z 2 sup k
2
(fn

2
)}. Let us denote the set L = {(x, y) 2 IFn

2 : x, y 2 IF
n
2
2 , wt(x) is odd, wt(x) + wt(y) = k} and

M = {(z, z) 2 IFn
2 : z 2 sup k

2
(fn

2
)}. In this case, the replacement of (x, y) 2 supk(fn) by (y, x) is not straight

3

33

forward as in Subsection 3.1. If (x, y) 2 L then wt(y) is odd as wt(x) is odd. As a result, (y, x) could be
present in L. Therefore, replacement of (x, y) 2 supk(fn) by (y, x) can possibly duplicate an existing vector
in L, which reduces the weight of the resultant function. Therefore, we attempt to swap two bits xi and yi

in stead of swapping x and y as in the following lemma. For given (x, y) 2 IFn
2 where x = (x1, . . . , xn

2
), y =

(y1, . . . , yn
2
) 2 IF

n
2
2 , denote (xi, yi) = (x1, . . . , xi�1, yi, xi+1, . . . , xn

2
, y1, . . . , yi�1, xi, yi+1, . . . , yn

2
). That is,

(xi, yi) is obtained by swapping the i-th bits of x and y.

Lemma 3.2. Let fn 2 Bn be the function defined in Proposition 2.5. For every k 2 [0, n] and even, let
Wk = {(x, y) 2 supk(fn)|wt(x) is odd, and there is an i 2 [1, n

2] such that xj = yj for 1  j  i �
1 and yi = 1, xi = 0} and
W 0

k = {(xi, yi)|(x, y) 2 Wk and i 2 [1, n
2] such that xj = yj for 1  j  i � 1 and yi = 1, xi = 0 i.e., the i

obtained for(x, y) in Wk}.
A function gn 2 Bn such that supk(gn) = (supk(fn) \ Wk) [W 0

k for every k 2 [0, n] and even.
Then wtk(gn) = wtk(fn) if k is even.

Like in Lemma 3.1, now we will use the support of another Boolean function (possibly, a highly nonlinear)
to swap xi and yi in some of (xi, yi) 2 W 0

k as defined in Lemma 3.2.

Lemma 3.3. Let b 2 Bn
2
. Let gn 2 Bn as defined in Lemma 3.2 with Wk and W 0

k. A function hb
n 2 Bn

such that for every k 2 [0, n] and even,
supk(hb

n) = {(x, y) 2 supk(gn) : (x, y) 62 W 0
k} [{(x, y) : (x, y) 2 W 0

k and y 2 sup(b)} [{(y, x) : (x, y) 2
W 0

k and y 62 sup(b)}.
Then wtk(hb

n) = wtk(gn).

3.3 A class of WAPB Boolean functions

Now we will apply Lemma 3.1 and Lemma 3.3 to construct a WAPB Boolean function with improved
nonlinearity.

Theorem 3.4. Let a, b 2 Bn
2
. Let fn 2 Bn be the function defined in Proposition 2.5. Let Fn 2 Bn with

support supk(Fn) =

(
supk(hb

n) if k is even

supk(fa
n) if k is odd,

where fa
n , hb

n are as defined in Lemma 3.1 and Lemma 3.3 respectively. Then Fn is a WAPB Boolean
function.

The following is a recursive construction of a WAPB Boolean function.

Construction 3.5. For n � 2, let Fn 2 Bn with support

sup(Fn) =

8
><
>:

{(x, 1) 2 IF2
2 : x 2 IF2} = {(0, 1), (1, 1)} if n = 2,

{(x, 0) 2 IFn
2 : x 2 sup(Fn�1)} [{(x, 1) 2 IFn

2 : x /2 sup(Fn�1)} if n > 2 and odd,

Sn4{(z, z) 2 IFn
2 : z 2 sup(Fn

2
)} if n > 2 and even.

Here Sn = [n
k=0supk(Fn) and supk(Fn) =

(
supk(hb

n) if n > 2 and even and k is even

supk(ha
n) if n > 2 and even and k is odd.

3.4 Experimental results on nonlinearity

In this section, we have presented experimental results on the nonlinearity (nl(Fn)) and weightwise nonlin-
earity (nlk(Fn)) of Fn. We have chosen a, b 2 Bn

2
, a highly nonlinear function

a(y) = b(y) =

(
y1y2 + · · · + yn

2 �1yn
2

if n
2 is even

y1y2 + · · · + yn
2 �2yn

2 �1 + yn
2

if n
2 is odd.

This function is a bent function when n is even and concatenation of two bent functions when n is
odd. Further, these two functions are easy to compute which is helpful for implementation in light weight

4

34

n nl nl2 nl3 nl4 nl5 nl6 nl7 nl8 nl9 nl10 nl11 nl12 nl13 nl14

nX

k=0

nlk

8 96 4 16 20 16 4 0 0 - - - - - - 60

9 192 6 22 45 45 22 6 0 0 - - - - - 146

10 416 9 36 69 94 73 12 9 0 0 - - - - 302

11 832 11 50 113 163 173 117 34 11 0 0 - - - 672

12 1596 12 36 146 264 286 264 148 36 14 0 0 - - 1206

13 3192 15 69 219 507 660 660 495 240 69 17 0 0 - 2951

14 6904 19 102 336 764 1083 1484 1079 654 299 30 18 0 0 5868

15 13808 22 147 474 1155 2013 2735 2670 1965 1154 465 75 22 0 12897

16 28152 24 64 564 1216 2547 5036 4610 5036 2919 1216 516 64 24 23836

Table 1: Listing of nl(Fn), nlk(Fn) and
Pn

k=0 nlk(Fn) for 8  n  16.

cryptography. Table 1 presents the nonlinearity and weightwise nonlinearity of the functions Fn for n =
8, 9, . . . , 16, which are generated using Construction 3.5.

We have presented a comparison of weightwise nonlinearities of Fn with the upper bound presented
in [CMR17] in Table 2. Further, no upper bound is available for the nonlinearity of WAPB Boolean functions.
Therefore, we have presented a comparison of the nonlinearity of Fn with the upper bound of the nonlinearity
of n variable Boolean functions [dH97].

n function nl nl2 nl3 nl4 nl5 nl6 nl7 nl8 nl9 nl10 nl11
Pn

k=0 nlk

8
UB 120 11 24 30 24 11 - - - - - 100
F8 96 4 16 20 16 4 - - - - - 60

9
UB 244 15 37 57 57 37 15 - - - - 218
F9 192 6 22 45 45 22 6 - - - - 146

10
UB 496 19 54 97 118 97 54 19 - - - 498
F10 416 9 36 69 94 73 12 9 - - - 302

11
UB 1000 23 76 155 220 220 155 76 23 - - 948
F11 832 11 50 113 163 173 117 34 11 - - 672

12
UB 2016 28 102 236 381 446 381 236 102 28 - 1940
F12 1596 12 36 146 264 286 264 148 36 14 - 1206

13
UB 4050 34 134 344 625 837 837 625 344 134 34 3948
F13 3192 15 69 219 507 660 660 495 240 69 17 2951

Table 2: Comparison of nlk(Fn) with the upper bound(UB) presented in [CMR17]

We compare the nonlinearities of our result with some recent constructions for n = 8 in Table 3. The
sum of the weightwise nonlinearity of our construction is highest for n = 8 among the available constructions.

4 Conclusions and Future work

We have presented constructing a class of WAPB Boolean functions in n variables from the idea of construc-
tions presented in [MS21, DM23]. The experimental results on nonlinearity and weightwise nonlinearities
show a good improvement and are the highest among the available constructions. For future work, we are
studying the cryptographic properties of this class of WAPB functions and attempting to further improve
the nonlinearities and weightwise nonlinearities by modifying this class of functions.

5

35

WPB/ WAPB functions nl2 nl3 nl4 nl5 nl6
P8

k=0 nlk

Upper Bound [CMR17] 11 24 30 24 11 100

Carlet, Méaux, Rotella [CMR17] 2 12 19 12 2 47

Li and Su [LS20, g2q+2 Equation(9)] 2 12 19 12 2 47

Mesnager and Su [MS21, fm Equation(13)] 2 0 3 0 2 7

Mesnager and Su [MS21, gm Equation(22)] 2 14 19 14 2 51

Mesnager, Su and Li [MSL21, fm Equation(2)] 2 8 8 8 2 28

Mesnager, Su and Li [MSL21, fm Equation(3)] 6 8 26 8 6 54

Zhang and Su [ZS23, gm Equation(11)] 2 12 19 12 6 51

Fn[Construction 3.5] 4 16 20 16 4 60

Table 3: Comparison of nlk of 8-variable WPB constructions.

References

[CMR17] Claude Carlet, Pierrick Méaux, and Yann Rotella. Boolean functions with restricted input and
their robustness; application to the FLIP cipher. IACR Trans. Symmetric Cryptol., 2017(3):192–
227, 2017.

[dH97] Xiang dong Hou. On the norm and covering radius of the first-order Reed-Muller codes. IEEE
Transactions on Information Theory, 43(3):1025–1027, 1997.

[DLR16] Sébastien Duval, Virginie Lallemand, and Yann Rotella. Cryptanalysis of the FLIP family of
stream ciphers. In Advances in Cryptology - CRYPTO 2016, volume 9814 of Lecture Notes in
Computer Science, pages 457–475. Springer, 2016.

[DM23] Deepak Kumar Dalai and Krishna Mallick. A class of weightwise almost perfectly balanced
boolean functions. In ALgebraic and combinatorial methods for COding and CRYPTography-
ALCOCRYPT, 2023.

[GM22] Agnese Gini and Pierrick Méaux. On the weightwise nonlinearity of weightwise perfectly balanced
functions. Discrete Applied Mathematics, 322:320–341, 2022.

[GS22] Xiaoqi Guo and Sihong Su. Construction of weightwise almost perfectly balanced boolean func-
tions on an arbitrary number of variables. Discrete Applied Mathematics, 307:102–114, 2022.

[LM19] Jian Liu and Sihem Mesnager. Weightwise perfectly balanced functions with high weightwise
nonlinearity profile. Designs, Codes and Cryptography, 87(8):1797–1813, 2019.

[LS20] Jingjing Li and Sihong Su. Construction of weightwise perfectly balanced boolean functions with
high weightwise nonlinearity. Discrete Applied Mathematics, 279:218–227, 2020.

[MJSC16] Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet. Towards
stream ciphers for e�cient FHE with low-noise ciphertexts. In Advances in Cryptology - EU-
ROCRYPT 2016, volume 9665 of Lecture Notes in Computer Science, pages 311–343. Springer,
2016.

[MS21] Sihem Mesnager and Sihong Su. On constructions of weightwise perfectly balanced boolean
functions. Cryptography and Communications, 13(6):951–979, 2021.

[MSL21] Sihem Mesnager, Sihong Su, and Jingjing Li. On concrete constructions of weightwise perfectly
balanced functions with optimal algebraic immunity and high weightwise nonlinearity. In The 6th
International Workshop on Boolean Functions and Applications, 2021.

[MZD19] Sihem Mesnager, Zhengchun Zhou, and Cunsheng Ding. On the nonlinearity of boolean functions
with restricted input. Cryptography and Communications, 11(1):63–76, 2019.

6

36

[TL19] Deng Tang and Jian Liu. A family of weightwise (almost) perfectly balanced boolean functions
with optimal algebraic immunity. Cryptography and Communications, 11(6):1185–1197, 2019.

[ZS22] Linya Zhu and Sihong Su. A systematic method of constructing weightwise almost perfectly
balanced boolean functions on an arbitrary number of variables. Discrete Applied Mathematics,
314:181–190, 2022.

[ZS23] Rui Zhang and Sihong Su. A new construction of weightwise perfectly balanced boolean functions.
Advances in Mathematics of Communications, 17(4):757–770, 2023.

7

37

The second-order zero di↵erential spectra of some

power maps

Kirpa Garg*, Sartaj Ul Hasan*, Constanza Riera**, and Pantelimon Stănică***

*Department of Mathematics, Indian Institute of Technology Jammu, Jammu 181221, India
**Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway

University of Applied Sciences, 5020 Bergen, Norway
***Applied Mathematics Department, Naval Postgraduate School, Monterey, CA 93943, USA

Abstract

It was shown by Boukerrou et al. [3] that the F -boomerang uniformity (which is the same
as the second-order zero di↵erential uniformity in even characteristic) of perfect nonlinear
functions is 0 on Fpn (p prime) and the one of almost perfect nonlinear functions on F2n is
also 0. It is natural to inquire what happens with APN or other low di↵erential uniform
functions in odd characteristics. As a by-product, our work implies that APN functions in
odd characteristic may not have zero second-order zero di↵erential spectra, as one might
venture to conjecture. Here, we explicitly determine the second-order zero di↵erential spectra
of several maps with low di↵erential uniformity. In particular, we compute the second-order
zero di↵erential spectra for some almost perfect nonlinear (APN) functions, and it turns out
that these functions also have low second-order zero di↵erential uniformity.

1 Introduction

Let n be a positive integer and p be a prime number. We denote by Fq the finite field with q = pn

elements, by F⇤
pn the multiplicative cyclic group of non-zero elements of Fq and by Fq[X] the ring

of polynomials in one variable X with coe�cients in Fq. It may be noted that functions over finite
fields are very important objects due to their wide range of applications in coding theory and
cryptography. For example, in cryptography, these functions (mostly, for p = 2, though there are
some proposals in odd characteristic) are often used in designing what are known as substitution
boxes (S-boxes) in modern block ciphers. One of the most e↵ective attacks on block ciphers is
di↵erential cryptanalysis, which was first introduced by Biham and Shamir [1]. The resistance
of a function against di↵erential attacks is measured in terms of its di↵erential uniformity – a
notion introduced by Nyberg [11]. For a function F : Fq ! Fq, and any a 2 Fq, the derivative
of F in the direction a is defined as DF (X, a) := F (X + a) � F (X) for all X 2 Fq. For any
a, b 2 Fq, the Di↵erence Distribution Table (DDT) entry �F (a, b) at point (a, b) is the number of
solutions X 2 Fq of the equation DF (X, a) = b. Further, the di↵erential uniformity of F , denoted
by �F , is given by �F := max{�F (a, b) : a 2 F⇤

q , b 2 Fq}. We call the function F a perfect
nonlinear (PN) function, respectively, an almost perfect nonlinear (APN) function, if �F = 1,
respectively, �F = 2. Blondeau, Canteaut, and Charpin [2] introduced the idea of locally APN
power functions as a generalization of the APN-ness property. A power function F (X) over F2n

is said to be locally-APN if max{DDTF (1, b) : b 2 F2n \ F2} = 2.
The boomerang attack on block ciphers is another important cryptanalysis technique proposed

by Wagner [13]. It can be considered as an extension of the classical di↵erential attack. At Euro-
crypt 2018, Cid et al. [5] introduced a systematic approach known as the Boomerang Connectivity
Table (BCT), to analyze the boomerang style attack. Boura and Canteaut [4] further studied
BCT and coined the term “boomerang uniformity”, which is essentially the maximum value of
nontrivial entries of the BCT, to quantify the resistance of a function against the boomerang
attack. Boukerrou et al. [3] pointed out the need for the counterpart of the BCT by extending39

the idea to Feistel ciphers. They introduced the Feistel Boomerang Connectivity Table (FBCT)
as an extension for Feistel ciphers, where the S-boxes may not be permutations.

The authors in [3] investigated the properties of the FBCT for two classes of vectorial func-
tions, namely, APN functions and functions based on inverse mapping over F2n . They showed
that all the non-trivial coe�cients at FBCT are 0 for APN functions over F2n and are 0 and 4
for the inverse function over F2n , where n is even. In fact, the coe�cients of FBCT are related
to the second-order zero di↵erential spectra of the functions. Another important property of the
FBCT is that F is an APN function over F2n if and only if the FBCT of F is 0 for a, b 2 F2n

with ab(a + b) 6= 0. Li et al. [10] further studied the second-order zero di↵erential spectra of the
inverse function and some APN functions in odd characteristic. The authors of [10] also show
that these function also have low second-order zero di↵erential uniformity. Although most of
the block ciphers operate in even characteristic, there are proposals, which work in non-binary
environments, and we mention here Schroeppel’s Hasty Pudding cipher (a candidate for the AES
competition) [12], defined on a set of arbitrary size.

We further extend their work by investigating the second-order zero di↵erential spectra of
some more classes of functions with low di↵erential uniformity. In addition, these functions have
low second-order zero di↵erential uniformity. The paper is organized as follows. In Section 2,
we recall some definitions. The second-order zero di↵erential spectra of four power functions
over finite fields of odd characteristic have been considered in Section 3. Further, in Section 4
second-order zero di↵erential spectrum of a locally APN function has been studied. Finally, we
conclude the paper in Section 5.

2 Preliminaries

In this section, we recall some definitions.

Definition 2.1 For p an odd prime, n a positive integer, and q = pn, we let ⌘ be the quadratic
character of Fq defined by

⌘(X) :=

(
1 if X is square of an element of F⇤

q ,

�1 otherwise.

Definition 2.2 [3, 10] For F : Fpn ! Fpn a function and a, b 2 Fpn, the second-order zero
di↵erential spectra of F with respect to a, b is defined as

rF (a, b) := #{X 2 Fpn : F (X + a + b) � F (X + b) � F (X + a) + F (X) = 0}. (1)

If p = 2, we call rF = max{rF (a, b) : a 6= b, a, b 2 F2n \ {0}} the second-order zero di↵erential
uniformity of F . If p > 2, we call rF = max{rF (a, b) : a, b 2 Fpn \ {0}} the second-order zero
di↵erential uniformity of F .

Definition 2.3 (Feistel Boomerang Connectivity Table) [3] Let F be a function from F2n to F2n

and a, b 2 F2n. The Feistel Boomerang Connectivity Table (FBCT) of F is given by a 2n ⇥ 2n

table T, in which the entry for the (a, b) position is given by:

FBCTF (a, b) = #{X 2 F2n : F (X + a + b) + F (X + b) + F (X + a) + F (X) = 0}.

Definition 2.4 (F -Boomerang Uniformity) [3, 10] The F -Boomerang uniformity corresponds to
the highest value in the FBCT without considering the first row, the first column and the diagonal:

�F = max
a 6=0,b 6=0,a 6=b

FBCTF (a, b).

Notice that the coe�cients of FBCT are related to the second-order zero di↵erential spectra
of functions over F2n . Note that the F -Boomerang uniformity is in fact the second-order zero
di↵erential uniformity of F in even characteristic.40

3 The second-order zero di↵erential spectrum for functions over
finite fields of odd characteristic

Table 1 gives some of the known power functions with low second-order zero di↵erential uniformity
over finite fields of odd characteristic.

Table 1: Second-order di↵erential uniformity for functions over finite fields of odd characteristic

p d condition �F rF Ref

any odd p any d any n 1 0 [10, Lemma 2.5]

p > 3 3 any 2 1 [10, Theorem 3.1]

p = 3 3n � 3 n > 1 is odd 2 2 [10, Theorem 3.2]

p > 2 pn � 2 pn ⌘ 2 (mod 3) 2 1 [10, Theorem 3.3]

p > 3 pm + 2 n = 2m, pm ⌘ 1 (mod 3) 2 1 [10, Theorem 3.4]

p = 3 3n � 2 any 3 3 [10, Theorem 3.1]

p pn � 2 pn ⌘ 1 (mod 3) 3 3 [10, Theorem 3.1]

p > 3 4 n > 1 3 2 This paper

p 2pn�1
3 pn ⌘ 2 (mod 3) 2 1 This paper

p > 3 pk+1
2 gcd(2n, k) = 1  gcd(pk�1

2 , p2n � 1) p�3
2 This paper

p = 3 3n�1
2 + 2 n is odd 4 3 This paper

In this section, we first deal with the computation of second-order zero di↵erential spectrum
of the function F (X) = Xd, where d = 2pn�1

3 over Fpn , for pn ⌘ 2 (mod 3). Helleseth et al. [8]
showed that F is an APN function over Fpn , for pn ⌘ 2 (mod 3).

Theorem 3.1 Let F (X) = Xd be a function of Fpn, where d = 2pn�1
3 , pn ⌘ 2 (mod 3). Then

for a, b 2 Fpn,

rF (a, b) =

(
1 if ab 6= 0

pn if ab = 0.
(2)

Moreover, F is second-order zero di↵erential 1-uniform.

Next, we considered the power function F (X) = X
pk+1

2 , which was shown to be an APN
power function by Helleseth et al. in [8]. We further compute its second-order zero di↵erential
spectrum over Fpn .

Theorem 3.2 Let F (X) = Xd be a power function of Fpn, where d = pk+1
2 , and gcd(k, 2n) = 1.

Let p > 3. Then for a, b 2 Fpn,

rF (a, b) =

8
>>>><
>>>>:

0 if ab 6= 0, and ⌘(D) = �1

1 if ab 6= 0, and ⌘(D) = 0
p�3
2 if ab 6= 0, and ⌘(D) = 1

pn if ab = 0

(3)

where D = 4a2

(1�u2i)2
+ b2

u2i , u is a primitive (p � 1)-th root of unity in F⇤
p2n. Moreover, F is

second-order zero di↵erential p�3
2 -uniform.

Remark 3.3 Helleseth et al. in [8] showed that F (X) = Xd over F5n, where d = 5k+1
2 , and

gcd(k, 2n) = 1 is an APN power function. Hence, from the above Theorem 3.2, we get that F is
second-order zero di↵erential 1-uniform over F5n.

41

Remark 3.4 Note that, if p = 3, then F is PN function [6]. Therefore, by [10], it is second-order
zero di↵erential 0-uniform over F3n.

Now, we considered some more functions with low di↵erential uniformity, more precisely of
di↵erential uniformity 3 and 4. Dobbertin et al. in [7] show that F (X) = X4 is di↵erentially
3 uniform for all p > 3 and n > 1. In the following theorem, we show that F (X) = X4 is
second-order zero di↵erential 1-uniform for all p > 3 and n > 1.

Theorem 3.5 Let F (X) = X4 be a power function of Fpn, where p > 3, n > 1. Then for
a, b 2 Fpn,

rF (a, b) =

8
>>>>>>><
>>>>>>>:

0 if ⌘

✓�a2 � b2

3

◆
= �1

1 if a2 + b2 = 0

2 if ⌘

✓�a2 � b2

3

◆
= 1

pn if ab = 0.

(4)

Moreover, F is second-order zero di↵erential 2-uniform.

Helleseth et al. in [9] showed that F (X) = Xd, where d = 3n�1
2 +2 is a di↵erentially 4-uniform

function over Fpn , for odd n. We compute its second-order zero di↵erential spectrum and show
that it is is second-order zero di↵erential 3-uniform.

Theorem 3.6 Let F (X) = Xd be a function of F3n, where d = 3n�1
2 + 2 and n is odd. Then for

a, b 2 F3n,

rF (a, b) =

8
><
>:

1 if ⌘(ab) = 1 = ⌘(a2 + b2) or ⌘(ab) = �1 and ⌘(a2 + b2) = 1

3 if ⌘(ab) = �1 = ⌘(a2 + b2) or ⌘(ab) = 1 and ⌘(a2 + b2) = �1

3n if ab = 0.

(5)

Moreover, F is second-order zero di↵erential 3-uniform.

4 The second-order zero di↵erential spectrum for functions over
finite fields of even characteristic

In this section, we compute the second-order zero di↵erential spectrum of the locally APN function
F (X) = X2m�1 over F22m , the DDT entries for which have already been computed by Blondeau
et al. in [2].

Theorem 4.1 Let F (X) = X2m�1 2 F2n [X], where n = 2m. Then for any a, b 2 F2n,

(1) When m is odd,

rF (a, b) =

8
>>>>>><
>>>>>>:

2n if a = 0, or b = 0, or a = b

4 if a 6= 0, b 6= 0, a 6= b, A 6= 0 and B = 0

2m � 4 if a 6= 0, b 6= 0, a 6= b, A = 0 and B 6= 0

0 if a 6= 0, b 6= 0, a 6= b, A = 0 and B = 0

0 if a 6= 0, b 6= 0, a 6= b, A 6= 0 and B 6= 0.

(2) When m is even,

rF (a, b) =

8
>>>>>><
>>>>>>:

2n if a = 0, or b = 0, or a = b

0 if a 6= 0, b 6= 0, a 6= b, A 6= 0 and B = 0

2m � 4 if a 6= 0, b 6= 0, a 6= b, A = 0 and B 6= 0

0 if a 6= 0, b 6= 0, a 6= b, A = 0 and B = 0

0 if a 6= 0, b 6= 0, a 6= b, A 6= 0 and B 6= 0,42

where A =
ab2m

+ ba2m

ab(a + b)
and B =

a2b2m
+ b2a2m

ab(a + b)
. Moreover, the Feistel boomerang uniformity of

F is �F (F) = 2m � 4.

5 Conclusion

In this paper, we extended the work of Li et al. [10] by computing the second-order zero di↵erential
spectra of some APN power functions over finite fields of odd characteristic in order to derive
additional cryptographic properties of APN functions. We also determined the second-order zero
di↵erential spectrum of some functions with low di↵erential uniformity. Additionally, all of these
functions exhibit a low second-order zero di↵erential uniformity. In our future work, we will
look into more functions with low di↵erential uniformity and investigate their second-order zero
di↵erential spectrum.

References

[1] E. Biham, A. Shamir, Di↵erential cryptanalysis of DES-like cryptosystems, J. Cryptol. 4:1
(1991), 3–72.

[2] C. Blondeau, A. Canteaut, P. Charpin,Di↵erential properties of X ! X2t�1, IEEE Trans.
Inf. Theory 57(12), (2011) 8127–8137.

[3] H. Boukerrou, P. Huynh, V. Lallemand, B. Mandal, M. Minier, On the Feistel counterpart
of the boomerang connectivity table, IACR Trans. Symmetric Cryptol. 1 (2020), 331–362.

[4] C. Boura, A. Canteaut, On the boomerang uniformity of cryptographic S-boxes, IACR Trans.
Symmetric Cryptol. 3 (2018) 290–310.

[5] C. Cid, T. Huang, T. Peyrin, Y. Sasaki, L. Song, Boomerang connectivity table: a new
cryptanalysis tool. In: J. Nielsen, V. Rijmen (ed) Advances in Cryptology-EUROCRYPT’18,
LNCS 10821 683-714, Springer, Cham (2018).

[6] R.S. Coulter, R.W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des.
Codes Cryptogr. 10(2) (1997) 167–184.

[7] H. Dobbertin, D. Mills, E. N. Müller, A. Pott, W. Willems, APN functions in odd charac-
teristic, Discrete Math. 267(1-3) (2003) 95–112.

[8] T. Helleseth, R. Chunming, S. Daniel, New families of almost perfect nonlinear power map-
pings, IEEE Trans. Inf. Theory 45.2 (1999) 475–485.

[9] T. Helleseth, D. Sandberg, Some power mappings with low di↵erential uniformity, Appl.
Algebra Eng. Commun. Comput. 8 (1997), 363–370.

[10] X. Li, Q. Yue, D. Tang, The second-order zero di↵erential spectra of almost perfect nonlinear
functions and the inverse function in odd characteristic, Cryptogr. Commun. 14(3) (2022),
653–662.

[11] K. Nyberg, Di↵erentially uniform mappings for cryptography, In T. Helleseth (ed), Advances
in Cryptology-EUROCRYPT’93, LNCS 765, pp. 55–64, Springer, Heidelberg (1994).

[12] R. Schroeppel, Hasty Pudding Cipher Specifications, http://richard.schroeppel.name:
8015/hpc/hpc-spec; see also, https://en.wikipedia.org/wiki/Hasty Pudding cipher.

[13] D. Wagner, The boomerang attack, In: L. R. Knudsen (ed.) Fast Software Encryption-FSE
1999. LNCS 1636, Springer, Berlin, Heidelberg, (1999), pp. 156–170.

43

Optimizing Implementations of Boolean Functions

Meltem Sönmez Turan

National Institute of Standards and Technology

Abstract

Symmetric cryptography primitives are constructed by iterative applications of
linear and nonlinear layers. Constructing e�cient circuits for these layers, even for the
linear one, is challenging. In 1997, Paar proposed a heuristic to minimize the number
of XORs (modulo 2 addition) necessary to implement linear layers. In this study,
we slightly modify Paar’s heuristics to find implementations for nonlinear Boolean
functions, in particular to homogeneous Boolean functions. Additionally, we show
how this heuristic can be used to construct circuits for generic Boolean functions with
small number of AND gates, by exploiting a�ne equivalence relations.

1 Introduction

Symmetric cryptography primitives are constructed by iterative applications of linear and
nonlinear layers. Linear layers are typically composed of binary matrices, and are used
for di↵usion, whereas the nonlinear layers are composed of nonlinear substitution boxes
(s-box), and are used for confusion. Constructing e�cient circuits for these layers, even
for the linear ones, is challenging. There are various metrics to measure the e�ciency of
the circuits such as number of specific gates (e.g., AND, XOR), or the depth of the circuits.

Multiplicative Complexity. The metric Multiplicative Complexity (MC) is defined
as the minimum number of AND gates required to implement a function with a circuit
over the basis {AND, XOR, NOT}. This complexity measure is relevant for many advanced
cryptographic protocols (e.g., [1]), fully homomorphic encryption (e.g., [2]), and zero-
knowledge proofs (e.g., [3]), where processing nonlinear gates such as AND, NAND, is more
expensive than processing linear gates such as XOR. These protocols benefit from new
symmetric-key primitives that can be implemented with small number of AND gates (e.g.,
Rasta [4], LowMC [5]).

There is no known asymptotically e�cient technique to compute the MC of a random
Boolean function. In 2000, Boyar et al. [6] showed that the MC of an n-variable random
Boolean function is at least 2n/2�O(n) with high probability. For arbitrary n, it is known
that under standard cryptographic assumptions, it is not possible to compute the MC in
polynomial time in the length of the truth table [7]. The degree bound states that the MC
of a Boolean function having degree d is at least d � 1 [8].

Although there are no e�cient techniques to find MC of for random Boolean functions,
the MC distribution has been established for Boolean functions having up to 6 variables
[9, 10]. There are also known techniques specific for Boolean functions with low degree
(e.g., less then or equal to three) or structure (e.g., symmetric). The MC of a�ne Boolean
functions is zero. Mirwald and Schnorr [11] showed that the MC of a quadratic function
f is k, i↵ f is a�ne equivalent to the canonical form

Lk
i=1 x2i�1x2i. This implies the MC

of quadratic functions is at most bn
2 c. Turan and Peralta [12] improved the bounds on

45

MC of cubic Boolean functions. Brandão et al. [13] studied the MC of symmetric Boolean
functions and constructed circuits for all such functions with up to 25 variables. In 2017,
Find et al. [14] characterized the Boolean functions with MC 2 by using the fact that
MC is invariant with respect to a�ne transformations. In 2020, Çalık et al. extended the
result to Boolean functions with MC up to 4 [15]. In 2022, Häner and Soeken [16] showed
the MC of interval checking.

XOR complexity. In addition to the optimization of AND gates for Boolean function,
another line of research focuses on optimizing the implementations of linear matrices over
F2, where the goal is to minimize the number of XOR gates necessary to implement the
matrices. There are three metrics used while optimizing the number of XOR gates: direct
XOR (d-XOR), sequential XOR (s-XOR) and general XOR (g-XOR). d-XOR is the direct XOR

count and corresponds to the the number of 1’s in the binary matrix representation of
the linear layer. The s-XOR metric counts the number of XOR operations of the form
xi = xi�xj , that updates the value of input xi, whereas, g-XOR metric corresponds to the
number of operations of the form xi = xj � xk. Determining optimal implementations for
s-XOR and g-XOR is a hard problem. Boyar et al. [17] argue that minimizing the number
of XORs to compute a binary matrix is equivalent to solving the Shortest Linear Program
problem over GF(2), which is known to be NP-hard. One of the early heuristics for XOR
optimization is by Paar[18] in 1997, which is cancellation-free, i.e., the circuits generated
by Paar’s heuristic does not include cancellation of identical input bits. Since ability to
cancellation leads to better circuit, many new heuristics were suggested (e.g., [19, 20, 21]).

Contributions. In this study, we propose a modification to Paar’s heuristics so
that it can also be applied to nonlinear functions, in particular to homogeneous Boolean
functions. Additionally, we show how this heuristic can be used to construct circuits for
generic Boolean functions with small number of AND gates, by exploiting a�ne equivalance
relations.

2 Preliminaries

2.1 Boolean functions

Let F2 be the finite field with two elements. An n-variable Boolean function f is a mapping
from Fn

2 to F2. Let Bn be the set of n-variable Boolean functions.The algebraic normal
form (ANF) of f is the multivariate polynomial

f(x1, . . . , xn) =
X

u2Fn
2

auxu, (1)

where au 2 F2 and xu = xu1
1 xu2

2 · · · xun
n is a monomial containing the variables xi where

ui = 1. The degree of the monomial xu is the number of variables appearing in xu. The
algebraic degree of a Boolean function, denoted deg(f), is the highest degree among the
monomials appearing in its ANF. A Boolean function is called homogeneous, if all the
monomials in its algebraic normal form have the same algebraic degree.

Two functions f, g 2 Bn are a�ne equivalent if f can be written as

f(x) = g(Ax + a) + b>x + c, (2)

where A is a non-singular n⇥n matrix over F2, a,b are column vectors in Fn
2 , and c 2 F2.

We use [f] to denote the a�ne equivalence class of the function f . Degree and MC are
invariant under a�ne transformations.

46

2.2 Boolean Circuits

A Boolean circuit C with n inputs and m outputs is a directed acyclic graph, where the
inputs and the gates are the nodes, and the edges correspond to the Boolean-valued wires.
The fanin and fanout of a node is the number of wires going in and out of the node,
respectively. The nodes with fanin zero are called the input nodes and are labeled with
an input variable from {x0, . . . , xn�1}. The circuits considered in this study only contain
gates from the complete basis {AND, XOR, NOT} and have exactly one node with fanout
zero (i.e., m = 1), which is called the output node. For our purposes, we assume AND gates
have fan-in two, but XOR gates have arbitrary fan-in (i.e., > 0).

2.3 Paar’s Heuristics

The linear layers of symmetric key primitives can be represented by a m⇥n binary matrix
M , where there are n input variables (x0, . . . , xn�1) and m output variables (y0, . . . , ym�1).
An upper bound for the number of XOR operations is w � m, where w is the weight of M
(i.e., the number of ones).

Paar [18] proposed two heuristics to implement linear layers with small number of
XOR operations. Both heuristics operate on the matrix representation of the linear layer.
The heuristic determines the frequency for each possible pairs of input variable xi, xj

(i 6= j) that are XORed together in m linear functions. The pair with highest frequency is
computed and placed to the matrix as a new variable. In the next iteration, the operation
is repeated on the matrix of size m⇥ (n + 1). This procedure is repeated until all outputs
have been computed (i.e., the weight of the resulting matrix is m).

Example. Let the linear layer to implement be given as follows:

x0 + x1 + x2 = y0

x1 + x3 + x4 = y1

x0 + x2 + x3 + x4 = y2

x1 + x2 + x3 = y3

x0 + x1 + x3 = y4

x1 + x2 + x3 + x4 = y5

The matrix representation of the linear layer is

0
BBBBBB@

1 1 1 0 0
0 1 0 1 1
1 0 1 1 1
0 1 1 1 0
1 1 0 1 0
0 1 1 1 1

1
CCCCCCA

.

0
BBBB@

x0

x1

x2

x3

x4

1
CCCCA

=

0
BBBBBB@

y0

y1

y2

y3

y4

y5

1
CCCCCCA

Frequency of each pair of inputs appearing in the linear layer is

Pair Frequency Pair Frequency
(x0, x1) 2 (x1, x3) 4
(x0, x2) 2 (x1, x4) 2
(x0, x3) 2 (x2, x3) 3
(x0, x4) 1 (x2, x4) 2
(x1, x2) 3 (x3, x4) 3

47

The first selected pair is (x1, x3) with frequency 4. So, the first step of the implementation
is t0 = x1 � x3. Then the matrix is updated as follows.

0
BBBBBB@

1 1 1 0 0 0
0 0 0 0 1 1
1 0 1 1 1 0
0 0 1 0 0 1
1 0 0 0 0 1
0 0 1 0 1 1

1
CCCCCCA

and the updated frequency table is

Pair Frequency Pair Frequency
(x0, x1) 1 (x1, t0) 0
(x0, x2) 2 (x2, x3) 1
(x0, x3) 1 (x2, x4) 2
(x0, x4) 1 (x2, t0) 2
(x0, t0) 1 (x3, x4) 1
(x1, x2) 1 (x3, t0) 0
(x1, x3) 0 (x4, t0) 2
(x1, x4) 0 - -

There is a tie for the the pairs (x0, x2), (x2, x4), (x2, t0), and (x4, t0). For this example
the next pair is selected randomly among these pairs as (x0, x2), and the next step of the
implementation becomes t1 = x0 � x2. Continuing this way, the implementation of the
layer is found as:

t0 = x1 � x3

t1 = x0 � x2

t2 = x4 � t0

t3 = x1 � t1

t4 = x3 � x4

t5 = t1 � t4

t6 = x2 � t0

t7 = x0 � t0

t8 = x2 � t2

The output (y0, y1, y2, y3, y4, y5) is obtained as (t3, t2, t5, t6, t7, t8).

3 Application of Paar’s Heuristic to Nonlinear Boolean Func-
tions

Although Paar’s heuristic is proposed to find implementations for linear layers, it can
also be applied to nonlinear Boolean functions, with a slight modification. An n-variable
Boolean function with m monomials can be represented by a m⇥ n binary matrix, where
each row corresponds to a monomial in the ANF of the function. For example, the follow-
ing row (1 1 0 1 0 1) represents the monomial x0x1x3x5 for a 6-variable Boolean function.
Instead of modulo 2 addition of each terms in the row, we are now interested in mod-
ulo 2 multiplication of each term. This method, in general, would not be e�cient (in

48

terms of number of multiplications), especially for Boolean functions with large number
of monomials, as the heuristic computes each monomials independently.

Next we propose a variation of the heuristic that decomposes Boolean functions into
homogeneous Boolean functions and exploit a�ne equivalence relations to find e�cient
circuits.

Let f 2 Bn, with degree d. The proposed heuristic to find e�cient circuit for f is as
follows:

1. Decompose f into d homogeneous Boolean functions,

f = a + f1 � f2 � . . . � fd,

where fi is the sum of monomials of f with degree i, and a corresponds to the
constant term.

2. Apply a number of a�ne equivalence transformations to the highest-degree homo-
geneous function, (i.e., fd) to construct f 0

d with smaller number of monomials with
degree d. Note that if d = n, no a�ne transformation would decrease the number
of monomials, as there is only one monomial with degree n. If f 0

d includes monomi-
als with degree smaller than d, those monomials are added to the corresponding fi

depending on their degree.

3. Apply modified Paar’s heuristic to find an implementation for the degree d terms
of f 0

d. (Note that in modified Paar’s heuristic each iteration corresponds to modulo
2 multiplication, instead of modulo 2 addition.) Apply the inverse a�ne transfor-
mation to the circuit to construct an implementation for the degree d monomials of
f .

4. Repeat the procedure to find an implementation for f 0
d�1 where f 0

d�1 is the XOR of
fd and the new degree d � 1 monomials generated during Step 2.

5. The procedure is repeated until implementations for each homogoeneous function is
obtained and these sub-circuits are compined to find an implementation for f .

The combined implementations can further be improved by eliminating the common
operations done in each independent implementations of the homogeneous functions.

4 Discussion

In this study, we proposed a modification of the Paar’s heuristic to find e�cient implemen-
tations for Boolean functions (in particular to reduce the number of nonlinear gates). In
general, Paar’s heuristic provides better solutions when the representation matrix has low
weight, which may not be true for nonlinear Boolean functions. Decomposing the Boolean
function into homogeneous Boolean functions, and applying a�ne transformations to the
specific degree terms makes it easier to reduce the number of target monomials, since
smaller degree terms are handled in the next iterations of the algorithm.

References

[1] Vladimir Kolesnikov and Thomas Schneider. Improved Garbled Circuit: Free XOR
Gates and Applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,

49

Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Au-
tomata, Languages and Programming, 35th International Colloquium, ICALP, vol-
ume 5126 of Lecture Notes in Computer Science, pages 486–498. Springer, 2008.

[2] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In Shafi Goldwasser, editor, Innovations
in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012,
pages 309–325. ACM, 2012.

[3] Joan Boyar, Ivan Damg̊ard, and René Peralta. Short Non-Interactive Cryptographic
Proofs. J. Cryptology, 13(4):449–472, 2000.

[4] Christoph Dobraunig, Maria Eichlseder, Lorenzo Grassi, Virginie Lallemand, Gregor
Leander, Eik List, Florian Mendel, and Christian Rechberger. Rasta: A Cipher with
Low ANDdepth and Few ANDs per Bit. In CRYPTO (1), volume 10991 of Lecture
Notes in Computer Science, pages 662–692. Springer, 2018.

[5] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and
Michael Zohner. Ciphers for MPC and FHE. In Elisabeth Oswald and Marc Fis-
chlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of Lecture Notes
in Computer Science, pages 430–454. Springer, 2015.

[6] Joan Boyar, René Peralta, and Denis Pochuev. On the Multiplicative Complexity of
Boolean Functions over the Basis (^, �, 1). Theor. Comput. Sci., 235(1):43–57, 2000.

[7] Magnus Gausdal Find. On the Complexity of Computing Two Nonlinearity Measures.
In Computer Science - Theory and Applications - 9th International Computer Science
Symposium in Russia, CSR 2014, Moscow, Russia, June 7-11, 2014. Proceedings,
pages 167–175, 2014.

[8] C. P. Schnorr. The Multiplicative Complexity of Boolean Functions. In Teo Mora,
editor, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC
1988), volume 357 of LNCS, pages 45–58, Berlin, Heidelberg, 1989. Springer Berlin
Heidelberg.

[9] Meltem Turan Sönmez and René Peralta. The Multiplicative Complexity of Boolean
Functions on Four and Five Variables, pages 21–33. Springer International Publish-
ing, Cham, 2015.

[10] Çağdaş Çalık, Meltem Sönmez Turan, and René Peralta. The Multiplicative Com-
plexity of 6-variable Boolean Functions. Cryptogr. Commun., 11(1):93–107, 2019.

[11] Roland Mirwald and Claus-Peter Schnorr. The Multiplicative Complexity of
Quadratic Boolean Forms. Theor. Comput. Sci., 102(2):307–328, 1992.

[12] Meltem Sonmez Turan and Rene Peralta. On the Multiplicative Complexity of Cubic
Boolean Functions. The 6th International Workshop on Boolean Functions and their
Applications (BFA), 2021.

[13] Lúıs T. A. N. Brandão, Çağdaş Çalık, Meltem Sönmez Turan, and René Peralta.
Upper Bounds on the Multiplicative Complexity of Symmetric Boolean Functions.
Cryptogr. Commun., 11(6):1339–1362, 2019.

50

[14] Magnus Gausdal Find, Daniel Smith-Tone, and Meltem Sönmez Turan. The Number
of Boolean Functions with Multiplicative Complexity 2. IJICoT, 4(4):222–236, 2017.

[15] Çağdaş Çalık, Meltem Sönmez Turan, and René Peralta. Boolean Functions with
Multiplicative Complexity 3 and 4. Cryptogr. Commun., 12(5):935–946, 2020.

[16] Thomas Häner and Mathias Soeken. The multiplicative complexity of interval check-
ing, 2022.

[17] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization techniques with
applications to cryptology. J. Cryptol., 26(2):280–312, 2013.

[18] C. Paar. Optimized arithmetic for Reed-Solomon encoders. Proceedings of IEEE
International Symposium on Information Theory, pages 250–, 1997.

[19] Alexander Maximov and Patrik Ekdahl. New circuit minimization techniques for
smaller and faster AES sboxes. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(4):91–125, 2019.

[20] Subhadeep Banik, Yuki Funabiki, and Takanori Isobe. More results on shortest linear
programs. In Nuttapong Attrapadung and Takeshi Yagi, editors, Advances in Infor-
mation and Computer Security - 14th International Workshop on Security, IWSEC
2019, Tokyo, Japan, August 28-30, 2019, Proceedings, volume 11689 of Lecture Notes
in Computer Science, pages 109–128. Springer, 2019.

[21] Zejun Xiang, Xiangyoung Zeng, Da Lin, Zhenzhen Bao, and Shasha Zhang. Optimiz-
ing implementations of linear layers. IACR Transactions on Symmetric Cryptology,
2020(2):120–145, Jul. 2020.

51

On the matrix equation MX = X and self-dual Butson bent

sequences

J. A. Armario1, R. Egan2, and P. Ó Catháin3

1Departamento de Matemática Aplicada I, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012

Sevilla, Spain
2School of Mathematical Sciences, Dublin City University, Ireland

3Fiontar & Scoil na Gaeilge, Dublin City University, Ireland

Abstract

Let M be a square matrix of order n and X a vector of n components, each with complex

entries. We are interested in studying MX = X for some particular M where X denotes the

image of X under complex conjugation. If X 2 Rn, X is an eigenvector for M associated to

the eigenvalue 1. Here we reduce our study to M = 1p
n
H where HH⇤ = nI and the entries

of H and X are in set of the complex kth roots of unity (i.e., H is a Butson Hadamard

matrix). Connections to generalized bent functions are studied.

1 Introduction

A new notion of bent sequences was introduced in [3] as a solution in X, Y to the system

1p
n

HX = Y,

where H is a real Hadamard matrix of order n and X, Y 2 {±1}n. X is called a bent sequence

for H. If H is the Sylvester Hadamard matrix of order n = 2m then any bent Boolean function

f : Zm
2 ! Z2 determines a bent sequence for H by the rule X = (�1)f (and vice versa).

Clearly, the vector Y can also be shown to be a bent sequence attached to HT , called the

dual of X. When X = Y the sequence X is said to be self-dual. In [4] this notion of self-dual

bent sequence for a real Hadamard matrix was further generalized to a n⇥n Butson-Hadamard

matrix with entries in the set of complex 4-th roots of unity as a solution in X to the system

HX = �X (1)

where � is an eigenvalue of H and X 2 {±1, ±
p
�1}n.

Bent functions are equivalent to certain Hadamard matrices and di↵erence sets. The concept

has been generalized, yielding equivalences between various associated objects. In Schmidt’s

survey [1] equivalences between generalized bent functions f : Zm
k ! Zh, group invariant Butson

Hadamard matrices, and splitting relative di↵erence sets are described.

In this paper, we extend the definition of self-dual bent sequence X for H to any But-

son Hadamard matrix (not only for the 4-th roots of unity) which is “complementary” to the53

definition given in [4]. That consists of considering, instead of (1), the system

1p
n

HX = X (or more generally, HX = �X) (2)

where the overline denotes complex conjugation, the entries of H and X belong to the set of

complex kth roots of unity. A solution X of the system (2) is what we understand in this paper

for a self-dual bent sequence for H. We believe that it is a more natural extension from the real

to the complex case. Furthermore, when H and X take values in the set {±1}, we recover the

definition of [3]. Some motivation for the study of this self-duality concept can also be found

in this reference. Finally, it is easy to realize that if H is the complex conjugation of the mth

Kronecker power of the q ⇥ q Fourier matrix then any self-dual bent sequence for H determines

a self-dual generalized bent function f : Zm
q ! Zq by the rule X = [⇣

f(a)
q]>a2Zm

q
which we denote

by X = ⇣f
q for convenience.

2 Preliminaries

Let m and k be positive integers, and ⇣k = exp (2⇡
p
�1/k) be a complex kth root of unity. We

write h⇣ki = {⇣j
k}0jk�1. Let Zk be the ring of integers modulo k with k > 1, and denote by

Zm
k the set of m-tuples over Zk. If k is a prime, then Zk is the finite field of k elements. We use

bold notation x = [x1, . . . , xm] 2 Zm
k to denote vectors (or codewords) in Zm

k . We denote the set

of n ⇥ n matrices with entries in a set S by Mn(S) (and in general, the set of m ⇥ n matrices

Mm,n(S)). Finally, overline a denotes complex conjugation of the complex number a.

2.1 Butson Hadamard matrices

Let H be a matrix of order n with complex entries of modulus 1. If the rows of H are pair-

wise orthogonal under the Hermitian inner product, then H is a Hadamard matrix. The term

Hadamard matrix is more commonly used in the literature to refer to the special case with

entries in {±1}. In this paper, such a matrix will be call a real Hadamard matrix. A Butson

Hadamard (or simply Butson) matrix of order n and phase k is a matrix H 2 Mn(h⇣ki) such

that HH⇤ = nIn, where In denotes the identity matrix of order n and H⇤ denotes the conjugate

transpose of H. We write BH(n, k) for the set of such matrices. The simplest examples of

Butson matrices are the Fourier matrices Fn = [⇣
(i�1)(j�1)
n]ni,j=1 2 BH(n, n). Real Hadamard

matrices of order n, as they are usually defined, are the elements of BH(n, 2). Denote the set

of monomial matrices in Mn(h⇣ki) by Monn(h⇣ki). The phase and orthogonality of a matrix

H 2 BH(n, k) is preserved by multiplication on the left or right by an element of Monn(h⇣ki) as

well as by complex conjugation, i.e., H 2 BH(n, k). The action of pairs (P, Q) 2 Monn(h⇣ki)2
is defined by H(P, Q) = PHQ⇤, and this action induces an equivalence relation on BH(n, k). If

H(P, Q) = H 0, then H and H 0 are said to be equivalent.

A matrix is said to be in dephased form if every entry in its first row and first column is

equal to 1. Every matrix can be dephased by using equivalence operations. Throughout this

paper all matrices are assumed to be dephased.

Example 2.1 Let Dq,m be the mth Kronecker power of the q⇥q Fourier matrix, i.e., (Dq,m)i,j =

⇣
↵i�1·↵j�1
q , where ↵0 = (0, . . . , 0), ↵1 = (0, 0, . . . , 1), . . . , ↵qm�1 = (q� 1, . . . , q� 1) with ↵i 2 Zm

q .

Dq,m 2 BH(qm, q). When q = 2 this is the well known Sylvester Hadamard matrix of order 2n.

2

54

Let us mention that when q is a prime number, Dq,m is related to the generalized first order

Reed-Muller code Rq(1, m).

2.2 Bent functions and generalizations

The notion of bentness admits various generalizations. We use the one in Schmidt’s survey [1].

For positive integers q,m, h, a map f : Zm
q ! Zh is a generalized bent function (GBF) if

���Wf (w)
���
2

= qm 8w 2 Zm
q ,

where |z| as usual denotes the modulus of z 2 C and Wf (w) =
X

x2Zm
q

⇣
f(x)
h ⇣�w·x

q (the so-called

the Walsh-Hadamard transform of f) where w · x is the inner product wx> of w and x. Thus,

a GBF for q = h = 2 and even m is a (Boolean) bent function. For h = q, GBFs exist if m is

even or q 6⌘ 2 mod 4. However, no GBF with h = q, m odd, and q ⌘ 2 mod 4 is known.

Remark 2.2 The map f : Zm
q ! Zh is a GBF if, and only if, there exists X 2 Mqm,1(h⇣hi) with

Xi = ⇣
f(↵i)
h is a solution of the system 1

qm/2 Dq,m X = Y for some Y 2 Mqm,1({y 2 C : |y| = 1})

(the ↵i’s and Dq,m are defined in Example 2.1).

For Boolean functions, Wf (w) is always an integer and if it is also bent then Wf (w) =

2m/2(�1)f?(w) for f? : Zm
2 ! Z2 called the dual of f . As is well-known, the dual f? is a bent

function as well, and (f?)? = f . If f = f?, the bent function f is called self-dual.

For q = h an odd prime and f : Zm
q ! Zq a GBF, the value of its Walsh-Hadamard transform

satisfies

Wf (w) =

8
<
:

±⇣
f?(w)
q qm/2 qm = 1 mod 4;

±
p
�1 ⇣

f?(w)
q qm/2 qm = 3 mod 4,

where f? : Zm
q ! Zq, which again is called the dual of f . A GBF f is said to be (�, u)-self dual

if for all w 2 Zm
q , Wf (w) = �qm/2⇣uf(w)

q where � 2 h⇣4i and u 2 Z⇤
q . Here we are interested in

the case � = 1 and u = �1.

Example 2.3 Let f : Zm
q ! Zq with m = 2t be the map

f(x1, . . . , x2t) = x1xt+1 + . . . + xtx2t

is a (1,�1)-self dual GBF.

Remark 2.4 If we consider X = ⇣f
q where f is the function defined in Example 2.3, then X is

a solution of the system 1
qm/2 Dq,m X = X. In other words, X is a self-dual bent sequence for

Dq,m.

The nonlinearity of a map f : Zm
q ! Zq is the Hamming distance between f and the set of

the qm+1 a�ne functions from Zm
q to Zq. When q is a prime, the largest possible nonlinear-

ity, denoted by ⇢q(m), is the covering radius of the (generalized) first order Reed-Muller code

Rq(1, m) over Zq. For m even and q a prime, we have (see [2])

⇢q(m) = qm�1(q � 1) � qm/2�1.

3

55

Boolean (q = 2) bent functions are characterized as the Boolean functions in even dimension

with the largest possible nonlinearity. However, a similar characterization does not apply for

GBF in general (even when q = h an odd prime and m even). For q = h an odd prime, the

nonlinearity of a GBF is known. Here we only mention that the nonlinearity of a (1, u)-self

dual GBF for m even is (q � 1)qm�1 � (q � 1)qm/2�1 (di↵erent to ⇢q(m)). For m odd, the

determination of ⇢q(m) is an open problem in general.

3 Self-dual bent sequences for Butson matrices

In Remark 2.4, we have seen that for n = qm and k = q there are self-dual bent sequences for

Dq,m when m is even. In this Section, we show further progress on the study of self-dual bent

sequences for Butson matrices.

Firstly, we study necessary conditions of existence for self-dual bent sequences over BH(n, k)

for k = 2, 3 and 4.

Proposition 3.1 If there exists at least one self-dual bent sequence for BH(n, 3) (resp. BH(n, 4)),

then n = 9m2 (resp. n = 4m2) with m a positive integer.

We have checked by computer that there are self-dual bent sequences for, at least, one

element of any of the three matrices in BH(9, 3) up to equivalence.

The necessary condition of existence for self-dual bent sequences for BH(n, 2) is also that

n = 4m2 (see [3]). Let us observe that our definition of self-dual in the real case and the one

given in [3] are the same.

Proposition 3.2 If H 2 BH(4m2, 4) is of Bush-type, then it has at least 22m self-dual bent

sequences attached to �H.

Secondly, we give more general results on the existence. The methods for obtaining them

are based on some matrix analysis and the orthogonality relations in the matrices.

Proposition 3.3 The map f : Zm
q ⇥ Zm

q ! Zq defined by ⇣
f(↵i,↵j)
q =

⇣
Dq,m

⌘
i,j

is a (1,�1)-self

dual GBF for any integer q > 1. In other words, X = ⇣f
q is a self-dual bent sequence for Dq,2m.

Remark 3.4 The GBF of Proposition 3.3 and Example 2.3 are the same.

Proposition 3.5 If H 2 BH(n, k) is symmetric then the sequence X(i�1)n+j = (H)i,j is a

self-dual bent sequence for H⇤ ⌦ H⇤.

Example 3.6 Each of the representatives of the three classes of BH(9, 3) posted at

https://www.daneflannery.com/classifying-cocyclic-butson-hadamard-matrices are sym-

metric. The Paley type II elements of BH(n, 2) are symmetric too.

Remark 3.7 The same argument of Proposition 3.5 runs for any symmetric Hadamard matrix.

That is, if C is a Hadamard matrix of order n (i.e, the entries of C belong to the set of complex

numbers of modulus 1 satisfying that CC⇤ = nI) which is symmetric, then 1
n

⇣
C⇤ ⌦C⇤

⌘
X = X

where X(i�1)n+j = (C)i,j . Hence, X is a self-dual bent sequence for C⇤ ⌦ C⇤.

4

56

4 On the covering radius of Butson codes

For the remainder of this section we assume, for convenience, every Butson matrix is represented

in logarithmic form and we are using the Hamming distance.

The covering radius of a Zk-code C of length n is defined by r(C) = maxx2Zn
k

miny2C d(x, y).

Let H 2 BH(n, k). We denote by FH the Zk-code of length n consisting of the rows of H, and we

denote by CH the Zk-code defined as CH = [↵2Zk
(FH +↵1) where 1 denotes the all-one vector

(and ↵1 the all-↵ vector). The code CH over Zk is called a Butson Hadamard code (briefly,

BH-code).

If H 2 BH(n, k), then the deviation ⇥(CH ,x) of an arbitrary vector x 2 Zn
k from CH is

defined as

⇥(CH ,x) = max{|hx,yi| : y 2 CH},

where hx,yi = (⇣x1
k , . . . , ⇣xn

k)(⇣y1

k , . . . , ⇣yn

k)⇤ =
Pn

i=1 ⇣
xi�yi

k . Then the total deviation of CH is

⇥(CH) = min{⇥(CH ,x) : x 2 Zn
k}.

Proposition 4.1 Let H 2 BH(n, 3). Then, CH is a (n, 3n, 2/3n) code and r(CH) � 2/3(n �
⇥(CH)). If there is a bent sequence for H 2 BH(n, 3), then ⇥(CH) =

p
n.

Example 4.2 We can always choose H 2 BH(9, 3) such that there is a self-dual bent sequence

for H (this is always possible for the three equivalence classes). Then, r(CH) � 4. On the other

hand, the covering radius of the generalized Reed-Muller code R3(1, 2) is 5. Let us point out

that R3(1, 2) and CD3,2 are equivalent.

Acknowledgement

The first author was supported by Spanish Strategic R+D project TED2021-130566B-I00.

References

[1] B. Schmidt, A survey of group invariant Butson matrices and their relation to generalized

bent functions and various other objects. Radon Ser. Comput. Appl. Math. 23 (2019), 241–

251.

[2] K-U Schmidt, Highly nonlinear functions over finite fields. Finite Fields Appl. 63 (2020),

101640.

[3] P. Solé, W. Cheng, S. Guilley, and O. Rioul, Bent Sequences over Hadamard Codes for

Physically Unclonable Functions. IEEE International Symposion on Inf. Theory (2021),

801–806.

[4] M. Shi, Y. Li, W. Cheng, D. Crnkovic, D. Krotov, and P. Solé, Self-dual bent sequences for

complex Hadamard matrices. Des. Codes Cryptogr. (2022). https://doi.org/10.1007/s10623-

022-01157-6

5

57

Upper bounds on the numbers of binary plateaued and
bent functions

V. N. Potapov
Sobolev Institute of Mathematics, vpotapov@math.nsc.ru

30th July 2023

1 Introduction

Bent functions are maximally nonlinear boolean functions with an even number of vari-
ables and are optimal combinatorial objects. In cryptography, bent functions are used in
block ciphers. They are the source of nonlinearity and provide confusion in cryptosystems.
Moreover, bent functions have many theoretical applications in discrete mathematics. Full
classification of bent functions would be very useful for combinatorics and cryptography.
But constructive classifications and enumerations of bent functions in n variables are
likely impossible for large n.

The numbers of n-variable bent functions are only known for n  8. There exist 8
bent functions for n = 2, 896 for n = 4, approximately 232.3 for n = 6 and 2106.3 for
n = 8 [5]. Thus, lower and upper asymptotic bounds on the number of bent functions
are very interesting. Currently, there exists a drastic gap between the upper and lower
bounds of this number. Let N (n) = log2 |B(n)|, where B(n) is the set of boolean bent
functions in n variables. The best known asymptotic lower bound on the number of
boolean bent functions is proven in [9]. It holds N (n) � 3n

4
2n/2(1+ o(1)) as n is even and

n ! 1. This bound is slightly better than the bound N (n) � n
2
2n/2(1 + o(1)) based on

the Maiorana–McFarland construction of bent functions.
It is well known (see e.g. [2], [4], [6]) that the algebraic degree of a boolean bent function

in n variables is at most n/2. Therefore, N (n) 
n/2P
i=0

�
n
i

�
= 2n�1+ 1

2

�
n

n/2

�
. The bounds in [3]

and [1] are of type N (n)  2n�1(1+o(1)). A better upper bound N (n)  3
4
·2n�1(1+o(1))

is proven in [7]. In this paper we improve it. We obtained that N (n) < 11
16

· 2n�1(1+ o(1))
(Theorem 2). Note that Tokareva’s conjecture (see [10] and [6]) of the decomposition of
boolean functions into sums of bent functions implies that N (n) � 1

2
2n�1 + 1

4

�
n

n/2

�
.

The bounds mentioned above are asymptotic. We can use the suggested method to
find a non-asymptotic upper bound. But for fixed n = 6 and n = 8 such bound is greater
than the number of 2

3
· 2n�1 in two times. The main reason of this di↵erence lies in the

cardinality of the middle layer of the n-dimensional boolean cube. This cardinality is
asymptotically negligible, but that is not the case for n = 6 and n = 8.

1
59

The new upper bound on the number of bent functions is based on new asymptotic
upper bound on the number of s-plateaued boolean functions in n variables (Theorem
1). s-Plateaued functions are a generalization of bent functions, which are the same as 0-
plateaued functions. Plateaued functions can combine important cryptographic properties
of nonlinearity and correlation immunity.

The method of the proof of the listed above bounds implies a storage algorithm for
bent and plateaued functions. The number of bits required by the algorithm is equal to
the corresponding upper bound.

2 Walsh–Hadamard transform

Let F = {0, 1}. The set Fn is called a boolean hypercube (or a boolean n-cube). Fn

equipped with coordinate-wise modulo 2 addition � can be considered as an n-dimensional
vector space. Define by hx, yi = x1y1 � · · · � xnyn the inner product of vectors x and y.

Let G be a function that maps from the boolean hypercube to real numbers. Denote
by bG(y) =

P
x2Fn

G(x)(�1)�hx,yi the Fourier transform of G. We can define the Walsh–

Hadamard transform of a boolean function f : Fn ! F by the formula Wf (y) = \(�1)f (y).
A boolean function b is called a bent function if Wb(y) = ±2n/2 for all y 2 Fn. It is easy to
see that n-variable bent functions exist only if n is even. A boolean function p is called an
s-plateaued function if Wp(y) = ±2(n+s)/2 or Wp(y) = 0 for all y 2 Fn. So, bent functions
are 0-plateaued functions. 1-Plateaued functions are called near-bent.

From Parseval’s identity
P

y2Fn

bH2(y) = 2n
P

x2Fn

H2(x), where H : Fn ! C, it follows

straightforwardly:

Proposition 1. For every s-plateaued function, a proportion of nonzero values of its
Walsh–Hadamard transform is equal to 1

2s .

It is well known (see e.g. [2]) that for any function H, G : Fn ! C it holds

\H ⇤ G = bH · bG,
d
(bH) = 2nH and 2nH ⇤ G =

\bH · bG, (1)

where H ⇤G(z) =
P

x2Fn

H(x)G(z � x) is a convolution. Let � be a subspace of hypercube.

Denote by �? a dual subspace, i.e., �? = {y 2 Fn : 8x 2 �, hx, yi = 0}. Let 1S be
an indicator function for S ⇢ Fn. It is easy to see that for every subspace � it holds
d1�? = 2n�dim�1�. By (1) we have

H ⇤ 1�? = 2�dim�\bH · 1� (2)

for any subspace � ⇢ Fn.
Denote by supp(G) = {x 2 Fn : G(x) 6= 0} a support of G. We need the following

known property of bent functions (see e.g. [6]).

Proposition 2. Let f be an n-variable bent function and let � be a hyperplane. Consider
h = f · 1� as an (n � 1)-variable function. Then h is a 1-plateaued function.

2
60

3 Möbius transform

Denote by wt(z) a number of units in z 2 Fn. Every boolean function f can be represented
as a polynomial

f(x1, . . . , xn) =
M

y2Fn

M [f](y)xy1

1 · · ·xyn
n ,

where x0 = 1, x1 = x, and M [f] : Fn ! F is the Möbius transform of f . Note that
M [M [f]] = f for each boolean function. The degree of this polynomial is called the
algebraic degree of f .

Denote by b(n, r) the cardinality of a ball Bn,r with radius r in Fn, i.e., b(n, r) =
|{x 2 Fn : wt(x)  r}|. By properties of the Möbius transform, the number of n-variable
boolean functions with degree deg f  r is equal to 2b(n,r).

Lemma 1 ([7]). Suppose that f and g are n-variable boolean functions and
max{deg(f), deg(g)}  r. If f |Bn,r = g|Bn,r then f = g.

Lemma 2 ([2], Theorem 2). Let f be an n-variable boolean function. Suppose for every

v 2 Fn it holds \(�1)f (v) = 2km(v), where m(v) is integer. Then deg(f)  n � k + 1.

Corollary 1 ([2], Proposition 96). The degree of n-variable s-plateaued functions is not
greater than n�s

2
+ 1.

Note that degrees of bent (0-plateaued) functions is n/2 at most (see e.g. [2], [4], [6]).
But for 1-plateaued function the bound n+1

2
is tight.

Proposition 3. Let f be an n-variable bent function. Then for any hyperplane � the

degree of the boolean function h = supp(\(�1)f · 1�) is not greater than n/2.

4 Subspace distribution

We will use the following well-known criterium (see, e.g. [2], Proposition 96).

Lemma 3. An n-variable boolean function f is s-plateaued if and only if
(�1)f ⇤ (�1)f ⇤ (�1)f = 2n+s(�1)f .

Consider an n-variable s-plateaued boolean function f and any fixed x 2 Fn. There are
V = (2n�1)(2n�2)

6
2-dimensional a�ne subspaces which contain x. Let S(x) be a number

of the subspaces that contain an odd number of zero values of f . By Lemma 3 we obtain

Corollary 2. For any fixed x 2 Fn, S(x)
V

= 1
2
� 1

2
· 2n+s�3·2n+2

(2n�1)(2n�2)
.

Thus we have two equations: S(x)
V

= 1
2

+ 1
2(2n�1�1)

for every bent function and S(x)
V

=
1
2
+ 1

2(2n�1)
for every 1-plateaued function. We will use the following property of bent and

plateaued functions.

Proposition 4 ([2], [4], [6]). Let f : Fn ! F be an s-plateaued function, let A : Fn ! Fn

be a non-degenerate a�ne transformation and let ` : Fn ! F be an a�ne function. Then
g = (f � A) � ` is an s-plateaued function.

3
61

Functions f and g from Proposition 4 are called AE-equivalent. It is easy to see that
the cardinality of any equivalence class is not greater than an = 2n2+n+1(1 + o(1)). Note
that two AE-equivalent functions f and g have the same algebraic degree as deg(f) > 1.

There are 8 boolean 2-variable functions such that take value 0 even times. All of
them are a�ne. 6 of them take value 0 two times and the other take value 0 four or zero
times. Consider a 2-dimensional a�ne subspace � and an n-variable boolean function g.
Let g take value 0 even times on �. It is easy to see that 3/4 among functions of the set
{g � ` : ` is an a�ne function} take value 0 two times and the other take value 0 four or
zero times. Consequently, from Propositions 2 and 4 we deduced:

Corollary 3. Let � be a 2-dimensional face (axes-aligned plane) of the hypercube and let
f : Fn ! F be an s-plateaued function. There exists a non-degenerate a�ne transforma-
tion A and an a�ne function ` such that the s-plateaued function g = (f �A)� ` satisfies
the following conditions.

(a) The number of faces �� y, y 2 Fn, that contain an odd number of zero values of
g, is less than 2n�3.

(b) Among the faces �� y, y 2 Fn, that contain an even number of zero values of g,
not less than one fourth part contain four or zero values 0.

Let p0 be a probability of an even number of zero values in a 2-dimensional face and
let p1 be a probability of an odd number of zero values in a 2-dimensional face. Moreover,
p00 is the probability of two zero value in a 2-dimensional face and p00 < 3p0/4. How many
bits on average we need to find four values (�1)g(x) from their sum in a 2-dimensional
face? Under conditions (a) and (b) from the corollary, it is su�cient p00 log2 6 + 2p1 
1 + 3

8
log2 6 = ↵ ⇡ 1.969 bits by Shannon’s theorem.

5 Main results

Denote by ~ Shannon’s entropy function, i.e., ~(p) = �p log p � (1 � p) log(1 � p) for
p 2 (0, 1). Let N (n, s) be the binary logarithm of the number of n-variable s-plateaued
boolean functions. Since the Walsh–Hadamard transform is a bijection, N (n, s) is not
greater than the number of bits such that is su�cient to identify Wf for an s-plateaued
function f . Therefore, by Shannon’s theorem and Proposition 1 we obtain inequality:

N (n, s)  2n

✓
~(

1

2s
)(1 + o(1)) +

1

2s

◆
. (3)

Let N0(n, 1) be the binary logarithm of the number of n-variable 1-plateaued boolean
functions which are obtained by a restriction of (n + 1)-variable bent functions into hy-
perplanes.

Theorem 1. (a) N (n, s)  (↵b(n�2, dn�s
2
e+1)+2n�2(~(1

2s)+ 1
2s))(1+o(1)) where s > 0

is fixed and n ! 1.
(b) N0(n, 1)  b(n � 2, n+1

2
)(↵ + 3

2
)(1 + o(1)) as n ! 1.

The main idea of the proof is the following. Let f be an s-plateaued function. We
count the number of possible restrictions of Wf into (n� 2)-dimensional face by (3). Let

4
62

we have such restrictions of Wf . By (2) we recover f on the ball with an appropriate
radius. By Corollary 3 and the entropy estimation ↵ we find the number of bits needed
for this recovering. By Lemma 1 and Corollary 1 we restore f in full.

Theorem 2. N (n)  N0(n � 1, 1) + 2n�3(1 + o(1)) ⇡ 11
32

2n(1 + o(1)) as n ! 1.

The proof is similar to the previous one. By Proposition 2 the restriction of a bent
function into a hyperplane is a 1-plateaued function. We have counted these functions in
Theorem 1 (b). Then we count the number of 1-plateaued function in (n � 1) variables
corresponding to one n-variable bent function. Completed proofs are available in [8].

References

[1] S.V. Agievich, “On the continuation to bent functions and upper bounds on their
number,” Prikl. Diskr. Mat. Suppl., no. 13, 2020, pp. 18–21 (in Russian).

[2] C. Carlet, Boolean Functions for Cryptography and Coding Theory. Cambridge Uni-
versity Press, 562 pages, 2020.

[3] C. Carlet and A. Klapper, “Upper bounds on the number of resilient functions and
of bent functions,” Proceedings of the 23rd Symposium on Information Theory in
the Benelux, Louvain-La-Neuve, Belgium. 2002.

[4] C. Carlet and S. Mesnager, “Four decades of research on bent functions,” Des. Codes
Cryptogr., vol. 78(1), 2016, pp. 5–50.

[5] P. Langevin, G. Leander, P. Rabizzoni, P. Veron, and J.-P. Zanotti. “Counting
all bent functions in dimension eight 99270589265934370305785861242880,” In Des.
Codes Cryptography 59 (1-3), pages 193-205, 2011.

[6] S. Mesnager, Bent Functions: Fundamentals and Results. Springer International Pub-
lishing Switzerland, 2016.

[7] V.N. Potapov, “An Upper Bound on the Number of Bent Functions,” 2021 XVII
International Symposium on Problems of Redundancy in Information and Control
Systems (25-29 October 2021 Moscow, Russia).IEEE, 2021. P. 95–96.

[8] V.N. Potapov, “Upper bounds on the numbers of binary plateaued and bent func-
tions,” DOI:10.48550/arXiv.2303.16547

[9] V.N. Potapov, A.A. Taranenko, Yu.V. Tarannikov, “Asymptotic bounds on numbers
of bent functions and partitions of the Boolean hypercube into linear and a�ne sub-
spaces,” Designs, Codes and Cryptography, 2023. DOI: 10.1007/s10623-023-01239-z

[10] N. Tokareva, “On the number of bent functions from iterative constructions: lower
bounds and hypothesis,” Adv. Math. Commun., vol. 5(4), 2011, pp. 609–621.

5
63

On bent functions satisfying the dual bent condition

Alexandr Polujan1, Enes Pasalic2, Sadmir Kudin2, Fengrong Zhang3,4

1 Otto-von-Guericke-Universität, Universitätsplatz 2, 39106, Magdeburg, Germany

alexandr.polujan@gmail.com

2 University of Primorska, FAMNIT & IAM, Glagoljaška 8, 6000 Koper, Slovenia

{enes.pasalic6@gmail.com, sadmir.kudin@iam.upr.si}
3 State Key Laboratory of Integrated Services Networks,

Xidian University, Xian 710071, P.R. China
4 Mine Digitization Engineering Research Center of Ministry of Education,

China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

zhfl203@163.com

Abstract

For a concatenation of four bent functions f = f1||f2||f3||f4, the necessary and su�cient
condition that f is bent is that the dual bent condition is satisfied [5, Theorem III.1], i.e.,
f⇤
1 +f⇤

2 +f⇤
3 +f⇤

4 = 1. However, specifying four bent functions satisfying this duality condition
is in general quite a di�cult task. Commonly, to simplify this problem, certain connections
between fi are assumed such as the one considered originally in [4] and later analyzed in [2].
Among them, is the construction method of bent functions satisfying the dual bent condition
using the permutations of Fm

2 with the (Am) property [2, Theorem 7]. In this paper, we
generalize this result and provide a construction of new permutations with the (Am) property
from the old ones. Combining these two results, we obtain a recursive construction method
of bent functions satisfying the dual bent condition. Consequently, we provide a condition
on the functions f1, f2, f3, f4, such that obtained with our approach bent functions are not
equivalent to Maiorana-McFarland ones. Finally, with our construction method, we explain
how one can construct homogeneous cubic bent functions, of which constructions only very
few are known.
Keywords: Boolean bent function, dual bent condition, Maiorana-McFarland class, bent
4-concatenation, equivalence.

1 Preliminaries

Let n = 2m and let Bn denote the set of Boolean functions in n variables. A function f 2 Bn is
called bent, if for all non-zero a 2 Fn

2 the first-order derivatives Daf(x) = f(x + a) + f(x) are
balanced. Let f1, f2, f3, f4 2 Bn be four bent functions satisfying the dual bent condition. Then
the function f = f1||f2||f3||f4 2 Bn+2 defined by

f(z, zn+1, zn+2) = f1(z)+zn+1(f1+f3)(z)+zn+2(f1+f2)(z)+zn+1zn+2(f1+f2+f3+f4)(z) (1.1)

is bent and called the bent 4-concatenation of f1, f2, f3, f4, see [1]. As the following result shows,
the dual bent condition could be satisfied [2] by using Maiorana-McFarland bent functions arising
from permutations with the (Am) property [6], which means that for three permutations ⇡i of
Fm

2 , we have that ⇡1 + ⇡2 + ⇡3 = ⇡ is also a permutation and ⇡�1 = ⇡�1
1 + ⇡�1

2 + ⇡�1
3 .

Theorem 1.1. [2, Theorem 7] Let fj(x, y) = Tr(x⇡j(y))+hj(y) for j 2 {1, 2, 3} and x, y 2 F2m,
where the permutations ⇡j satisfy the condition (Am). If the functions hj satisfy

h1(⇡
�1
1 (x)) + h2(⇡

�1
2 (x)) + h3(⇡

�1
3 (x)) + (h1 + h2 + h3)((⇡1 + ⇡2 + ⇡3)

�1(x)) = 1, (1.2)

then f1, f2, f3 satisfy f⇤
1 + f⇤

2 + f⇤
3 + f⇤

4 = 1, where f1 + f2 + f3 = f4.

65

2 Constructing bent functions satisfying the dual bent condition
recursively

First, we provide a generalization of Theorem 1.1. We omit the proof of this statement in order
to explain in detail those results, which are more technical.

Theorem 2.1. Let fj(x, y) = Tr (x⇡j(y)) + hj(y) for j 2 {1, 2, 3} and x, y 2 F2m with n = 2m,
where the permutations ⇡j satisfy the condition (Am), and let s 2 Bm. Define a function h4 2 Bm

as h4 = h1 + h2 + h3 + s and a bent function f4 2 Bn as f4 = f1 + f2 + f3 + s. If the functions
hj satisfy

h1

�
⇡�1

1 (x)
�

+ h2

�
⇡�1

2 (x)
�

+ h3

�
⇡�1

3 (x)
�

+ h4

⇣
(⇡1 + ⇡2 + ⇡3)

�1 (x)
⌘

= 1, (2.1)

then f1||f2||f3||f4 2 Bn+2 is bent.

In the following example, we show the existence of permutations ⇡i and functions hi with
h4 6= h1 + h2 + h3 satisfying the conditions of Theorem 2.1.

Example 2.2. Define the permutations ⇡i on F4
2 as follows:

⇡1(y) =

0
BB@

y1 + y2 + y1y4 + y2y4 + y3y4

y1 + y1y2 + y3 + y2y3 + y2y4

y1y2 + y3 + y1y3 + y2y4 + y3y4

y1 + y3 + y1y3 + y2y3 + y4 + y1y4 + y2y4

1
CCA , ⇡2(y) = ⇡1(y) +

0
BB@

y2 + y3 + y4

1 + y2 + y3 + y4

y1 + y3

y1 + y3

1
CCA ,

⇡3(y) = ⇡1(y) +

0
BB@

y1 + y4

y1 + y2

1 + y1 + y2

1 + y1 + y4

1
CCA , ⇡4(y) = (⇡1 + ⇡2 + ⇡3)(y).

The algebraic normal forms of the functions hi are given as follows:

h1(y) = y1y3y4, h2(y) = y2y3 + y1y4 + y2y4 + y3y4 + y1y3y4,

h3(y) = y1y3 + y2y3 + y3y4 + y1y3y4, h4(y) = (h1 + h2 + h3)(y) + s(y),

where s(y) = y1 + y2 + y4. One can check that the defined above permutations ⇡i of F4
2, satisfy

the (A4) property. Moreover, the condition (2.1) is satisfied as well, and thus by Theorem 2.1,
we have that f1||f2||f3||f4 2 B10 is bent for bent functions fi(x, y) = x · ⇡i(y) + hi(y), where
x, y 2 F4

2.

Now, we show that as soon as a single example of such permutations ⇡i on Fm
2 and Boolean

functions hi on Fm
2 is found (here m is a fixed integer), then one can always construct many

such examples on Fk
2, where k > m is an arbitrary integer.

Lemma 2.3. Let �1, �2 be permutations of Fm
2 . Define the function ⇡ : Fm+1

2 ! Fm+1
2 by

⇡(y, ym+1) = (ym+1�1(y) + (1 + ym+1)�2(y), ym+1) , for all y 2 Fm
2 , ym+1 2 F2.

Then, ⇡ is a permutation, and its inverse on Fm+1
2 is given by the permutation ⇢ on Fm+1

2 ,
defined by

⇢(y, ym+1) =
�
ym+1�

�1
1 (y) + (1 + ym+1)�

�1
2 (y), ym+1

�
, for all y 2 Fm

2 , ym+1 2 F2.

Now we are ready to provide a recursive construction of Maiorana-McFarland bent functions
f 0
1, f

0
2, f

0
3, f

0
4 2 Bn+2 satisfying the condition (f 0

1)
⇤ +(f 0

2)
⇤ +(f 0

3)
⇤ +(f 0

4)
⇤ = 1 from bent functions

f1, f2, f3, f4 2 Bn satisfying the condition f⇤
1 + f⇤

2 + f⇤
3 + f⇤

4 = 1 using Theorem 2.1.

2
66

Proposition 2.4. Let ⇡j for j 2 {1, 2, 3} be three permutations on Fm
2 which satisfy the condition

(Am). Let � be a permutation of Fm
2 . Denote by ⇡4 = ⇡1 + ⇡2 + ⇡3 and let Boolean functions hj

on Fm
2 j 2 {1, 2, 3, 4} satisfy

h1

�
⇡�1

1 (y)
�

+ h2

�
⇡�1

2 (y)
�

+ h3

�
⇡�1

3 (y)
�

+ h4

�
⇡�1

4 (y)
�

= 1.

Define four permutations �i on Fm+1
2 as

�i(y, ym+1) =

(
(⇡i(y), 1) if ym+1 = 1

(�(y), 0) if ym+1 = 0
, for all y 2 Fm

2 , ym+1 2 F2,

and four Boolean functions h0
i on Fm+1

2 as follows

h0
i(y, ym+1) = ym+1hi(y) for i 2 {1, 2, 3},

h0
4(y, ym+1) = ym+1h4(y) + ym+1 + 1.

Then, the following hold.

1. Permutations �1, �2, �3 satisfy the condition (Am).

2. Functions h0
j satisfy

h0
1

�
��1

1 (y, ym+1)
�

+ h0
2

�
��1

2 (y, ym+1)
�

+ h0
3

�
��1

3 (y, ym+1)
�

+ h0
4

�
��1

4 (y, ym+1)
�

= 1,

for all y 2 Fm
2 , ym+1 2 F2, where �4 = �1 + �2 + �3.

3. Boolean functions f 0
j(x

0, y0) = Tr (x0�j(y
0)) + h0

j(y
0) for j 2 {1, 2, 3, 4} and x0, y0 2 Fm+1

2

are bent, moreover, f 0
1||f 0

2||f 0
3||f 0

4 2 Bn+2 is bent as well.

Proof. 1. The property (Am) means that for three permutations �i on Fm+1
2 , we have that

�1 + �2 + �3 = �4 is also a permutation and ��1
4 = ��1

1 + ��1
2 + ��1

3 . First, we show that �4 is
a permutation. By definition of �4, we get that for all y 2 Fm

2 , ym+1 2 F2 holds

�4(y, ym+1) =

(
((⇡1 + ⇡2 + ⇡3)(y), 1) if ym+1 = 1

(�(y), 0) if ym+1 = 0
.

Since ⇡4 = ⇡1 +⇡2 +⇡3 is a permutation, we get that �4 is a permutation as well. Now, we show
that ��1

4 = ��1
1 + ��1

2 + ��1
3 . By Lemma 2.3, we have that for all y 2 Fm

2 , ym+1 2 F2 holds

��1
4 (y, ym+1) = (��1

1 + ��1
2 + ��1

3)(y, ym+1),

from what follows that permutations �1, �2, �3 satisfy the condition (Am).
2. Observe that for j 2 {1, 2, 3}, we have that for all y 2 Fm

2 , ym+1 2 F2 holds

h0
i(�

�1
i (y, ym+1)) =

(
h0

i(�
�1
i (y, 1)) if ym+1 = 1

h0
i(�

�1
i (y, 0)) if ym+1 = 0

=

(
hi(⇡

�1
i (y)) if ym+1 = 1

0 if ym+1 = 0

Similarly, one can show that for all y 2 Fm
2 , ym+1 2 F2 holds

h0
4(�

�1
i (y, ym+1)) =

(
h0

4(�
�1
4 (y, 1)) if ym+1 = 1

h0
4(�

�1
4 (y, 0)) if ym+1 = 0

=

(
h4((⇡1 + ⇡2 + ⇡3)

�1(y)) if ym+1 = 1

1 if ym+1 = 0
.

Finally, for all y 2 Fm
2 , ym+1 2 F2, we consider the sum

4X

i=1

h0
i

�
��1

i (y, ym+1)
�

=

8
><
>:

3P
i=1

hi

�
��1

i (y)
�

+ h4((⇡1 + ⇡2 + ⇡3)
�1(y)) if ym+1 = 1

1 if ym+1 = 0

= 1,

since h1

�
⇡�1

1 (y)
�
+h2

�
⇡�1

2 (y)
�
+h3

�
⇡�1

3 (y)
�
+h4((⇡1 +⇡2 +⇡3)

�1(y)) = 1 holds for all y 2 Fm
2 .

3. The statement follows immediately from Theorem 2.1.

3
67

3 Analysis of the obtained construction method

Recall that the set of all bent functions, which are extended-a�ne equivalent to functions of the
form f(x, y) = x · ⇡(y) + h(y) for x, y 2 Fm

2 , where ⇡ is a permutation of Fm
2 , and h 2 Bm is

an arbitrary Boolean function is called the completed Maiorana-McFarland class and denoted
by M#. It is well-known [3] that a bent function f 2 Bn belongs to the M# i↵ there exists a
vector space U of dimension m, such that DaDbf = 0 for all a, b 2 U ; such a vector space is
called [10] an M-subspace of a bent function f 2 M#. Note that if f 2 M, then at least one
M-subspace of f has the form U = Fm

2 ⇥ {0m}, which we call the canonical M-subspace of f .
Since in the bent 4-concatenation we consider bent functions fi 2 Bn in M#, it is essential

to specify the conditions on these functions such that the resulting function f = f1||f2||f3||f4 2
Bn+2 is outside M#. Otherwise one just gets a complicated construction method of bent
functions in M#. For this purpose, we will use the following description of M-subspaces of
f = f1||f2||f3||f4 2 Bn+2.

Proposition 3.1. [9] Let f1, f2, f3, f4 2 Bn be four Boolean functions (not necessarily bent),
such that f = f1||f2||f3||f4 2 Bn+2 is a bent function in M#. Let W ⇢ Fn+2

2 be an M-subspace
of f . Then, there exists an (n

2 � 1)-dimensional subspace V of Fn
2 such that V ⇥ {(0, 0)} is a

subspace of W , and such that for all i = 1, . . . , 4 the equality DaDbfi = 0 holds for all a, b 2 V .

For the main result of this section, we will also need to define the (P1) property, which was
recently introduced in [9] for specifying Maiorana-McFarland bent functions with the unique
canonical M-subspace. We say that the mapping ⇡ : Fm

2 ! Fm
2 has the property (P1) if DvDw⇡ 6=

0m for all linearly independent v, w 2 Fm
2 .

Theorem 3.2. Let n = 2m for m > 3 and define three bent functions fi(x, y) = x ·⇡i(y)+hi(y),
with x, y 2 Fm

2 , for i = 1, . . . , 3, where ⇡i satisfies the property (P1) and additionally ⇡1 + ⇡2

satisfies the property (P1), and furthermore we assume that the components of ⇡1 + ⇡2 do not
admit linear structures. Define f = f1||f2||f3||f4 where f4(x, y) = f1(x, y)+ f2(x, y)+ f3(x, y)+
s(y) (consequently h4 = h1+h2+h3+s) using suitable hi so that the dual bent condition in (2.1)
is satisfied. Then, the functions fi share the unique canonical M-subspace U = Fm

2 ⇥ {0m} and
furthermore bent function f 2 Bn+2 is outside M#. In particular, the same conclusion is valid
when s(y) = 0.

Proof. Denoting a = (a0, a(1), a(2)) and b = (b0, b(1), b(2)) and a0, b0 2 Fn
2 and a(i), b(i) 2 F2, the

second-order derivative of f is given by DaDbf(x, y1, y2) =

= Da0Db0f1(x) + y1Da0Db0f13(x) + y2Da0Db0f12(x) + y1y2Da0Db0f1234(x)

+ a(1)Db0f13(x + a0) + b(1)Da0f13(x + b0) + a(2)Db0f12(x + a0) + b(2)Da0f12(x + b0)

+ (a(1)y2 + a(2)y1 + a(1)a(2))Db0f1234(x + a0) + (b(1)y2 + b(2)y1 + b(1)b(2))

⇥ Da0f1234(x + b0) + (a(1)b(2) + b(1)a(2))f1234(x + a0 + b0),

(3.1)

where fi1...ik := fi1 + · · · + fik . Since DuDv⇡i(y) 6= 0 for any nonzero u 6= v 2 Fm
2 (as ⇡i satisfies

the property (P1), the functions fi share the unique canonical M-subspace U = Fm
2 ⇥{0m}. For

convenience, we denote a0 = (a1, a2) and b0 = (b1, b2), where ai, bi 2 Fm
2 . W.l.o.g. we assume

that Da2Db2(⇡1(y) + ⇡2(y)) 6= 0 for any a2, b2 2 Fm
2 (a2, b2 6= 0 and distinct), and the term

y2Da0Db0f12(x, y) in (3.1) cannot be canceled unless a2 = 0 or b2 = 0 or a2 = b2, which is due
to the fact that (same can be deduced for D(a1,a2)D(b1,b2)f13(x, y))

D(a1,a2)D(b1,b2)f12(x, y) =x · (Da2Db2(⇡1(y) + ⇡2(y))) + a1 · Db2(⇡1 + ⇡2)(y + a2)

+b1 · Da2(⇡1 + ⇡2)(y + b2) + Da2Db2h12(y).
(3.2)

Thus, for any a = (a1, a2, a
(1), a(2)) and b = (b1, b2, b

(1), b(2)) in some (m + 1)-dimensional
subspace W of F2m+2

2 , we necessarily have that either a2 = 0 or b2 = 0, alternatively a2 = b2.

4
68

Since the functions fi share the unique canonical M-subspace U = Fm
2 ⇥ {0m}, any other

subspace V of Fm
2 ⇥ Fm

2 for which Da0Db0fi(x, y) = 0 for all a0, b0 2 V must have dimension less
than m. By Proposition 3.1, if f defined on F2m+2

2 belongs to M# then for any M-subspace W
of f of dimension m+1 there must exist V ⇢ F2m

2 of dimension m� 1 such that DaDbfi = 0 for
all i = 1, . . . , 4 and any a, b 2 V . Furthermore, V ⇥ (0, 0) is a subspace of W . There are only
two possibilities for V , i.e., either V ⇢ U = Fm

2 ⇥ {0m} or V 6⇢ U .
We first consider the case that V ⇢ U = Fm

2 ⇥ {0m}, where dim(V) = m � 1. Then,
V ⇥ (0, 0) ⇢ W and to extend this subspace to W , we need to adjoin two elements of F2m+2

2 , say
u = (u1, u2, u

(1), u(2)), v = (v1, v2, v
(1), v(2)) 2 Fm

2 ⇥Fm
2 ⇥F2⇥F2, and u0 = (u1, u2), v0 = (v1, v2).

Then, we cannot have the case that u2 = v2 = 0m since this would imply that f12 on Fn
2 has an

M-subspace of dimension n/2 + 1 which is impossible (see for instance [8]). On the other hand,
if u2 6= v2 6= 0 then again y1Du0Dv0f12(x, y) cannot be canceled in (3.1). W.l.o.g. we assume
that u2 = 0 and v2 6= 0, which implies that U ⇥ (0, 0) ⇢ W . Hence, W = hU ⇥ (0, 0), vi, where
v2 6= 0. Notice that the case u2 = v2, which also might lead to Du0Dv0f12(x, y) = 0, reduces
to this case since u2 + v2 = 0 and then u0 + v0 2 U . Now, we note that in W = hU ⇥ (0, 0), vi
there must exist an element z = (z0, 0, 0) such that z1 = v1 and consequently z0 + v0 = (0m, v2).
Considering (3.2), and replacing a0 ! z0 = (v1, 0m) and b0 ! (0m, v2), we have that only the term
v1 · Db2(⇡1 + ⇡2)(y) remains, which cannot be zero due to our assumption that the components
of ⇡1 + ⇡2(y) do not admit linear structures.

The second case arises when V 6⇢ U , where dim(V) = m� 1. Hence, V contains at least one
element a0 = (a1, a2) 62 U , so that a2 6= 0. If V contains one more element not in U , say b0, then
Da0Db0f12(x, y) 6= 0 and consequently DaDbf(x, y, y1, y2) 6= 0. If V does not contain one more
element which is not in U , then it can be extended to U (by replacing a0 with some (u1, 0m))
and the above arguments apply.

Monomial permutations satisfying the (Am) property were specified in [7]. We show that in
a small number of variables, it is possible to find suitable functions hi, such that the conditions
of Theorem 3.2 are satisfied.

Theorem 3.3. [7] Let m � 3 be an integer and d2 ⌘ 1 mod 2m�1. Let ⇡i be three permutations
of Fm

2 defined by ⇡i(y) = ↵iy
d, for i = 1, 2, 3, where ↵i 2 F⇤

2m are pairwise distinct elements
such that ↵d+1

i = 1 and ↵d+1
4 = 1 where ↵4 = ↵1 + ↵2 + ↵3. Then, the permutations ⇡i satisfy

the property (Am) and furthermore ⇡i are involutions as well as ⇡4 = ⇡1 + ⇡2 + ⇡3.

Example 3.4. Let m = 4 and the multiplicative group of F24 be given by F⇤
24 = hai, where

the primitive element a satisfies a4 + a + 1 = 0. Let d = 14, which satisfies d2 ⌘ 1 mod 15.
Define ↵1 = a, ↵2 = a2, ↵3 = a4 and ↵4 = ↵1 + ↵2 + ↵3 = a8. It is possible to check that
for i = 1, . . . , 3, the defined permutations ⇡i as well as ⇡1 + ⇡2 satisfy the property (P1) and
additionally the components of ⇡1 +⇡2 do not admit linear structures. Define the following four
Boolean functions h1(y) = 0, h2(y) = Tr(y), h3(y) = Tr(ay), h4(y) = Tr(a13y) + 1, as well as
four bent Maiorana-McFarland bent functions fi(x, y) = Tr(x⇡i(y)) + hi(y) for i = 1, 2, 3, 4,
where x, y 2 F23 . Note that h1(y) + h2(y) + h3(y) + h4(y) = s(y) = Tr(a11y) + 1, and hence,
f4 = f1 + f2 + f3 + s. Since the functions hi satisfy the condition (2.1) of Theorem 2.1, we have
that f = f1||f2||f3||f4 2 B8. By Theorem 3.2, the function f is outside M#.

Open Problem 3.5. 1. Find explicit infinite families of permutations ⇡i and Boolean functions
hi satisfying the conditions of Theorem 2.1. 2. Relax the conditions of Theorem 2.1. The latter
question is motivated by the fact that even in n = 6 variables we were able to find permutations
⇡i and Boolean functions hi in m = 3 variables, such that the concatenation of corresponding
bent functions fi is bent and outside M#. These examples, however, cannot be covered by
Theorem 2.1, since all permutations in 3 variables are quadratic, and hence, their components
have linear structures.

5
69

4 An application to the design of homogeneous bent functions

A Boolean function is called homogeneous if all the monomials in its ANF have the same algebraic
degree. Now, we show how bent functions satisfying the dual bent condition and permutations
with the (Am) property can be used for the construction of homogeneous bent functions.

Proposition 4.1. Let f1 2 Bn be a homogeneous cubic bent function. Let q1, q2 2 Bn be
two homogeneous quadratic functions, such that f2 = f1 + q2 and f3 = f1 + q3 are bent, and
additionally f1 + f2 + f3 is also bent. Defining f4 = f1 + f2 + f3 + s for s 2 Bn, the function
f = f1||f2||f3||f4 2 Bn+2 is homogeneous cubic bent i↵ f⇤

1 + f⇤
2 + f⇤

3 = (f1 + f2 + f3 + s)⇤ + 1,
where s 2 Bn is a linear function.

Example 4.2. Consider the following homogeneous functions f1, q2, q3, s 2 B8, which are given
by their algebraic normal forms as follows:

f1(z) =z1z2z5 + z1z2z8 + z1z3z4 + z1z3z5 + z1z3z6 + z1z3z7 + z1z4z5 + z1z4z7 + z1z4z8

+z1z5z8 + z1z6z8 + z2z3z4 + z2z3z5 + z2z4z5 + z2z4z6 + z2z4z8 + z2z5z6 + z2z6z7

+z2z6z8 + z2z7z8 + z3z4z6 + z3z4z8 + z3z5z6 + z3z5z7 + z3z6z8 + z4z7z8 + z5z6z7

+z5z6z8,

q2(z) =z1z4 + z1z5 + z1z7 + z5z7 + z1z8 + z4z8 + z6z7 + z6z8 + z7z8,

q3(z) =z1z3 + z1z4 + z1z7 + z1z8 + z2z3 + z2z8 + z3z5 + z3z8 + z4z7 + z5z6 + z6z7 + z7z8,

s(z) =z1 + z4 + z6 + z8.

One can check that the functions f1, q2, q3, s 2 B8 satisfy the conditions of Proposition 4.1,
and hence f = f1||f2||f3||f4 2 B10 constructed as in Proposition 4.1 is homogeneous cubic
bent. Notably, there exists a linear non-degenerate transformation z 7! zA such that fi(zA) =
x · ⇡i(y) + hi(y), where permutations ⇡i and Boolean functions hi are defined in Example 2.2,
and hence, permutations ⇡i have the (A4) property. Finally, we note that the function f /2 M#

since the functions fi satisfy the conditions of [9, Theorem 5.11].

Open Problem 4.3. Find explicit infinite families of homogeneous bent functions using the
dual bent condition and permutations with the (Am) property.

References

[1] A. Canteaut, P. Charpin. “Decomposing bent functions”. IEEE Transactions on Information
Theory, vol. 49, no. 8, pp. 2004–2019 (2003). p. 1.

[2] N. Cepak, E. Pasalic, A. Muratović-Ribić. “Frobenius linear translators giving rise to new
infinite classes of permutations and bent functions”. Cryptogr. Commun. 11(6): 1275–1295 (2019).
p. 1.

[3] J. F. Dillon. “Elementary Hadamard di↵erence sets”. Ph.D. dissertation. University of Maryland,
USA (1974). p. 4.

[4] S. Hodžić, E. Pasalic, Y. Wei. “A general framework for secondary constructions of bent and
plateaued functions”. Des. Codes Cryptogr. 88(10): 2007–2035 (2020). p. 1.

[5] S. Hodžić, E. Pasalic, W. G. Zhang. “Generic constructions of five-valued spectra Boolean
functions”. IEEE Trans. Inf. Theory 65(11): 7554–7565 (2019). p. 1.

[6] S. Mesnager. “Further constructions of infinite families of bent functions from new permutations
and their duals”. Cryptogr. Commun. 8, 229–246 (2016). p. 1.

[7] S. Mesnager, G. D. Cohen, and D. Madore. “On existence (based on an arithmetical problem)
and constructions of bent functions”. In: Groth, J. (eds) Cryptography and Coding. IMACC 2015.
Lecture Notes in Computer Science, vol 9496. Springer, Cham., (2015). p. 5.

[8] E. Pasalic, A. Bapic, F. Zhang, Y. Wei. “Explicit infinite families of bent functions outside
the completed Maiorana-McFarland class”. Des. Codes Cryptogr. (2023).p. 5.

[9] E. Pasalic, A. Polujan, S. Kudin, F. Zhang. “Design and analysis of bent functions using
M-subspaces”. arXiv preprint arXiv:2304.13432 (2023) pp. 4 and 6.

6
70

[10] A. Polujan, A. Pott. “Cubic bent functions outside the completed Maiorana-McFarland class”.
Des. Codes Cryptogr. 88, 1701–1722 (2020). p. 4.

7
71

Asymptotic Lower Bounds On The Number Of Bent Functions

Having Odd Many Variables Over Finite Fields of Odd

Characteristic

V. N. Potapov * and Ferruh Özbudak**

*Sobolev Institute of Mathematics, Novosibirsk, Russia e-mail: vpotapov@math.nsc.ru
**Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Istanbul, and Middle East

Technical University, 06800, Ankara, Turkey, e-mail:ozbudak@metu.edu.tr

Abstract

Using recent deep results of Keevash et al. [8] and Eberhard et al. [6] together with further
new detailed techniques in combinatorics, we present constructions of two concrete families
of generalized Maiorana-McFarland bent functions. Our constructions improve the lower
bounds on the number of bent functions in n variables over a finite field Fp if p is odd and
n is odd in the limit as n tends to infinity.

Let p be a prime. Let Fp be the finite field with p elements. For a set A, let |A| denote its
cardinality. Let ln(·) be the natural logarithm function.

Bent functions were first introduced by Rothaus in 1976 [14] over F2. In 1985, Kumar et
al. generalized the notion of bent function to arbitrary finite fields [9]. We prefer to introduce
bent functions as a special class of functions, namely, plateaued functions.

For a function f : Fn
p ! Fp and ↵ 2 Fn

p , let f̂ : Fpn ! C be the Walsh Transform of f at ↵
defined as

f̂(↵) =
X

x2Fn
p

e
2⇡

p�1
p

(f(x)�↵·x)
,

where ↵ · x is the inner product ↵1x1 + · · · + ↵nxn of ↵ = (↵1, . . . , ↵n) and x = (x1, . . . , xn).
Let 0  m be an integer. We say that f is m-plateaued if

|f̂(↵)| 2 {0, p
n+m

2 }

for all ↵ 2 Fpn . Here | · | denotes the absolute value in complex numbers. Let Supp(f̂) denote

the subset of Fpn consisting of ↵ such that f̂(↵) 6= 0. The following facts (definitions) are well
known (see, for example, [4], [12])

f is bent if and only if f is 0-plateaued.

If f is m-plateaued, then |Supp(f̂)| = pn�m.

It seems we have rather limited knowledge in construction of plateaued functions over ar-
bitrary finite field (see, for example, [3], [7]). A direct, but still very powerful construction
of a strict subclass of plateaued functions is for the class of partially bent functions [2]. If
f : Fps ! Fp is a bent function, then for any integer m � 1, the function

g : Fps ⇥ Fpm ! Fp

(x, y) 7! f(x)

is a partially bent function and m-plateaued function in m+s many variables over Fp. Moreover,
given any a�ne space U1 of dimension s in Fm+s

q , it is easy to modify g to g1 such that Supp(ĝ1)
is U1. 73

Bent functions and plateaued functions are central objects for a variety of topics related to
cryptography, coding theory and combinatorics. We refer, for example, to [4], [11], [12] and the
references therein for further information.

It is an interesting open problem to count bent functions, even for rather moderate values
of n (see, [10], [13]). Hence the asymptotic number of bent functions is a natural and actually
di�cult problem to consider (see [13] and the references therein).

Let M](p, n) denote the family of completed Maiorana-McFarland bent functions in n vari-
ables over Fp. Note that n is even if p = 2.

The following are well known (see, for example, [4], [12] and [13]):

Case n is even:

ln
���M](p, n)

��� =
n

2
pn/2 ln(p) (1 + o(1)) (1)

as n ! 1 and n is even.

Case n is odd:

ln
���M](p, n)

��� =
n � 1

2
p(n�1)/2 ln(p) (1 + o(1)) (2)

as n ! 1 and n is odd.

Here and throughout the paper o(·) stands for the small o notation as n ! 1.
Let B(p, n) denote the family of bent functions in n variables over Fp. Let GMM(p, n)

denote the family of generalized Maiorana-McFarland bent functions in n variables over Fp (see
[1] and [5]). Note that the notions of completed Maiorana-McFarland bent functions (see [4])
and generalized Maiorana-McFarland bent functions are di↵erent.

We have the obvious bound that

|B(p, n)| � |GMM(p, n)|. (3)

In [13], the authors obtain that, if p = 2, then

ln (|GMM(p, n)|) � 3

4
npn/2 ln(p) (1 + o(1)) (4)

as n ! 1 and n is even.
In particular they improve the lower bound in (1) so that the coe�cient of the main term

npn/2 ln(p) is increased from 1
2 to 3

4 .
Combining (3) and (4) we obtain an asymptotic lower bound on the number of bent functions

over F2, which is the best known asymptotic lower bound on the number of bent functions over
F2.

The methods of [13] do not generalize to odd characteristic. In this paper we improve (2)
and we obtain an asymptotic lower bounds on the number of bent functions in odd n variables
over Fp as n ! 1 and p is odd.

We construct two families of generalized bent functions using two di↵erent methods related
to the results of [8] and [6], respectively.

Using results of [8] and further detailed techniques we prove our first main result in the
following.

Theorem 0.1 Let p be an odd prime. There exists a sequence of odd integers n (moreover
n ⌘ 3 mod 4), n ! 1 and a corresponding sequence of families F1(n) of generalized Maiorana-
McFarland bent functions in n variables over Fp satisfying

ln (|F1(n)|) � npn/2

p
p

✓
1 � 1

2(p2 � 1)

◆
ln(p)(1 + o(1))

as n ! 1. 74

We present a sketch of the proof of Theorem 0.1 in Section 2 below.

Remark 0.2 In Theorem 0.1, we improve the lower bound in (2) by increasing the coe�-

cient of the main term npn/2 ln(p) from 1
2
p

p to 1p
p

⇣
1 � 1

2(p2�1)

⌘
. Note that if p = 3, then

1p
p

⇣
1 � 1

2(p2�1)

⌘
= 1p

3
15
16 . This also gives an improved lower bound in the number of bent

functions over Fp for odd number of variables n using (3) in the limit as n ! 1 if p > 3.

Using results of [6] and further di↵erent detailed techniques we prove our second main result
in the following.

Theorem 0.3 Recall that F3 is the finite field with 3 elements. There exists a sequence of
odd integers n ! 1 and a corresponding sequence of families F2(n) of generalized Maiorana-
McFarland bent functions in n variables over F3 satisfying

ln (|F2(n)|) � n3n/2

p
3

ln(3)(1 + o(1))

as n ! 1.

We present a sketch of the proof of Theorem 0.3 in Section 3 below.

Remark 0.4 In Theorem 0.3, we improve the lower bound in Theorem 0.1 (and hence the lower
bound in (2) by increasing the coe�cient of the main term n3n/2 ln(3) from 1p

3
15
16 to 1p

3
. This

also gives an improved lower bound in the number of bent functions over F3 for odd number of
variables n using (3) in the limit as n ! 1.

1 Why do we use only partially bent functions?

In this section we explain why we only use partially bent functions and not arbitrary plateaued
functions shortly. Let s � 1 be an integer. Let n1 � 1 be a variable integer which runs and
tends infinity over a sequence. We construct bent functions with 2n1 + s many variables over
Fp. Hence our number of variables tends to infinity as n1 tends to infinity.

Let P = (A1, . . . , Apn1) be an ordered partition of Fpn1+s into subsets of size exactly ps. We
will need a huge number of such partitions that we can control.

By control we mean the following. Given such P, we need to design a corresponding ordered
set of n1-plateaued functions (g1, . . . , gpn1) such that gi : Fps+n1 ! Fp and

Supp(ĝi) = Ai (5)

for each 1  i  pn1 .
Let � : Fpn1 ! {1, 2, . . . , pn1} be a fixed bijection. A generalized Maiorana-McFarland bent

function in (2n1 + s) variables over Fp is defined as (see [1], [5])

f : Fs+n1
p ⇥ Fn1

p ! Fp

(y, z) 7! g�(z)(y).

If (A1, . . . , Apn1) and (B1, . . . , Bpn1) are two distinct ordered partitions of Fpn1+s into subsets
of size exactly ps, i.e. Ai 6= Bi for at least one i, then independent from the corresponding ordered
set of n1-plateaued functions (provided they exist), the constructed bent functions fA and fB in
(2n1 +s) variables are distinct. Moreover assume that we fix an ordered partition (A1, . . . , Apn1)
of Fpn1+s into subsets of size exactly ps. Assume also that there are two corresponding ordered
set of n1-plateaued functions (g1, . . . , gpn1) and (h1, . . . , hpn1) such that gi, hi : Fps+n1 ! Fp and

Supp(ĝi) = Supp(ĥi) = Ai (6)
75

for each 1  i  pn1 . Then if gi 6= hi for some i, then the constructed bent functions fg and fh

in (2n1 + s) variables are distinct.
An important problem is to have a large number of such partitions P that we make sure

existence of a large number of corresponding ordered sequences of n1-plateaued functions.
We know su�ciently large number of such partitions using a�ne subspaces of Fpn1+s of

dimension s. This implies that we use only partially bent functions [2]. It is still not an easy
problem to count even this particular subject as n1 tends to infinity. We use methods from [8],
[6] together with many new and further techniques to have a good asymptotic lower bound. It
seems di�cult to improve these asymptotic lower bounds making also use of non partially bent
but plateaued functions.

2 Sketch of proof of Theorem 0.1

Let s � 1 be an integer. Let m be an integer such that (s + 1) | m. Recall that a spread S of
dimension (s + 1) in Fpm is a collection of (s + 1)-dimensional subspaces of Fpm such that any
one dimensional subspace of Fpm lies in exactly one of the elements of S. Note that S should

have exactly 1+p+···+pm�1

1+p+···+ps many elements. As m ! 1 and (s + 1) | m, Keevash et al. [8] proved
existence of M1(s, m) many spreads such that

ln (M1(s, m)) = pm�s�1(m � 1)s ln(p)(1 + o(1))

as m ! 1.
Take m = n1 + s + 1. Using an hyperplane restriction of these spreads and using also more

techniques from perfect matchings we obtain that the number M2(s, n1) of ordered partitions of
Fpn1+s into s dimensional a�ne subspaces satisfies

ln (M2(s, n1)) �
�
pn1 � �(s)pn1�s�1

�
(n1 + s)s ln(p)(1 + o(1)) + pn1n1 ln(p)(1 + o(1)) (7)

as n1 ! 1. Here �(s) = ps+1

(ps+1�1)
.

Using generalized Maiorana-McFarland construction and (7) we obtain that the number
M3(s, n1) of bent functions in (2n1 + s) variables gives

ln(M3(s, n1)) � pn1

✓
n1s + n1 + s2 � (n1 + s)s�(s)

ps+1

◆
ln(p)(1 + o(1))

as n1 ! 1. Putting s = 1 we complete the proof.

3 Sketch of proof of Theorem 0.3

Using results of Eberhald et al. [6] we obtain exact number of transversals of the Cayley table
of Fn

3 . This implies that the number M4(m) of unordered partitions of F3m into 1-dimensional
a�ne subspaces satisfies

ln(M4(m)) � 3m�1m ln(3) � 2 · 3m�1 ln(3)(1 + o(1)) (8)

as m ! 1. Take m = n1 + 1. Using generalized Maiorana-McFarland construction and (8) we
obtain that the number M5(n1) of (2n1 + 1)-variable bent functions over F3 satisfies

ln(M5(n1)) � 3n12n1 ln(3)(1 + o(1))

as n1 ! 1. This completes the proof.

76

References

[1] S. Agievich. Bent rectangles. Boolean functions in cryptology and information security,
NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., vol. 18, pp. 3–22, Amsterdam, 2008.

[2] C. Carlet. Partially-bent functions. Advances in cryptology’CRYPTO ’92 (Santa Barbara,
CA, 1992), 280-291, Lecture Notes in Comput. Sci., 740, Springer, Berlin, 1993.

[3] C. Carlet. Boolean and vectorial plateaued functions and APN functions. IEEE Transac-
tions on Information Theory, vol. 61, no. 11. pp. 6272–6289, 2015.

[4] C. Carlet. Boolean Functions for Cryptography and Coding Theory, Cambridge University
Press, Cambridge, 2021.

[5] A.Çesmelioğlu, W. Meidl and A. Pott. Generalized Maiorana-McFarland class and nor-
mality of p-ary bent functions. Finite Fields and Their Applications, vol. 24, pp. 105–117,
2013.

[6] S. Eberhard, F. Manners and R. Mrazovic. An asymptotic for the Hall-Paige conjecture.
Advances in Mathematics, Part A, Paper No. 108423, 73 pp, 2022.

[7] S. Hodžić, E. Pasalic, Y. Wei, F. Zhang. Designing plateaued Boolean functions in Spectral
Domain and Their Classification. IEEE Transactions on Information Theory, vol. 65, no.
9. pp. 5865–5879, 2019.

[8] P. Keevash, M. Sah and M. Sawhney. The existence of subspace designs. arXiv: 2212.00870,
61 pp, 2022.

[9] P. V. Kumar, R. A. Scholtz, L. R. Welch, “Generalized bent functions and their properties”,
J. Combinatorial Theory Ser. A vol. 40, no. 1, pp. 90–107, 1985.

[10] P. Langevin and G. Leander. Counting all bent functions in dimension eight
99270589265934370305785861242880. Designs, Codes and Cryptography, vol. 59, no. 1-3,
pp. 193–205, 2011.

[11] W. Meidl. A survey on p-ary and generalized bent functions. Cryptography and Communi-
cations, vol. 14, pp. 737–782, 2022.

[12] S. Mesnager. Bent Functions. Fundamentals and Results, Springer International Publishing,
2016.

[13] V. N. Potapov, A. A. Taranenko and Yu. V. Tarannikov. An asymptotic lower bound on the
number of bent functions. Designs, Codes and Cryptography, 2023. DOI: 10.1007/s10623-
023-01239-z

[14] O. S. Rothaus “On ‘bent’ functions” J. Combinatorial Theory Ser. A vol. 20, no. 3, pp.
300–305, 1976.

77

Normality of Boolean bent functions in eight variables, revisited

Alexandr Polujan1, Luca Mariot2, and Stjepan Picek3

1Otto von Guericke University Magdeburg
Universitätsplatz 2, 39106, Magdeburg, Germany

alexandr.polujan@gmail.com
2Semantics, Cybersecurity and Services Group, University of Twente,

Drienerlolaan 5, 7511GG Enschede, The Netherlands

l.mariot@utwente.nl
3Digital Security Group, Radboud University

Postbus 9010, 6500 GL Nijmegen, The Netherlands

stjepan.picek@ru.nl

Abstract

There are approximately 2106 bent functions in 8 variables, and the known constructions
cover only a tiny part of all these functions [9]. However, finding “rare” bent functions, i.e.,
those which do not arise from generic classes of functions or those of which examples are
only a few known, is still a non-trivial problem. In this paper, we give for the first time
an example of a non-normal partial spread bent function in 8 variables by analyzing the
list of all partial spread bent functions [8], thus solving two open problems by Charpin [4,
Open problem 5] and Leander [10, p.17], respectively. Additionally, we show that all partial
spread bent functions in n = 8 variables are either normal or weakly normal. Finally, using
evolutionary algorithms, we show that it is possible to construct bent functions which do not
belong, up to equivalence, to the Maiorana-McFarland class.
Keywords: Boolean bent function, partial spread class, normality, evolutionary computa-
tion.

1 Preliminaries

A mapping f : Fn
2 ! F2 is called a Boolean function. For a 2 Fn

2 , the Walsh transform �̂F : Fn
2 !

Z is defined by �̂f (a) =
P

x2Fn
2
(�1)f(x)+a·x, where a ·x = a1x1 + · · ·+anxn. A Boolean function

f : Fn
2 ! F2 is called bent if its Walsh transform satisfies �̂f (a) = ±2n/2 for all a 2 Fn

2 .

Definition 1.1. A Boolean function f on Fn
2 is said to be normal if it is constant on some a�ne

subspace U of Fn
2 of dimension dn/2e. In this case, f is said to be normal with respect to the

a�ne space U . If no such an a�ne space exists, f is said to be non-normal.

To prove theoretically that a given bent function f on Fn
2 is non-normal is a very challenging

task. Nevertheless, for small values of n (i.e., n  8), one can check the normality of a given bent
function with the help of Algorithm 1.1. With a recursive algorithm suggested in [2, Algorithm
1], several examples of non-normal bent functions in n = 10, 12, 14 variables were obtained. For
example, the restriction of the Kasami–Welch function x 2 F211 7! Tr(x241) to the trace 0 (and
trace 1) elements is a non-normal bent function in n = 10 variables [11, Fact 14]. Note that
n = 10 is the smallest number of variables for which such a bent function is known. Using
the direct sum construction, one can construct new non-normal bent functions in an arbitrary
number of variables from the known in the following way.

Result 1.2. [10, p. 24] Let f be a Boolean bent function on Fn
2 and g be a quadratic Boolean

bent function on Fm
2 . Then h(x, y) = f(x) + g(y) is normal on Fn

2 ⇥ Fm
2 i↵ f is normal on Fn

2 .

Despite the progress on the normality of bent functions in n � 10 variables, the following
two questions (the first is due Charpin [4, Open problem 5] and the second due Leander [10,
p.17]) still remain not answered:

79

Algorithm 1.1. Checking normality (according to [4, Theorem 1]).

Require: Bent function f : Fn
2 ! F2.

1: for all subspaces V of dimension n/2 do
2: Check the following condition: f is constant on b + V if and only if

(�1)b·v�̂f (v) = "2k, for all v 2 V ? = {u 2 Fn
2 : u · v = 0 for all v 2 V },

where " is constant, equal either to +1 or �1.

3: Output a�ne subspaces b + V , on which f is constant.
4: end for

1. Do non-normal bent functions of 8 variables and degree 4 exist?

2. Do non-normal bent functions in the PS� \ PSap class exist?

In the following section, we positively answer both of the mentioned questions by finding
among all PS bent functions in n = 8 variables [8] a non-normal bent function in PS� \ PSap.

2 A non-normal partial spread bent function in eight variables

First, we give a definition of a partial spread and define its canonical representation.

Definition 2.1. A partial spread of order s in Fn
2 with n = 2k is a set of s vector subspaces

U1, . . . , Us of Fn
2 of dimension k each, such that Ui \ Uj = {0} for all i 6= j. The partial spread

of order s = 2k + 1 in Fn
2 with n = 2k is called a spread.

Following the notation in [8], for two matrices A, B 2 F(k,k)
2 s.t. rank[A B] = k, we denote

by [A : B] the linear span of the rows of [A B]. Let 0k and Ik denote the all-zero and all-one
matrix of order k, respectively. Any partial spread of order s is equivalent to one of the form

S = {[0k : Ik]| {z }
U1

, [Ik : 0k]| {z }
U2

, [Ik : Ik]| {z }
U3

, [Ik : A4]| {z }
U4

, . . . , [Ik : As]| {z }
Us

}, (2.1)

where A2(= 0k), A3(= Ik), A4, . . . , As have the property that Ai � Aj is invertible for all 2 
i < j  s. In the following, we denote by U : Fn

2 ! F2 the indicator function of U ✓ Fn
2 ,

i.e., U (x) = 1 if x 2 U , and 0 otherwise. Let the vector spaces U1, . . . , U2k�1+1 of Fn
2 form

a partial spread in Fn
2 . The partial spread class PS of bent functions on Fn

2 is the union
of the following two classes [5]: the PS+ class is the set of Boolean bent functions of the

form f(x) =
P2k�1+1

i=1 Ui(x); the PS� class is the set of Boolean bent functions of the form

f(x) =
P2k�1

i=1 U⇤
i
(x), where U⇤

i := Ui\{0}. The Desarguesian partial spread class PSap ⇢ PS�

is the set of Boolean bent functions f on F2k ⇥ F2k of the form f : (x, y) 2 F2k ⇥ F2k 7! h (x/y),
where x

0 = 0, for all x 2 F2k and h : F2k ! F2 is a balanced Boolean function with h(0) = 0.
Clearly, every PS+ bent function f on Fn

2 is normal, since f |Ui = 1 for every spread line
Ui. Moreover, all functions in PSap class are normal, since they vanish on the k-dimensional
subspace {0}⇥F2k . However, the question about the normality of bent functions in PS�\PSap,
becomes non-trivial since, in this case, one deals with the sets U⇤

i , which are not vector subspaces
anymore.

Partial spreads on F8
2 were completely classified in [8]; the representatives of the correspond-

ing bent functions are available (at the moment of submission of this article) at [7]. Remarkably,
there exist 9,316 partial spreads of order 8 on F8

2, and each of them gives rise to a partial spread
bent function in the PS� class. Now, we give an example of such a bent function, which is
non-normal.

2
80

Example 2.2. Let n = 2k = 8. Let us define invertible k ⇥ k-matrices A4, . . . , A8, which, in
turn, define the partial spread S of order s = 8, given by its canonical representation (2.1):

A4 =

0
BB@

0 0 0 1
0 0 1 0
0 1 1 0
1 0 0 1

1
CCA, A5 =

0
BB@

0 1 0 0
1 1 0 1
0 1 0 1
0 1 1 1

1
CCA, A6 =

0
BB@

0 1 0 1
1 0 1 1
0 1 1 1
1 1 1 1

1
CCA, A7 =

0
BB@

1 0 1 0
0 1 1 1
1 1 1 0
1 0 1 1

1
CCA, A8 =

0
BB@

1 1 0 1
0 1 1 0
0 1 0 0
1 0 0 0

1
CCA.

The corresponding bent function f(x) =
P2k�1

i=1 U⇤
i
(x) is in the PS� \ PSap class (it is the

function psf=970 in [7, psf-8.txt]). The ANF of this function is given by:

f(x) = x1 + x2 + x1x2 + x3 + x1x3 + x2x3 + x1x2x3 + x4 + x1x4 + x2x4 + x1x2x4 + x3x4

+ x1x3x4 + x2x3x4 + x1x2x3x4 + x5 + x1x5 + x1x2x5 + x1x3x5 + x2x3x5 + x4x5 + x1x4x5

+ x2x4x5 + x1x2x4x5 + x2x3x4x5 + x6 + x1x6 + x2x6 + x3x6 + x1x3x6 + x2x3x6

+ x1x2x3x6 + x1x4x6 + x1x2x4x6 + x3x4x6 + x1x3x4x6 + x5x6 + x2x5x6 + x3x5x6

+ x2x3x5x6 + x4x5x6 + x7 + x2x7 + x1x2x7 + x3x7 + x2x3x7 + x2x4x7 + x1x2x4x7

+ x1x3x4x7 + x2x3x4x7 + x5x7 + x2x5x7 + x1x2x5x7 + x3x5x7 + x1x3x5x7 + x4x5x7

+ x1x4x5x7 + x2x4x5x7 + x6x7 + x1x6x7 + x2x6x7 + x3x6x7 + x2x3x6x7 + x1x4x6x7

+ x5x6x7 + x1x5x6x7 + x2x5x6x7 + x4x5x6x7 + x8 + x1x8 + x1x2x8 + x4x8 + x1x4x8

+ x2x4x8 + x3x4x8 + x1x3x4x8 + x2x3x4x8 + x5x8 + x1x2x5x8 + x4x5x8 + x2x4x5x8

+ x6x8 + x1x6x8 + x2x6x8 + x1x3x6x8 + x4x6x8 + x5x6x8 + x1x5x6x8 + x4x5x6x8

+ x7x8 + x1x7x8 + x2x7x8 + x1x2x7x8 + x3x7x8 + x2x3x7x8 + x4x7x8 + x5x7x8

+ x1x5x7x8 + x3x5x7x8 + x6x7x8 + x1x6x7x8 + x3x6x7x8 + x5x6x7x8.

Using Algorithm 1.1, one can check that this function is non-normal. With this example, we
give positive answers to both mentioned questions and also make the following conclusion (we
give a short proof for completeness).

Corollary 2.3. Let f be a non-normal bent function on Fn
2 . Then, n � 8.

Proof. Since f is bent on Fn
2 and n  6, we have that f is either quadratic or cubic (the latter is

only possible for n = 6). Every quadratic bent function f on Fn
2 is normal, see [4, Theorem A.1].

For n = 6, every cubic bent function is equivalent, up to a nonsingular a�ne transformation on
the variables, to the function g(x, y) = g(x1, x2, x3, y1, y2, y3) = x · ⇡(y) + x1x2x3, where ⇡ is a
permutation of F3

2, see [3, Proposition 4]. Clearly, g|V = 0 for a vector space V = {0}⇥ F3
2, and

hence f |b+V 0 = 0 for some a�ne space b + V 0. With Example 2.2 and Result 1.2, we conclude
that non-normal bent functions exist on Fn

2 for all even n � 8.

Surprisingly, the function f(x) in Example 2.2 is the only non-normal bent function from
the list of all partial spread bent functions [7]. This function is, however, weakly normal,
i.e., f + l is normal for a non-zero linear function l on F8

2. Indeed, it is possible to ver-
ify that for a linear function l(x) = x8 and an a�ne subspace V = (0, 1, 0, 1, 0, 0, 0, 0) +
h(0, 0, 1, 1, 0, 0, 0, 1), (0, 0, 0, 0, 1, 0, 0, 1), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 1)i the following holds
(f + l)|V = 1. With this observation, we make the following conclusion.

Result 2.4. All PS bent functions in n = 8 variables are either normal or weakly normal.

3 Computational construction methods of bent functions

Aimed to generate more non-normal bent functions and to find the first examples of non-weakly
normal bent functions in 8 variables, we use two computational approaches for the generation of
large sets of bent functions, based on the cellular automata (CA) and the genetic programming
(GP). In the following, we briefly discuss the used approaches and bent functions obtained with
their help.

3
81

3.1 Generating bent functions with CA and GP

Cellular Automata (CA) can be seen as a particular kind of discrete dynamical system equipped
with a shift-invariant update function that acts over a regular lattice of cells. When the state set
of the cells is a finite field, and the local rule is linear, a cellular automaton can be interpreted as
a linear recurring sequence (LRS). The authors of [6] studied families of LRS of order d, whose
feedback polynomials are pairwise coprime. In this way, it is possible to define a partial spread
by considering the projection of the LRS onto their first 2d coordinates. Such families exist only
when the degree of the feedback polynomials is either 1 or 2. The former case corresponds to the
Desarguesian spread. For degree 2, the authors of [6] found 273 PS� functions of 8 variables,
most of which are inequivalent to Maiorana-McFarland and Desarguesian spread-based functions.
Therefore, they seem to be good candidates to test for non-normality.

Genetic Programming (GP) is an optimization algorithm loosely inspired by the principles
of biological evolution. The underlying idea is to encode a Boolean function f : Fn

2 ! F2 as
a syntactic tree where the leaves represent the input variables, the internal nodes are Boolean
operators (such as AND, XOR, NOT, etc.) acting on the inputs received from their children,
and the root node gives the output of the function. Therefore, one can define the truth table of
the function by evaluating the circuit encoded by the tree over all 2n input combinations. The
GP algorithm randomly initializes a population of trees encoding n-variables Boolean functions,
then evaluates their fitness, which measures the optimization criterion to optimize. In our case,
the fitness function is defined as the nonlinearity of the functions to be maximized. Then, the
GP algorithm iteratively evolves the population by applying mutation and crossover operators,
which give a new population to be evaluated against the fitness function. The fittest individuals
are then carried over to the next iteration. For our problem, we employed the GP algorithm
proposed in [12], adopting the same experimental settings and parameters. In particular, the
GP algorithm performed 10 000 optimization runs, where in each run, a population of 50 trees
encoding Boolean functions of 8 variables is evolved for 500 000 iterations.

3.2 Analysis of generated bent functions

CA. Aimed to analyze whether it is possible to generate non-normal partial spread bent func-
tions using CA, we revised all 273 PS� bent functions generated with this approach in [6]. It
turned out that all partial spread bent functions constructed with this approach are normal.

Genetic Programming. With this approach, we were able to generate 7,478 di↵erent bent
functions. Among them, there are 4 690 quadratic, 2 367 cubic, and 421 of degree 4. Since
all quadratic bent functions and all cubic functions in 8 variables are normal, it is enough to
analyze only bent functions of degree 4. We note that all the generated bent functions of degree
4 turned out to be normal as well, which was reasonable to expect since most of them have
only a few monomials of degree 4. For this reason, and due to the fact that the majority of
generated bent functions are quadratic and cubic (and hence are equivalent to the Maiorana-
McFarland class), it was essential to check whether these bent functions of degree 4 are equivalent
to the Maiorana-McFarland class. Among 421 functions of degree 4, we identified a function
inequivalent to a member of the Maiorana-McFarland class (this fact was checked with the
corresponding algorithms described in [1, 13]). The ANF of this function is given by

g(x) = 1 + x2 + x5 + x6 + x8 + x1x5 + x1x7 + x1x8 + x2x6 + x2x7 + x3x8 + x4x7

+ x2x5x8 + x1x3x6x7 + x2x5x7x8.
(3.1)

Again, with Algorithm 1.1, one can check that the function g given in (3.1) is normal, since
g|V = 0 for the a�ne subspace V = (1, 1, 0, 0, 0, 0, 0, 0)+ h(0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0)i of dimension 4.

4
82

4 Conclusion and open problems

In this paper, we completely analyzed all partial spread bent functions in n = 8 variables with
respect to normality, thus providing the first example of a non-normal bent function in n = 8
variables. The next essential step is to find (if possible) the examples of non-weakly normal bent
functions on F8

2, as well as non-weakly normal bent functions in the PS� \PSap class; the latter
question was essentially asked by Leander in [10, p.17].

Aimed to generate more non-normal bent functions and even to find non-weakly normal ones,
we used evolutionary algorithms to construct such functions. Being unable to find such examples
(mostly due to the reason that we evolved only non-linearity), we still, however, were able to
find bent functions, which, up to equivalence, do not belong to the Maiorana-McFarland class.
This finding indicates, that using suitably chosen evolutionary algorithms (e.g., by additionally
minimizing the number of flats on which a bent function is a�ne), it might be possible to
construct “rare” bent functions.

Finally, we want to underline that future research on generating new bent functions should
be focused on the construction of algorithms 1) generating bent functions outside the known
classes with a high probability, 2) generating non-normal bent functions, and 3) generating
non-weakly normal bent functions. We believe that based on the analysis of big sets of bent
functions not coming from the known analytic constructions, it should be possible to develop
generic theoretical construction methods of new families of bent functions.

References

[1] Bapić, A., Pasalic, E., Polujan, A., Pott, A.: Vectorial Boolean functions with the maximum number
of bent components beyond the Nyberg’s bound. Designs, Codes and Cryptography (2023). p. 4.

[2] Canteaut, A., Daum, M., Dobbertin, H., Leander, G.: Finding nonnormal bent functions. Discrete
Applied Mathematics 154(2), 202–218 (2006). p. 1.

[3] Carlet, C.: Two new classes of bent functions. In: T. Helleseth (ed.) Advances in Cryptology —
EUROCRYPT ’93, pp. 77–101. Springer Berlin Heidelberg, Berlin, Heidelberg (1994). p. 3.

[4] Charpin, P.: Normal Boolean functions. J. Complexity 20(2-3), 245–265 (2004). pp. 1, 2, and 3.

[5] Dillon, J.F.: Elementary Hadamard di↵erence sets. Ph.D. thesis, University of Maryland (1974).
p. 2.

[6] Gadouleau, M., Mariot, L., Picek, S.: Bent functions in the partial spread class generated by linear
recurring sequences. Designs, Codes and Cryptography 91(1), 63–82 (2023). p. 4.

[7] Langevin, P.: Classification of partial spread functions in eight variables. Philippe Langevin’s
numerical project page (2010). pp. 2 and 3.

[8] Langevin, P., Hou, X.D.: Counting partial spread functions in eight variables. IEEE Transactions
on Information Theory 57, 2263–2269 (2011). pp. 1 and 2.

[9] Langevin, P., Leander, G.: Counting all bent functions in dimension eight
99270589265934370305785861242880. Designs, Codes and Cryptography 59(1), 193–205 (2011).
p. 1.

[10] Leander, G.: Normality of bent functions. Monomial- and binomial-bent functions. Ph.D thesis,
Ruhr-Universität Bochum, Universitätsbibliothek (2005) pp. 1 and 5.

[11] Leander, G., McGuire, G.: Construction of bent functions from near-bent functions. Journal of
Combinatorial Theory, Series A 116(4), 960–970 (2009) p. 1.

[12] Picek, S., Jakobovic, D., Miller, J.F., Batina, L. Cupic, M.: Cryptographic Boolean functions: One
output, many design criteria. Appl. Soft Comput. 40: 635-653 (2016) p. 4.

[13] Polujan, A., Pott, A.: Cubic bent functions outside the completed Maiorana-McFarland class.
Designs, Codes and Cryptography 88(9), 1701–1722 (2020). p. 4.

5
83

S0-equivalent classes, a new direction to find better weightwise perfectly
balanced functions, and more

Agnese Gini[0009�0001�9565�380X], Pierrick Méaux[0000�0001�5733�4341]

University of Luxembourg, Luxembourg
agnese.gini@uni.lu, pierrick.meaux@uni.lu

Abstract. We investigate the concept of S0 equivalent class, n-variable Boolean functions up to the addition of a
symmetric function null in 0n and 1n, as a tool to study weightwise perfectly balanced functions. On the one hand
we show that weightwise properties, such as being weightwise perfectly balanced, the weightwise nonlinearity and
weightwise algebraic immunity, are invariants of these classes. On the other hand we analyze the variation of global
parameters inside the same class, showing for example that there is always a function with high degree, algebraic
immunity, or nonlinearity in the S0 equivalent class of a function. Finally, we discuss how these results extend to
other equivalence relations and their applications in cryptography.

1 Introduction

Weightwise Perfectly Balanced (WPB) functions have been introduced by Carlet et al. in [CMR17] while studying the
cryptographic properties of Boolean functions when the input is restricted to a subset of Fn

2 , motivated by the analysis
of FLIP stream cipher [MJSC16]. These objects are the functions f : Fn

2 ! F2, such that |{x 2 Ek,n | f(x) = 0}| =
|{x 2 Ek,n | f(x) = 1}| for each 1  k  n�1 where the slice Ek,n denotes the set of Fn

2 with all vectors of Hamming
weight k, f globally balanced, and f(0n) = 0. Since then, several articles studied the properties on restricted sets, and
multiple articles focused on WPB functions such as [LM19, TL19, LS20, MS21, ZS21, MSL21, GS22, ZS22, MPJ+22,
GM22a, GM22b, MKCL22, MSLZ22, GM22c, ZJZQ23, ZLC+23, GM23].

In this paper we study their parameters relatively to the concept of S0 equivalent class, which considers two n-
variable Boolean functions being in the same class if they are equal up to the addition of a symmetric function null in
0n and 1n. The interest for WPB functions is that being WPB is an invariant of S0-classes. Hence, by stabilizing the
WPB functions, the notion of S0-equivalence gives a new direction to find WPB functions.

Since for every practical application it is crucial to have a WPB function with both good weightwise and global
parameters, this work aims to suggest a new strategy to construct a WPB function satisfying this assumption. Indeed,
the results of this article imply that in order to find such a function, we can first search for one with suitable weightwise
properties and later improve the global properties by looking directly inside its S0-class.

Indeed, in this paper we show that the weightwise parameters such as weightwise nonlinearity and weightwise
algebraic immunity stay unchanged inside the S0-class. Then, we investigate the variation of the global parameters
such as the degree, algebraic immunity and nonlinearity, inside an S0-class and we prove bounds on the maximal
parameters in all classes. We demonstrate, for example, that from WPB functions with algebraic immunity as low as
2 (e.g. , in [GM23]), we can find a function with algebraic immunity at least t + 1 in its S0-class provided log2(n) �
log2(2t + 1) + t + 2; while, for those whose nonlinearity is as low as 2n/2�1 (as exhibited in [GM22c]), we can find
a function with nonlinearity at least 2n�2 � 2

n
2 �2 in its S0-class. We show that in every class we can find a function

with degree n � 1.
Using this framework are also able to prove that for every degree between n/2 and n � 1 we can exhibit a WPB

function with such a degree. Finally, we discuss how these results can be extended to other equivalence relations
defined up to the addition of functions from of family T . In different context of cryptography where a family T is easy
to compute, and the addition is cheap, finding a Boolean function with good cryptographic parameters could then be
reduced to finding the best function inside its T -class.

We complement our investigation performing experimental analyses on equivalence classes for WPB functions in
a small number of variables. Specifically, we are able to provide an exhaustive taxonomy of 4-variables classes. For
8-variables we selected some function from know families, e.g. [CMR17,LM19,TL19,GM22c,GM23], and computed
statistics over the properties in their classes. The result of these experiments is provided in the full version of the paper.

85

2 Some preliminaries

A Boolean function f in n variables is a function from Fn
2 to F2. We recall here general concepts on Boolean functions

and their weightwise properties, we refer to e.g. [Car21] and to [CMR17] respectively for further details. The set
of all Boolean functions in n variables is denoted by Bn, and we denote B⇤

n the set without the null function. We
call Algebraic Normal Form of a Boolean n-variable polynomial representation over F2 (i.e. in F2[x1, . . . , xn]/(x2

1 +
x1, . . . , x

2
n + xn)): f(x1, . . . , xn) =

P
I✓[1,n] aI

�Q
i2I xi

�
where aI 2 F2. The (algebraic) degree of f , denoted

deg(f) is deg(f) = maxI✓[1,n]{|I| | aI = 1} if f is not null, 0 otherwise.
To denote when a property or a definition is restricted to a slice we use the subscript k. For example, for a n-

variable Boolean function f we denote its support supp(f) = {x 2 Fn
2 | f(x) = 1} and we denote suppk(f) its

support restricted to a slice, that is supp(f) \ Ek,n.
A Boolean function f 2 Bn is called balanced if |supp(f)| = 2n�1 = |supp(f + 1)|. For k 2 [0, n] the

function is said balanced on the slice k if ||suppk(f)| � |suppk(f + 1)||  1. In particular when |Ek,n| is even
|suppk(f)| = |suppk(f + 1)| = |Ek,n|/2.

Let m 2 N⇤ and n = 2m, f is called weightwise perfectly balanced (WPB) if, for every k 2 [1, n � 1], f is
balanced on the slice k, that is 8k 2 [1, n � 1], |suppk(f)| =

�
n
k

�
/2, and f(0n) = 0 and f(1n) = 1. The set of WPB

functions in 2m variables is denoted WPBm. When n is not a power of 2, other weights than k = 0 and n give slices
of odd cardinality, in this case we call f 2 Bn weightwise almost perfectly balanced (WAPB) if |suppk(f)| is either
|Ek,n|/2 if |Ek,n| is even, or (|Ek,n|±1)/2, otherwise. The set of WAPB functions in n variables is denoted WAPBn.
The first WAPB family of function has been exhibited in [CMR17, Proposition 5] and it is usually referred as CMR
functions.

The nonlinearity NL(f) of f 2 Bn is the minimum Hamming distance between f and all the affine functions
in Bn, i.e. NL(f) = ming, deg(g)1{dH(f, g)}. For k 2 [0, n] we denote NLk the nonlinearity on the slice k, the
minimum Hamming distance between f restricted to Ek,n and the restrictions to Ek,n of affine functions over Fn

2 , i.e.
NLk(f) = ming, deg(g)1 |suppk(f + g)|.

The algebraic immunity (AI) of a Boolean function f 2 Bn, denoted as AI(f), is defined as: AI(f) =
ming 6=0{deg(g) | fg = 0 or (f +1)g = 0}. The function g is called an annihilator of f (or f +1). The weightwise al-
gebraic immunity on the slice Ek,n, denoted by AIk(f), is defined as: min {deg(g) | fg = 0 or (f + 1)g = 0 over Ek,n}
where g is non null on Ek,n.

The n-variable Boolean symmetric functions are those that are constant on each slice Ek,n for k 2 [0, n]. The set
of n-variable symmetric functions is denoted SYMn. Let i 2 [0, n], the elementary symmetric function of degree
i in n variables, denoted �i,n, is the function which ANF contains all monomials of degree i and no monomials
of other degrees; while, the indicator functions of the slice of weight k is the such that 8x 2 Fn

2 , 'k,n(x) =
1 if and only if wH(x) = k.

3 The S0-equivalence relation

For a fixed n = 2m we consider the set of symmetric functions null in 0n and 1n:

S0 = {� 2 SYMn : �(0n) = �(1n) = 0} ,

and the sets of Boolean functions in Bn up to addition of an element of S0:

Definition 1 (S0-equivalent functions). Let m 2 N⇤ and f, g 2 Bn Boolean functions in n = 2m variables. f, g are
called S0-equivalent if there exists a symmetric function � 2 S0 such that f = g + �. We call S0-class of f the set of
functions S0-equivalent to f and we denote it by S0(f).

Remark 1. Being S0-equivalent is an equivalence relation.

Lemma 1. Let m 2 N⇤ and n = 2m,

1. S0 is a F2-vector space of dimension n � 1. In particular, S0 = h'k,n : k 2 [1, n � 1]iF2
where we denote by

'k,n’s the slice indicator functions.

2

86

2. For all f 2 Bn, S0(f) = f + S0 and |S0(f)| = 2n�1.
3. S0 = h�d,n : d 2 [1, n � 1]iF2

where we denote by �d,n’s the elementary symmetric functions.

Both S0-classes of weightwise almost perfectly balanced functions and weightwise perfectly balanced functions
consist of functions having the same W(A)PB property.

Proposition 1. Let m 2 N⇤ and n = 2m,

1. For all f 2 WAPBn, S0(f) ✓ WAPBn.
2. For all f 2 WPBm, S0(f) ✓ WPBm.
3. Let v = (v1, . . . , vn�1) be a tuple such that 8k 2 [1, n � 1], vk 2 Ek,n. For any f 2 Bn, there exists a unique

gv 2 S0(f) such that for all k 2 [1, n � 1], gv(vk) = 1. We call gv the canonical representative of its class
respectively to v.

As a consequence of Proposition 1 we obtain that S0-classes form a partition of WAPBn and WPBm and that
for every tuple v we can represent the partition using canonical representatives. We prove that S0-equivalent classes
have invariant restricted weightwise nonlinearity and restricted algebraic immunity:

Theorem 1. Let m 2 N⇤, n = 2m and f, g 2 Bn S0-equivalent functions. For every k 2 [0, n] it holds NLk(f) =
NLk(g).

Theorem 2. Let m 2 N⇤, n = 2m and f, g 2 WPBm S0-equivalent functions. For every k 2 [0, n] it holds
AIk(f) = AIk(g).

While functions in the same S0-class have the same restricted weightwise nonlinearities and restricted algebraic
immunities, they do not necessarily share the global properties such as the degree, nonlinearity and algebraic immunity.
Working with S0-classes provides us a different principle for the construction of new functions. In fact, suppose we
have a WPB function h with certain NLk ’s and AIk ’s and we are interested in increasing, for instance, its algebraic
immunity, we can start our search for a new function inside S0(h). Additionally, if h is a WPB function, we are
guaranteed to obtain a function that is also WPB.

In the rest of this article we study the behavior of degree, nonlinearity and algebraic immunity inside S0-classes.
Specifically, we are interested in the following edge quantities for WPB functions that characterize the best guaranteed
value, for degree, algebraic immunity and nonlinearity, achievable by modifying a function in WPBm, while staying
within its S0-class:

Definition 2. Let m 2 N⇤ and n = 2m, we define:

mdegS0(m) = min
f2WPBm

max
g2S0(f)

deg(g),

mAIS0(m) = min
f2WPBm

max
g2S0(f)

AI(g),

mNLS0(m) = min
f2WPBm

max
g2S0(f)

NL(g).

4 Degree in S0-classes

In this part we study the potential algebraic degree inside S0-classes. We prove that we can preview the behavior of the
degree inside the S0-class S0(f) by looking at the ANF of f . As a consequence, we show that for any value between
n/2 and n � 1 (included) there exist WPB functions reaching this degree. The proof is constructive, we exhibit a new
family of WPB functions with prescribed degree for all n = 2m (with m 2 N⇤).

Definition 3 (Sigma-degree �deg(f)). Let n 2 N⇤, and f 2 Bn. Let Df be the set of d 2 [1, n�1] such that the ANF
of f contains at least a degree d monomial but not all of them. We define: �deg(f) = max Df if Df 6= ;, 0 otherwise.

Lemma 2. Let m 2 N⇤ and n = 2m. Let f, g S0-equivalent Boolean functions in n variables. Then, �deg(f) =
�deg(g).

3

87

Hence, �deg(f) is an invariant of the S0-class and it is in fact the minimum degree in the class when f is not a
symmetric function:

Theorem 3. Let m 2 N⇤ and n = 2m. Let f 2 Bn such that f 62 SYMn and � 2 N.

- there exist exactly 2�deg(f) functions g 2 S0(f) such that deg(g) = �deg(f).
- if �deg(f) < � < n, there exist exactly 2��1 functions g 2 S0(f) such that deg(g) = �.
- if � < �deg(f), there does not exist g 2 S0(f) such that deg(g) = �.

Therefore, in the S0 class of every WPB function there exists at least a function of degree n� 1, i.e. the minimum
of the maximal degree inside an S0-class of WPBm is n � 1:

Corollary 1. Let m 2 N⇤. mdegS0(m) = n � 1.

We can specialize the argument of Theorem 3 to explicitly construct WPB functions having for degree any value
between n/2 and n � 1 included, from CMR family.

Corollary 2 (WPB functions with prescribed degree). Let m 2 N⇤, n = 2m, and d 2 [n
2 , n � 1]. We define

fn,n/2 = fn as in [CMR17, Proposition 5], and for all n
2 < d < n, fn,d = fn +�d,n. The function fn,d is weightwise

perfectly balanced and deg(fn,d) = d.

Degree distribution in WPBm. Let m 2 N⇤ and n = 2m. We observe that S0-classes form a partition of
WPBm from Proposition 1. Denoting by ✓d,m the number of S0-classes such that �deg(f) = d and setting
Dd,m = | {f 2 WPBm : deg f = d} |, from Theorem 3 we have that:

Dd,m = 2d · ✓d,m + 2d�1 ·
d�1X

k=0

✓k,m = 2d�1 · ✓d,m + 2d�1 ·
dX

k=0

✓k,m.

Theorem 4. Let m 2 N⇤, n = 2m, the probability of a WPB function from WPBm having degree n � 1 is:

Dn�1,m

|WPBm| =
2n�2✓n�1,m

|WPBm| +
1

2
> 1/2. (1)

Practical experiments. To complement this investigation on the degree, we perform an experimental study of the
degree distribution for WPB functions in a small number of variables. The results will be displayed in the full version
of the paper.

5 Minimal parameters inside the S0-classes of WPB functions

For a WPB function reaching a very small algebraic immunity or nonlinearity, there always exists a function with better
parameters in its S0-class. On the experimental side, it allows to optimize the parameters of a WPB while staying in
the class.

Algebraic immunity inside an S0 class. In this part we focus on the mAIS0(m) parameter (Definition 2). In [GM23],
the minimal AI that a WPB function can have is proven to be 2. In the following we show that mAIS0(m) > 2 (for
m � 6), which means that for such WPB functions exhibited in [GM23], there always exist functions with better AI
in their S0-class, more adequate to be used in a cipher. We begin by demonstrating a general lemma:

Lemma 3. Let m 2 N⇤ and n = 2m, let t 2 N⇤, if there exist 2t functions si in S0 such that AI(si) > 2t, and
AI(si + sj) > 2t for all i 6= j, then for all f 2 Bn there exists g 2 S0(f) such that AI(g) � t + 1.

Then, we need a result on the AI of some symmetric functions, to show the existence of 2t functions satisfying the
conditions of Lemma 3 in S0.

4

88

Proposition 2. Let m 2 N⇤ and n = 2m, let r 2 N⇤, r < m, for all vector v 2 (Fr
2)

⇤ the symmetric function f
defined as: f =

Pr
i=1 vi�2m�2m�i,2m is such that AI(f) � 2m�r � 1.

It allows to derive a first lower bound on mAIS0(m):

Theorem 5 (Lower bound on mAIS0(m)). Let t, m 2 N, t � 2, if m > log(2t + 1) + t + 1 + (t mod 2) then
mAIS0(m) � t + 1.

Taking the first m satisfying the condition of Theorem 5, mt = blog(2t+1)c+ t+2+(t mod 2), the first values
are m2 = 6, m3 = 8, m4 = 9, and m5 = 11.

Theorem 5 shows that for m � 6 there are functions with AI at least 3 in each S0-class of WPBm. An interesting
research direction is to determine if mAIS0(m) = 2m�1. If it holds, there are functions with optimal AI in each S0-
class, and then finding a WPB function with good AI together with good NLk and AIk boils down to determining the
adequate representative. If it does not hold, it is appealing to characterize the classes where optimal AI is not reachable.

Nonlinearity inside an S0-class. In this part we focus on mNLS0(m), as defined in Definition 2. In [GM22c], WPB
functions with a nonlinearity as low as 2n/2�1 have been exhibited. In this part we demonstrate that mNLS0(m) �
2n�2 � 2

n
2 �2.

Theorem 6 (Lower bound on mNLS0(m)). Let m 2 N, m � 2 and n = 2m, the following holds:

mNLS0(m) � 2n�2 � 2
n
2 �2.

6 Beyond parameters in S0-classes

These results have more implications for cryptographic applications: for example in the (improved) filter permutator
context [MJSC16, MCJS19], for hybrid homomorphic encryption, there are efficient ways to evaluate symmetric
functions (as illustrated in [HMR20]), and doing one addition is cheap, therefore it is interesting to consider the
best function in the S0-class of a filter function. In that case, for all contexts where adding one function is cheap, the
hunt for optimized functions could be split into finding a cheap function to evaluate, and then determining the one
with best cryptographic parameters in its T -class. The T -class would be the class given by an equivalence relation up
to the addition of a fixed family of functions, at the same time efficiently computable in the context and enabling good
cryptographic parameters.

Different results we presented can be generalized to T -classes, in particular denoting mdegT , mAIT and mNLT ,
the minimum over the maximum degree, AI and nonlinearity parameter inside a T -class:

– Similarly to Corollary 1, denoting by D the maximum degree of functions inside T , we obtain that mdegT � D.
– Lemma 3 can be generalized to any family T , hence for any family T with functions with high AI and such that

the sum of two elements still have high AI, we can obtain a bound on mAIT similarly to the one of Theorem 5.
– The bound on mNLS0(m) from Theorem 6 comes from the fact that a bent function belongs to S0. Then, the same

bound applies for each family T containing a bent function. More generally, denoting B the maximal nonlinearity
for a function in T , the bound mNLT � B/2 holds.

Acknowledgments. The two authors were supported by the ERC Advanced Grant no. 787390.

References

BP05. An Braeken and Bart Preneel. On the algebraic immunity of symmetric boolean functions. In Progress in Cryptology
- INDOCRYPT 2005, 6th International Conference on Cryptology in India, Bangalore, India, December 10-12, 2005,
Proceedings, pages 35–48, 2005.

Car04. Claude Carlet. On the degree, nonlinearity, algebraic thickness, and nonnormality of boolean functions, with
developments on symmetric functions. IEEE Trans. Information Theory, pages 2178–2185, 2004.

5

89

Car21. Claude Carlet. Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, 2021.
CM22. Claude Carlet and Pierrick Méaux. A complete study of two classes of boolean functions: direct sums of monomials

and threshold functions. IEEE Transactions on Information Theory, 68(5):3404–3425, 2022.
CMR17. Claude Carlet, Pierrick Méaux, and Yann Rotella. Boolean functions with restricted input and their robustness;

application to the FLIP cipher. IACR Trans. Symmetric Cryptol., 2017(3), 2017.
CV05. Anne Canteaut and Marion Videau. Symmetric boolean functions. IEEE Trans. Information Theory, pages 2791–2811,

2005.
DMS06. Deepak Kumar Dalai, Subhamoy Maitra, and Sumanta Sarkar. Basic theory in construction of boolean functions with

maximum possible annihilator immunity. Designs, Codes and Cryptography, 2006.
Fin47. N. J. Fine. Binomial coefficients modulo a prime. The American Mathematical Monthly, 54(10):589–592, 1947.
GM22a. Agnese Gini and Pierrick Méaux. On the weightwise nonlinearity of weightwise perfectly balanced functions. Discret.

Appl. Math., 322:320–341, 2022.
GM22b. Agnese Gini and Pierrick Méaux. Weightwise almost perfectly balanced functions: Secondary constructions for all n and

better weightwise nonlinearities. In Takanori Isobe and Santanu Sarkar, editors, Progress in Cryptology - INDOCRYPT,
volume 13774 of Lecture Notes in Computer Science, pages 492–514. Springer, 2022.

GM22c. Agnese Gini and Pierrick Maux. Weightwise perfectly balanced functions and nonlinearity. Cryptology ePrint Archive,
Paper 2022/1777, 2022.

GM23. Agnese Gini and Pierrick Maux. On the algebraic immunity of weightwise perfectly balanced functions. Cryptology
ePrint Archive, Paper 2023/495, 2023. https://eprint.iacr.org/2023/495.

GS22. Xiaoqi Guo and Sihong Su. Construction of weightwise almost perfectly balanced boolean functions on an arbitrary
number of variables. Discrete Applied Mathematics, 307:102–114, 2022.

HMR20. Clément Hoffmann, Pierrick Méaux, and Thomas Ricosset. Transciphering, using filip and TFHE for an efficient
delegation of computation. In Karthikeyan Bhargavan, Elisabeth Oswald, and Manoj Prabhakaran, editors, Progress in
Cryptology - INDOCRYPT 2020 - 21st International Conference on Cryptology in India, Bangalore, India, December
13-16, 2020, Proceedings, volume 12578 of Lecture Notes in Computer Science, pages 39–61. Springer, 2020.

LM19. Jian Liu and Sihem Mesnager. Weightwise perfectly balanced functions with high weightwise nonlinearity profile. Des.
Codes Cryptogr., 87(8):1797–1813, 2019.

LS20. Jingjing Li and Sihong Su. Construction of weightwise perfectly balanced boolean functions with high weightwise
nonlinearity. Discret. Appl. Math., 279:218–227, 2020.

MCJS19. Pierrick Méaux, Claude Carlet, Anthony Journault, and François-Xavier Standaert. Improved filter permutators for
efficient FHE: better instances and implementations. In Feng Hao, Sushmita Ruj, and Sourav Sen Gupta, editors,
Progress in Cryptology - INDOCRYPT, volume 11898 of LNCS, pages 68–91. Springer, 2019.

Méa21. Pierrick Méaux. On the fast algebraic immunity of threshold functions. Cryptogr. Commun., 13(5):741–762, 2021.
MJSC16. Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and Claude Carlet. Towards stream ciphers for efficient

FHE with low-noise ciphertexts. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part I, volume
9665 of LNCS, pages 311–343. Springer, Heidelberg, May 2016.

MKCL22. Sara Mandujano, Juan Carlos Ku Cauich, and Adriana Lara. Studying special operators fortheapplication ofevolutionary
algorithms intheseek ofoptimal boolean functions forcryptography. In Obdulia Pichardo Lagunas, Juan Martı́nez-
Miranda, and Bella Martı́nez Seis, editors, Advances in Computational Intelligence, pages 383–396, Cham, 2022.
Springer Nature Switzerland.

MPJ+22. Luca Mariot, Stjepan Picek, Domagoj Jakobovic, Marko Djurasevic, and Alberto Leporati. Evolutionary construction
of perfectly balanced boolean functions. In 2022 IEEE Congress on Evolutionary Computation (CEC), page 18. IEEE
Press, 2022.

MS78. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes. North-holland Publishing Company, 2nd
edition, 1978.

MS21. Sihem Mesnager and Sihong Su. On constructions of weightwise perfectly balanced boolean functions. Cryptography
and Communications, 2021.

MSL21. Sihem Mesnager, Sihong Su, and Jingjing Li. On concrete constructions of weightwise perfectly balanced functions
with optimal algebraic immunity and high weightwise nonlinearity. Boolean Functions and Applications, 2021.

MSLZ22. Sihem Mesnager, Sihong Su, Jingjing Li, and Linya Zhu. Concrete constructions of weightwise perfectly balanced (2-
rotation symmetric) functions with optimal algebraic immunity and high weightwise nonlinearity. Cryptogr. Commun.,
14(6):1371–1389, 2022.

MT21. Sihem Mesnager and Chunming Tang. Fast algebraic immunity of boolean functions and LCD codes. IEEE Trans. Inf.
Theory, 67(7):4828–4837, 2021.

QFLW09. Longjiang Qu, Keqin Feng, Feng Liu, and Lei Wang. Constructing symmetric boolean functions with maximum
algebraic immunity. IEEE Transactions on Information Theory, 55:2406–2412, 05 2009.

6

90

SM07. Palash Sarkar and Subhamoy Maitra. Balancedness and correlation immunity of symmetric boolean functions. Discrete
Mathematics, pages 2351 – 2358, 2007.

TL19. Deng Tang and Jian Liu. A family of weightwise (almost) perfectly balanced boolean functions with optimal algebraic
immunity. Cryptogr. Commun., 11(6):1185–1197, 2019.

ZJZQ23. Qinglan Zhao, Yu Jia, Dong Zheng, and Baodong Qin. A new construction of weightwise perfectly balanced functions
with high weightwise nonlinearity. Mathematics, 11(5), 2023.

ZLC+23. Qinglan Zhao, Mengran Li, Zhixiong Chen, Baodong Qin, and Dong Zheng. A unified construction of weightwise
perfectly balanced boolean functions. Cryptology ePrint Archive, Paper 2023/460, 2023. https://eprint.iacr.

org/2023/460.
ZS21. Rui Zhang and Sihong Su. A new construction of weightwise perfectly balanced boolean functions. Advances in

Mathematics of Communications, 0:–, 2021.
ZS22. Linya Zhu and Sihong Su. A systematic method of constructing weightwise almost perfectly balanced boolean functions

on an arbitrary number of variables. Discrete Applied Mathematics, 314:181–190, 2022.

7

91

Orientable sequences over nonbinary alphabet

Abbas Alhakim, Chris J. Mitchell, Janusz Szmidt, Peter R. Wild

April 15, 2023

Abstract

We consider orientable sequences over the residue group Zq. We prove properties
of a generalized Lempel homomorphism and give an upper bound on the periods
of orientable sequences. We generalize the results of [6].

1 Introduction

For positive integers n and q greater than one, let Zn
q be the set of all qn vectors

of length n with entries in the group Zq of residues modulo q. An order n de
Bruijn sequence with alphabet in Zq is a periodic sequence that includes every
possible string of size n exactly once as a subsequence of consecutive symbols
in one period of the sequence.

The order n de Bruijn digraph, Bn(q), is a directed graph with Zn
q as its

vertex set and for any two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn), (x;y)
is an edge if and only if yi = xi+1 for every i (1  i < n). We then say that
x is a predecessor of y and y is a successor of x. Evidently, every vertex has
exactly q successors and q predecessors. Furthermore, two vertices are said to
be conjugates if they have the same successors.

A cycle in Bn(q) is a path that starts and ends at the same vertex. It is
called vertex disjoint if it does not visit any vertex more than once. Two cycles
or two paths in the digraph are vertex disjoint if they do not have a common
vertex. A cycle in Bn(q) is primitive if it does not simultaneously contain a
word and any of its translates.

A function d : Zn
q ! Zq is said to be translation invariant if d(w+�) = d(w)

for all w 2 Zn
q and all � 2 Zq. The weight w(s) of a word or sequence s is the

sum of all elements in s (not taken modulo q). Similarly, the weight of a cycle
is the weight of the ring sequence that represents it. Obviously a de Bruijn
sequence of order n defines a Hamiltonian cycle in Bn(q), i.e., a cycle that visits
each vertex exactly once and which we call a de Bruijn cycle.

For an integer n > 1 define a map D : Bn(2) ! Bn�1(2) by

D(a1, . . . , an) = (a1 + a2, a2 + a3, . . . , an�1 + an)

1

93

where addition is modulo 2. This function defines a graph homomorphism and
is known as Lempel’s D-morphism since it was studied in [4].

We present a generalization to nonbinary alphabets [1]. For a nonzero
� 2 Zq, we define a function D� from Bn(q) to Bn�1(q) as follows. For a =
(a1, . . . , an) and b = (b1, . . . , bn�1), D�(a) = b if and only if bi = d�(ai, ai+1)
for i = 1 to n � 1, where d�(ai, ai+1) = �(ai+1 � ai) mod q. Clearly D� is
translation invariant. It is also onto if gcd(�, q) = 1.

2 Orientable sequences

Definition 1
We define an n-window sequence S = (si) (see, for example, [5]) to be a periodic
sequence of period m with the property that no n-tuple appears more than once
in a period of the sequence, i.e. with the property that if sn(i) = sn(j) for some
i, j, then i = j mod m, where sn(i) = (si, si+1, . . . , si+n�1).

A de Bruijn sequence of order n over alphabet Zq is then simply an n-window
sequence of period qn (i.e. of maximal period), and has the property that every
possible n-tuple appears exactly once in a period. Since we are interested in
tuples occurring either forwards or backwards in a sequence, we also introduce
the notion of a reversed tuple, so that if u = (u0, u1, . . . , un�1) is a q-ary n-
tuple, i.e. if u 2 Bn(q), then uR = (un�1, un�2, . . . , u0) is its reverse. If a tuple
u satisfies u = uR then we say it is symmetric.

A translate of a tuple involves switching u = (u0, u1, . . . , un�1) 2 Bn(q)
to u = (u0 + �, u1 + �, . . . , un�1 + �), where � 2 Zq. In a similar way, we
refer to sequences being translates if one can be obtained from the other by
the addition of a nonzero constant �. We define the conjugate of an n-tuple
to be the tuple obtained by adding � to the first bit for some non-zero �,
i.e. if u = (u0, u1, . . . , un�1) 2 Bn(q), then a conjugate bu of u is an n-tuple
(u0 + �, u1, . . . , un�1), where � 2 Zq.

Two n-window sequences S = (si) and T = (ti) are said to be disjoint if
they do not share an n-tuple, i.e. if sn(i) 6= tn(j) for every i, j. An n-window
sequence is said to be primitive if it is disjoint from its complement. We next
give a well known result showing how two disjoint n-window sequences can be
joined to create a single n-window sequence, if they contain conjugate n-tuples.

Lemma 1
Suppose S = (si) and T = (ti) are disjoint n-window sequences of periods l and
m respectively. Moreover suppose S and T contain the conjugate n-tuples u
and v at positions i and j, respectively. Then

[s0, s1, . . . , si+n�1, tj+n, tj+n+1, . . . , tm�1, t0, . . . , tj+n�1, si+n, si+n+1, . . . , sl�1]

is a generating cycle for an n-window sequence of period l + m.
Definition 2

An n-window sequence S = (si) of period m is said to be an q-orientable se-
quence of order n (an OSq(n)) if, for any i, j , sn(i) 6= sn(j)R.

2

94

Definition 3
A pair of disjoint orientable sequences of order n, S = (si) and S0 = (s0i), are
said to be orientable disjoint (or simply o-disjoint) if, for any i, j, sn(i) 6= s0n(j)R.

We extend the notation to allow the Lempel morphism D� to be applied
to periodic sequences in the natural way. That is, D� is a map from the set
of periodic sequences to itself; the image of a sequence of period m will clearly
have period dividing m. In the natural way we can define D�1

� to be the inverse

of D� , i.e. if S is a periodic sequence than D�1
� (S) is the set of all sequences T

with the property that D�(T) = S.
Theorem 1

Suppose S = (si) is an orientable sequence of order n and period m with the
property that

if [s1, . . . , sn] is a word in S then [�sn,�sn�1, . . . ,�s1] is not a word of S. (⇤)

Then
(a) If w(S) = 0 mod q then D�1

� (S) consists of a disjoint set of q primitive
orientable sequences of order n + 1 and period m satisfying the condition (⇤).
(b) If gcd(w(S), q) = 1 then D�1

� (S) is one sequence made of q shifts
T0, T1, . . . , Tq�1, where Ti = Ti�1 + c.

3 An upper bound

We present here the results from the paper [7]. We first introduce a special type
of symmetry for q-ary n-tuples.

Definition 4
An n-tuple u = (u0, u1, . . . , un�1), ui 2 Zq (0  i  n � 1), is m-symmetric for
some m  n if and only if ui = um�1�i for every i (0  i  m � 1).

An n-tuple is simply said to be symmetric if it is n-symmetric. We also need
the notions of uniformity and alternating.

Definition 5
An n-tuple u = (u0, u1, . . . , un�1), ui 2 Zq (0  i  n � 1), is uniform if
and only if ui = c for every i (0  i  n � 1) for some c 2 Zq. An n-tuple
u = (u0, u1, . . . , un�1), ui 2 Zq (0  i  n � 1), is alternating if and only if
u0 = u2i and u1 = u2i+1 for every i (0  i  b(n � 1)/2c), where u0 6= u1.

We can then state the following elementary results.
Lemma 2

If n � 2 and u = (u0, u1, . . . , un�1) is a q-ary n-tuple that is both symmetric
and (n � 1)-symmetric, then u is uniform.

Lemma 3
If n � 2 and u = (u0, u1, . . . , un�1) is a q-ary n-tuple that is both symmetric
and (n�2)-symmetric then either u is uniform or n is odd and u is alternating.

The following definition leads to a simple upper bound on the period of an
OSq(n).

Definition 6
Let Nq(n) be the set of all non-symmetric q-ary n-tuples.

3

95

Clearly, if an n-tuple occurs in an OSq(n) then it must belong to Nq(n);
moreover it is also immediate that |Nq(n)| = qn � qdn/2e. Observing that all
the tuples in OSq(n) and its reverse must be distinct, this immediately give the
following well-known result.

Lemma 4 ([2])
The period of an OSq(n) is at most (qn � qdn/2e)/2.

As a first step towards establishing our bound we need to define a special
set of n-tuples, as follows.

Definition 7
Suppose n � 2, and that v = (v0, v1, . . . , vn�r�1) is a q-ary (n�r)-tuple (r � 1).
Then let Ln(v) be the following set of q-ary n-tuples:

Ln(v) = {u = (u0, u1, . . . , un�1) : ui = vi, 0  i  n � r � 1}.

That is Ln(v) is simply the set of n-tuples whose first n� r�1 entries equal
v. Clearly, for fixed r, the sets Ln(v) for all (n � r)-tuples v are disjoint. We
have the following simple result.

Lemma 5
Suppose v and w are symmetric tuples of lengths n� 1 and n� 2, respectively,
and they are not both uniform. Then

Ln(v) \ Ln(w) = ;.
We are particularly interested in how the sets Ln(v) intersect with the sets of

n-tuples occurring in either S or SR, when S is an OSq(n) and v is symmetric.
To this end we make the following definition.

Definition 8
Suppose n � 2, r � 1, S = (si) is an OSq(n), and v = (v0, v1, . . . , vn�r�1) is a
k-ary (n � r)-tuple. Then let

LS(v) = {u 2 Ln(v) : u appears in S or SR}.

We can now state the first result towards deriving our bound.
Lemma 6

Suppose n � 2, r � 1, S = (si) is an OSq(n), and v = (v0, v1, . . . , vn�r�1) is a
q-ary symmetric (n � r)-tuple. Then |LS(v)| is even.

That is, if |Ln(v)| is odd, this shows that S and SR combined must omit at
least one of the n-tuples in Ln(v). We can now state our main result.

Observe that, although the theorem below applies in the case q = 2, the
bound is much weaker than the bound of Dai et al. [3] which is specific to the
binary case. This latter bound uses arguments that only apply for q = 2. The
fact that q = 2 is a special case can be seen by observing that, unlike the case
for larger q, no string of n�2 consecutive zeros or ones can occur in an OSd(n).
Theorem 2 (Generalization of Theorem from [3])
Suppose that S = (si) is an OSq(n) (q � 2, n � 2). Then the period of S is at
most

(qn � qdn/2e � qd(n�1)/2e + q)/2 if q is odd,

(qn � qdn/2e � q)/2 if q is even.

4

96

Table 1 provides the values of the bounds in the above theorem for small q
and n. We also give an example of a recursively constructed sequence in OS5(4)
using S = 0001112 which is of order 3. In the notation of Theorem 1(a) with
� = 1:
T0 = 0 0 0 0 1 2 3 �0
T1 = 1 1 1 1 2 3 4 �1
T2 = 2 2 2 2 3 4 0 �2
T3 = 3 3 3 3 4 0 1 �3
T4 = 4 4 4 4 0 1 2 �4
These 4-window cycles are o-disjoint and can therefore be stitched together into
one orientable sequence of order 4, by applying the construction given in [1].

Table 1: Bounds on the period of an OSq(n) (from Theorem 2)

Order q = 2 q = 3 q = 4 q = 5
n = 2 0 3 4 10
n = 3 1 9 22 50
n = 4 5 33 118 290
n = 5 11 105 478 1490

References

[1] A. Alhakim and M. Akinwande. A recursive construction of nonbinary de
Bruijn sequences. Design, Codes and Cryptography. 60:155–169, (2011).

[2] J. Burns and C. J. Mitchell. Coding schemes for two-dimensional position
sensing. Cryptography and Coding III (M. J. Ganley, ed.), Oxford Univer-
sity Press, pp. 31–66, 1993.

[3] Z.-D. Dai, K. M. Martin, M. J. B. Robshaw, and P. R. Wild. Orientable
sequences. Cryptography and Coding III (M. J. Ganley, ed.), Oxford Uni-
versity Press, Oxford, pp. 97–115, 1993.

[4] A. Lempel. On a homomorphism of the de Bruijn graph and its applica-
tions to the design of feedback shift registers. IEEE Trans. Comput. C 19,
1204–1209 (1970).

[5] C. J. Mitchell, T. Etzion, and K. G. Paterson. A method for constructing
decodable de Bruijn sequences, IEEE Transactions on Information Theory
42 (1996), 1472–1478.

[6] C. J. Mitchell. and P. R. Wild. Constructing Orientable Sequences. IEEE
Transations on Information Theory, Vol. 68, no. 7, July 2022.

[7] C. J. Mitchell. and P. R. Wild. Bounds on the period of k-ary orientable
sequences. Preprint, January 2022.

5

97

Improving di↵erential properties of S-boxes with

local changes of DDT

(Extended Abstract)

Pavol Zajac1*

1*Department of Computer Science and Mathematics, Slovak University
of Technology in Bratislava, Ilkovicova 3, Bratislava, 81219, Slovakia.

Corresponding author(s). E-mail(s): pavol.zajac@stuba.sk;

Keywords: di↵erential uniformity, S-box generation algorithm, cryptographic
applications of Boolean functions

1 Introduction

In a recent article [1] we have proposed an algorithm to construct S-boxes with
prescribed di↵erential properties. The main principle is to produce the function assign-
ment in discrete increments while checking the restrictions on a partially constructed
di↵erence distribution table. Although the algorithm can find any S-box with pre-
scribed di↵erential properties, it is impractical due to its high complexity. On the
other hand, it can produce S-boxes with better di↵erential properties than a ran-
dom selection. We can naturally ask whether it is possible to obtain better S-boxes
by manipulating the vector of values in a systematic way by taking into account the
di↵erential properties of the S-box.

We already know that the answer is positive. There is a large number of results
concerning heuristic methods (e.g., evolutionary algorithms) that produce better S-
boxes than a random search. However, these methods are typically generic, focusing
on improving some objective function with a stochastic search directed by an objec-
tive function. The objective function typically includes but is not restricted to, the
di↵erential properties of the S-box.

In our current research, we take a di↵erent approach to the problem. We start
with a random S-box and specify the operation we are allowed to do with the S-
box value vector. We are concerned with bijective S-boxes, where the value vector is

1

99

a permutation. Our permitted operations are either swaps (interchange of values of
y1 = S(x1) and y2 = S(x2)) or application of cycles. We select the operation based
on the di↵erence distribution table properties in a systematic way. Our experimental
results show that it is possible to significantly improve the di↵erential properties of
an S-box, but there seems to be a limit to which this strategy converges.

2 Methods

Let S : Zn
2 ! Zn

2 be a bijective vectorial Boolean function (an S-box). The di↵erence
distribution table DDT of S contains values

DDT (dx, dy) = |{x 2 Zn
2 : S(x)� S(x� dx) = dy}| .

S-box S is �-di↵erentially uniform, if � = maxdx 6=0 {DDT (dx, dy)}. Let c0 denote the
number of zero elements of DDT of S (for nonzero dx),

c0 = |{(dx, dy) 2 Zn
2 ⇥ Zn

2 : DDT (dx, dy) = 0 ^ dx 6= 0}| .

In ideal case, � = 2 and c0 = 2n(2n � 1)/2 (for APN function S). Randomly selected
S-box will have higher � and c0 due to collisions of di↵erences: for some dx, randomly
selected x1 and x2 6= x1, x2 6= x1 � dx will produce the same di↵erence dy = S(xi)�
S(xi � dx). Such collisions increase the maximum value in DDT and the number of
zero positions in DDT (if there is a colliding pair, there will not be enough remaining
x values to produce some dy).

Suppose that there exists a bijective APN S-box (or some S-box of desired quality),
and consider it as a permutation. By composing the S-box with some other permuta-
tion, we will change the properties of the DDT in some way, typically decreasing the
quality of the S-box. On the other hand, with systematic compositions (e.g., by using
a swap of two elements, a transposition), it is possible to construct any other permuta-
tion from it. This process can work in the opposite direction: starting from a random
S-box, we might reach an S-box with high quality. Unfortunately, in each step we can
choose from a large number of transpositions, and the complexity of constructing the
desired permutation blindly is super-exponential.

Our main research question is as follows: Starting from a random S-box, can we
use a greedy selection of transpositions directed by DDT properties to find the best
possible S-box? If not, how far can we improve our initial random selection? We do
not know the theoretical answers to this question, but we present some experimental
results for consideration.

In our experiments, we use the following method to improve S-boxes:

1. Start from a randomly selected S-box S.
2. For each dy compute list D(dy) which contains quadruples (y1, y2, y3, y4), such

that dy = y1 � y2 � y3 � y4, with y1 = S(x1), y2 = S(x1 � dx), y3 = S(x2),
y4 = S(x2 � dx), with dx 6= 0, x2 6= x1 and x2 6= x1 � dx.

2

100

Iterations Changes Initial D(0) Final D(0)
min avg max avg min avg max min avg max

Swaps 55 70.46 93 140.92 7734 8208.63 8601 4983 5161.08 5397
3-cycles 34 48.28 64 144.84 7710 8184.72 8571 4887 5082.78 5358
4-cycles 26 36.91 50 147.85 7776 8184.96 8661 4926 5053.53 5271

Table 1 The results of the experiments: number of iterations (and estimated average number of
changes in S-box), initial, and final sizes of D(0) sets.

3. List D(0) contains ”DDT collissions”. In the ideal case, we want this list to be
empty. We terminate the algorithm if D(0) is empty, or if we cannot decrease its
size by any transposition (see the next step).

4. For each pair (y, z), y 6= z, compute the e↵ect of applying transposition y $ z to
S on the size of D(0) (see discussion below).

5. Apply the transposition that minimizes the next D(0). Repeat the algorithm with
the new S-box.

The crucial step in the algorithm is the estimation of the size of D(0) in the next
step. In the case of transpositions, we can compute the value exactly. Each element of
type (y, z, y3, y4) will remain in the corresponding set D(dy), as swapping y and z will
not change the sum dy. Each element of type (y, y2, y3, y4) or (z, y2, y3, y4) will change
its position in sets D(dy): If y�y2�y3�y4 = dy, than z�y2�y3�y4 = dy� (y� z).
Thus, all elements of this type will move from set D(0) to set D(y�z), decreasing the
size of new D(0). On the other hand, such elements from D(y� z) will move to D(0),
increasing its size. By summing all such contributions (with a minus sign for elements
in D(0) and a plus sign for elements in D(y � z)), we can assign a score (expected
change of |D(0)|) to each pair (y, z).

Using the greedy approach, we first select such pair with the lowest score, if the
score is less than 0. If there is no pair (y, z) with a negative score, we end the algorithm
to ensure that it stops.

The method can be generalized in multiple ways. One generalization is to apply
multiple transpositions at once (e.g., all that produce a negative score). In such a case,
however, we cannot predict the change of D(0) exactly because of the interactions
between contributions of elements containing values from multiple transposition pairs.
The preliminary experiments with multiple transpositions were unsuccessful.

The second generalization is to replace transpositions with more general permuta-
tions. We have used small cycles of sizes 3 and 4. In the experiments, we computed the
estimated score for all possible cycles of a given size. This means that the complexity
quickly grows with the cycle size and becomes impractical for longer cycles. Note that
in case of more cycles, we have computed the score just as the unidirectional contri-
butions of individual elements in the cycle (e.g., a b, then b c, then c a).
This score is then only an estimate, as it ignores the e↵ects of elements that contain
multiple elements from the cycles. Even if the estimated change of D(0) is negative,
sometimes the contribution from the shared elements causes the D(0) in the next step
to grow. In such a case we again terminate the algorithm to ensure that it stops.

3

101

Fig. 1 Average fraction of zeroes (y) in the DDT (of 100 randomly generated S-boxes) after x
iterations of the algorithm.

3 Results and Discussion

We have conducted 3 experiments with custom software implementing three methods
from Section 2: swap, 3-cycles, and 4-cycles. For each experiment, we generated 100
random bijective 8-bit S-boxes. In the initial set, the S-boxes had di↵erential unifor-
mity between 10 and 16, with 60.7% of zeroes in the DDT. The ”smoothing algorithm”
improved the DDT of S-boxes gradually (see Figure 1), reaching a minimum of 57.1%
of zeroes in the DDT (consistently for the 3 di↵erent methods). The final di↵eren-
tial uniformity was between 8 and 10, the 3-cycle method produced two S-boxes with
� = 6 (but not as a final step), and the 4-cycle method produced 1 S-box with � = 6
(in a final step).

While the number of steps depends on the chosen method, the expected number
of changes in the S-box table, and the final results seem independent of the method
chosen. From the computational perspective, it is better to implement only the ”swap”
method, which exchanges two values at a time, and each iteration is faster than the
other methods.

An interesting observation is that the DDT-smoothing method also improved the
non-linearity of the S-boxes. From the initial values between 86 and 96, we have
reached S-boxes with non-linearity between 98 and 102. Interestingly, these values are
comparable to results of advanced evolutionary techniques (see [2]) while using only
a simple algorithm focusing on a completely di↵erent S-box characteristic.

Acknowledgments. This research was supported in part by the NATO Science
for Peace and Security Programme under Project G5985 and in part by the Slovak
Scientific Grant Agency, Grant Number VEGA 1/0105/23.

References

[1] Marochok, S., Zajac, P.: Algorithm for generating s-boxes with prescribed di↵er-
ential properties. Algorithms 16(3), 157 (2023)

[2] Picek, S., Cupic, M., Rotim, L.: A new cost function for evolution of s-boxes.
Evolutionary computation 24(4), 695–718 (2016)

4

102

Counting unate and balanced monotone Boolean functions

(Extended abstract)

Aniruddha Biswas and Palash Sarkar
Indian Statistical Institute
203, B.T.Road, Kolkata

India 700108.
Email: {anib r, palash}@isical.ac.in

April 27, 2023

Abstract

For n  6, we provide the number of n-variable unate and monotone Boolean functions
under various restrictions. Additionally, we provide the number of balanced 7-variable monotone
Boolean functions.
Keywords: Boolean function, unate Boolean function, monotone Boolean function, Dedekind
number.
MSC: 05A99.

1 Introduction

For a positive integer n, an n-variable Boolean function f is a map f : {0, 1}n ! {0, 1}. A Boolean
function f is said to be monotone increasing (resp. decreasing) in the i-th variable if

f(x1, . . . , xi�1, 0, xi+1, . . . , xn)  f(x1, . . . , xi�1, 1, xi+1, . . . , xn)

(resp. f(x1, . . . , xi�1, 0, xi+1, . . . , xn) � f(x1, . . . , xi�1, 1, xi+1, . . . , xn))

for all possible x1, . . . , xi�1, xi+1, . . . , xn 2 {0, 1}. The function f is said to be locally monotone
or unate, if for each i 2 {1, . . . , n}, it is either monotone increasing or monotone decreasing in the
i-th variable. The function f is said to be monotone increasing (or, simply monotone) if for each
i 2 {1, . . . , n}, it is monotone increasing in the i-th variable.

Unate functions have been studied in the literature from various viewpoints such as switching
theory, combinatorial aspects, and complexity theoretic aspects. Monotone Boolean functions have
been studied much more extensively than unate functions and have many applications so much
so that it is di�cult to mention a few representative works. The focus of the present work is on
counting unate and monotone Boolean functions under various restrictions.

A Boolean function is said to be balanced if it takes the values 0 and 1 equal number of times.
Two Boolean functions are said to be equivalent, if one can be obtained from the other by a
permutation of the variables. We say that two functions are inequivalent if they are not equivalent.

1

103

The number of n-variable Boolean functions is 22n
and the number of n-variable balanced

Boolean functions is
�

2n

2n�1

�
. For n  5, it is possible to enumerate all n-variable Boolean functions.

Consequently, the problem of counting various sub-classes of n-variable Boolean functions becomes
a reasonably simple problem. Non-triviality of counting Boolean functions arises for n � 6. Often
though, it becomes di�cult to obtain results for n more than 7 or 8.

The number of n-variable monotone Boolean functions is called the Dedekind number, denoted
D(n), after Dedekind who posed the problem in 1897. Till date D(n) is known only up to n = 8
(see [6]). A closed form summation formula for D(n) was given in [2], though it was pointed out
in [3] that using the formula to compute D(n) has the same complexity as direct enumeration
of all n-variable monotone Boolean functions. The numbers of n-variable inequivalent monotone
Boolean functions are known for n up to 8 (see [7, 4]). To the best of our knowledge, there is
no work in the literature on counting the number of n-variable (inequivalent) balanced monotone
Boolean functions.

The number of NPN-equivalence classes1 of unate Boolean functions has been studied (see
A003183 in [6]). Even though the problem is to count NPN inequivalent unate functions, the entry
for A003183 in [6] shows that by using simple operations, the problem can be reduced to that of
counting monotone functions under certain restrictions. A proper subclass of unate functions is
the class of unate cascade functions which have been studied in [5]. Entry A005612 in [6] provides
counts of unate cascade functions. To the best of our knowledge, there is no work in the literature
on counting the number of n-variable (inequivalent) unate functions and the number of n-variable
(inequivalent) balanced unate functions.

The following notation will be used.

UBFn : The set of all n-variable unate Boolean functions (UBFs).
MBFn : The set of all n-variable monotone Boolean functions (MBFs).
U(n),V (n) : Number of all n-variable UBFs and balanced UBFs respectively.
W (n),X(n) : Number of all n-variable inequivalent UBFs and balanced inequivalent UBFs respectively.
D(n),E(n) : Number of all n-variable MBFs and balanced MBFs respectively.
F (n) : Number of all n-variable balanced inequivalent MBFs.

Our Contributions. We obtain the values of U(n), V (n), W (n), X(n) and F (n) for n  6, and
the values of E(n) for n  7. None of these values were previously known.

2 Mathematical Results

Let f be an n-variable Boolean function. By f , we will denote the negation of f , i.e. f(x) = 1 if
and only if f(x) = 0. The weight wt(f) of f is the size of its support, i.e. wt(f) = #{x : f(x) = 1}.
An n-variable Boolean function f can be uniquely represented by a binary string of length 2n in
the following manner: for 0  i < 2n, the i-th bit of the string is the value of f on the n-bit binary
representation of i. We will use the same notation f to denote the string representation of f . So
f0 · · · f2n�1 is the bit string of length 2n which represents f .

1Two Boolean functions are said to be NPN equivalent, if one can be obtained from the other by some combination
of the following operations: a permutation of the variables, negation of a subset of the variables, and negation of the
output. We say that two functions are NPN inequivalent if they are not NPN equivalent.

2

104

Let g and h be two n-variable Boolean functions having string representations g0 · · · g2n�1 and
h0 · · · h2n�1. We write g  h if gi  hi for i = 0, . . . , 2n�1. From g and h, it is possible to construct
an (n + 1)-variable function f whose string representation is obtained by concatenating the string
representations of g and h. We denote this construction as f = g||h.

In addition to the previous notation, we will also require the following notation.

Un,w, Mn,w : Number of n-variable UBFs and MBFs of weight w respectively.

We record a known fact about MBFs.

Fact 1 [1] Let g and h be n-variable Boolean functions and f = g||h. Then f is an MBF if and
only if g and h are both MBFs and g  h.

Next we present some new results on unate and monotone Boolean functions which will be
useful in our enumeration strategy. However, the complete proofs will be presented in the full
version.

Proposition 1 Let g and h be n-variable Boolean functions and f = g||h. Then f is a UBF if
and only if g and h are both UBFs satisfying the following two conditions.

1. For each variable, g and h are either both monotone increasing, or both monotone decreasing.

2. Either g  h or h  g.

Proposition 2 If f is a UBF then f is also a UBF.

Proposition 3 For any n � 1 and weight w 2 [0, 2n], Un,w = Un,2n�w and Mn,w = Mn,2n�w.

3 Enumeration Strategies

To generate all n-variable unate Boolean functions, the direct method is to generate all n-variable
Boolean functions and then check each function for unateness. The problem with this approach is
that there is no easy method to check whether a function is unate. So we adopted the recursive
strategy which follows from Proposition 1 to generate unate functions which does not require
the generation of all Boolean functions and hence is more e�cient than the naive generate-and-
check strategy. To generate all (n + 1)-variable unate functions, our recursive algorithm requires
considering all pairs of n-variable unate functions, i.e. a total of (U(n))2 options. This is feasible
for n  5, but not for higher values of n. However, there is some subtlety in developing a recursive
generation algorithm based on Proposition 1 which will be described in the full version. To obtain
balanced functions, from the set of all unate functions, we filter out the ones that are unbalanced.

A similar and somewhat simpler method to recursively generate all n-variable monotone func-
tions can be obtained from Fact 1. This method also becomes infeasible for n > 6. It is, however,
possible to generate all 7-variable balanced monotone functions using a modified version of the
recursive enumeration. We provide a general description of the method.

Suppose the set of all n-variable monotone functions have already been generated. Partition
these functions into weight classes, where the number of n-variable monotone functions in weight
class w is Mn,w, w = 0, . . . , 2n. The method for generating all (n+1)-variable monotone functions

3

105

based on Fact 1 is modified as follows. Choose g from weight class w and h from weight class
2n � w and check whether g  h. If the check passes, then generate f = g||h. The procedure
ensures that the weight of f is 2n, so that f is an (n+1)-variable monotone balanced function. The
number of pairs of n-variable unate functions that need to be considered is

P2n

w=0 Mn,wMn,2n�w =P2n

w=0 (Mn,w)2 , where the equality follows from Proposition 3. This is a substantial reduction from
(D(n))2 that would be otherwise required. To generate all balanced 7-variable monotone functions,
the generate-and-filter strategy would have required considering (D(6))2 ⇡ 245 pairs. The modified
strategy requires considering

P64
w=0 (M6,w)2 ⇡ 240 pairs, which makes the enumeration much faster.

The modified method for generating balanced monotone functions can also be adapted to generate
balanced unate functions and for generating all (n + 1)-variable balanced unate functions requires
considering

P2n

w=0 (Un,w)2 pairs.
Along with enumerating all unate functions, we also enumerate inequivalent unate functions.

Similarly for the other classes of functions we enumerate inequivalent functions in the respective
classes. Given a permutation ⇡ of {1, . . . , n} and an n-variable function f , let f⇡ denote the function
such that for all (x1, . . . , xn) 2 {0, 1}n, f⇡(x1, . . . , xn) = f(x⇡(1), . . . , x⇡(n)). Consider the set S to
be filterd is given as a list of functions. We incrementally generate T as follows. The first function
in S is moved to T . We iterate over the other functions in S. For a function f in S, we generate
f⇡ for all permutations ⇡ of {1, . . . , n} using the technique described above. For each such f⇡, we
check whether it is present in T . If none of the f⇡’s are present in T , then we append f to T . At
the end of the procedure, T is the desired set of functions.

We are interested in the number of inequivalent n-variable unate functions. So we may apply
the above inequivalent filtering procedure to UBFn. It is possible to gain e�ciency by noting that
the weight of a function is invariant under permutation of variables. So instead of applying the
inequivalent filtering procedure to UBFn, we apply it to the weight-wise partition of UBFn. This
leads to a gain in e�ciency, since a function of weight w is checked for equivalence only with other
functions of weight w. The strategy for inequivalent filtering works in the same way for balanced
unate functions, monotone functions and balanced monotone functions. This allows us to also find
the number of inequivalent functions in these classes.

The results of the above enumeration procedures for the di↵erent classes of functions are shown
in Tables 1 to 3.

n 1 2 3 4 5 6

U(n) 4 14 104 2170 230540 499596550

V (n) 2 4 14 296 18202 31392428

Table 1: Number of n-variable (balanced) UBFs for n  6

n 1 2 3 4 5 6

W (n) 4 10 34 200 3466 829774

X(n) 2 2 6 24 254 50172

Table 2: Number of n-variable (balanced) inequivalent UBFs for n  6

4

106

n 1 2 3 4 5 6 7

E(n) 1 2 4 24 621 492288 81203064840

F (n) 1 1 2 4 16 951 –

Table 3: Number of balanced (inequivalent) monotone functions.

4 Concluding Remarks

With access to a adequate computing resources, it should be possible to obtain F (7), i.e. the
number of inequivalent balanced monotone functions, and V (7), i.e. the number of balanced unate
functions. Both of these require computations which is somewhat more that 250. The computations
can be parallelised and distributed across a large number of cores. With access to a su�ciently large
computational cluster, the computations will be feasible. On the other hand, obtaining the values
of U(n), W (n) and X(n) for n � 7 and the values of V (n), E(n) and F (n) for n � 8 will require
new ideas. The running times for the enumeration of the corresponding sets using the techniques
used in the present work are likely to remain infeasible in the forseeable future.

References

[1] Valentin Bakoev. Generating and identification of monotone Boolean functions. In Mathematics
and Education in Mathematics, Sofia, pages 226–232, 2003.

[2] Andrzej Kisielewicz. A solution of Dedekind’s problem on the number of isotone Boolean
functions. Journal fur die Reine und Angewandte Mathematik, 1988(386):139 – 144, 1988.

[3] Aleksej D. Korshunov. Monotone Boolean functions. Russian Mathematical Surveys, 58(5):929
– 1001, 2003.

[4] Bart lomiej Pawelski. On the number of inequivalent monotone Boolean functions of 8 variables.
https://arxiv.org/pdf/2108.13997.pdf, 2021.

[5] Tsutomu Sasao and Kozo Kinoshita. On the number of fanout-free functions and unate cascade
functions. IEEE Transactions on Computers, 28(1):66–72, 1979.

[6] Neil J.A. Sloane. The online encyclopedia of integer sequences. https://oeis.org/, 1964.

[7] Tamon Stephen and Timothy Yusun. Counting inequivalent monotone Boolean functions. Dis-
crete Applied Mathematics, 167:15–24, 2014.

5

107

MORE DE BRUIJN SEQUENCES AS CONCATENATION OF LYNDON WORDS

ABBAS ALHAKIM
DEPARTMENT OF MATHEMATICS

AMERICAN UNIVERSITY OF BEIRUT
BEIRUT, LEBANON

Abstract. We consider a de Bruijn sequence dB over a finite alphabet that is constructed via a preference
function P . We use P to introduce a total order on the set of all sequences and show that it lists the
de Bruijn sequences of a given order so that dB is the minimal sequence. We also show that an appropriate
bijective image of the binary, prefer-opposite de Bruijn sequence is uniquely factored as a concatenation of
Lyndon words. This presents a second example to the well known prefer-one de Bruijn sequence, both in
terms of minimality, and in terms of concatenation of Lyndon words. We also present other examples that
suggest that the concatenation property is universal for all de Bruijn sequences.

1. Introduction

The lexicographically smallest de Bruijn sequence is by far the most studied of all de Bruijn sequences.
One reason may be that it is generated by the well known prefer one greedy algorithm, first discovered
by Martin [10], and rediscovered several times later, see Fredriscksen [7] (note that we consider that 1 is
less than 0). Another method of generating this smallest sequence (say, of order n) is via concatenating
all Lyndon words, of lengths that divide n, in increasing lexicographical order. Donald Knuth [9] calls
this construction “almost magical”. It is due to this construction that many authors claim that one of
the many applications of Lyndon words is to construct de Bruijn sequences. In this paper we show that
the relationship between Lyndon words and de Bruijn sequences extends much further than the prefer
one sequence. The main tool to do this is a transform that encodes a sequence by a sequence with the
same alphabet and that is defined via a preference function. Firstly, we establish a fundamental result
that every de Bruijn sequence is minimal with respect to a lexicographical order defined by the preference
function that creates this de Bruijn sequence. More specifically, given a preference function that produces
a de Bruijn sequence, we encode every de Bruijn sequence by keeping track of the levels of preference
taken all along the sequence. We then compare these trail sequences via lexicographical order. It is then
the de Bruijn sequence generated by this preference function that receives the lexicographically smallest
encoding. The ‘minimality’ of the prefer one sequence is thus revealed as a special case of this general
result.

Furthermore, we study two relatives of the prefer one sequence, the prefer same and the prefer opposite
sequences. These two sequences have, respectively, the lexicographically smallest and largest run length
encoding, see [3] for definition and proof. These optimality results follow easily from our main result. More
importantly, we show that their preference trails essentially consist of a concatenation of Lyndon words,
when they are encoded with respect to their own preference functions. We conclude with a conjecture that
every trail sequence of a de Bruijn sequence is essentially a concatenation of Lyndon words, laid in some
order that depends on the underlying preference function.

The rest of the paper is organized as follows. In Section 2 we give basic definitions and background
about preference functions and Lyndon words with preliminary lemmas that will be essential for the rest
of the paper.

1This research was partially supported by the University Research Board (URB) of the American University of Beirut.
Project Number 104107

Key words and phrases. De Bruijn sequence, Lyndon words, preference function, prefer-one sequence, prefer-opposite
sequence, prefer-same sequence.

1

109

2. preliminaries

For an integer n � 1, An refers to the set of all strings of n bits, taken from an ordered alphabet A with
q symbols. We will denote these symbols as {0, 1, . . . , q � 1}. These strings will be referred to as n-words,
and denoted as a1 · · · an and often as (a1, . . . , an) for notational clarity. ↵n denotes the word obtained by
concatenating the word ↵ n times.

For an integer n � 1, a de Bruijn sequence of order n, over the alphabet A, is defined such that every
string of n consecutive bits occurs exactly one time as a substring. For example, 0001011100 is a binary
De Bruijn sequence of order 3, observing that all 3-strings occur in the order 000, 001, 010, 101, 011, 111,
110, 100. It is customary to consider cyclic rotations of a de Bruijn sequence as equivalent. With this
equivalence class interpretation, we usually remove the last n � 1 bits and wrap the remaining bits on
a circle. The above sequence is represented as [00010111]. The only other binary sequence of order 3 is
represented as [00011101]. While there are 16 sequences of order 4. In fact, for a general n, the number of

non-rotationally equivalent de Bruijn sequences is 22n�1�n. The formula for nonbinary has an even higher
rate of growth, it can be found in [7], together with a historical reference of the early development and
applications of de Bruijn sequences. The first part in the next definition follows Golomb [8]. The span was
defined in Alhakim [2].

Definition 2.1. For an integer n � 1, a preference function is a function P from An to S, where S
is the set of all permutations of the elements of A. We write P (x) = (P0, . . . , Pq�1) for every n-word
x = (x1, . . . , xn); where the right hand side is an arrangement of 0, . . . , q � 1. Furthermore, the span of P
is the smallest integer s, 0  s  n, such that P (x1, . . . , xn) is fully determined by (xn�s+1, . . . , xn), for
all n-words (x1, . . . , xn).

The following recursive construction produces a unique finite binary sequence {ai}, provided that a
preference function of span s and an arbitrary initial n-word (I1, · · · , In) with n > s are given. We denote
the unique resulting sequence by (P, I).

1. For i = 1, · · · , n let ai = Ii.
2. Suppose that a1, · · · , ak for some integer k � n have been defined. Let ak+1 = Pi(ak�s+1, . . . , ak)

where i, 0  i  q�1 is the smallest integer such that (ak�n+2, . . . , ak+1) has not appeared in the sequence
as a substring, if such an i exists.

3. If no such i exists, halt the program (the construction is complete.)
The following lemma is a slight generalization of Lemma 2 of Chapter 3 in Golomb [8]. The proof is

essentially the same.

Lemma 2.2. Consider an arbitrary preference function P of span s � 0 and initial word I = (I1, · · · , In);
n > s. Then every n-word occurs at most once in (P, I). Furthermore, (P, I) ends with the pattern
(I1, · · · , In�1).

It follows that the sequence (P, I) can be identified with a cyclic string, by removing the last pattern
(I1, . . . , In�1) and wrapping the rest around a circle. A preference function P is said to be complete if
there exists an initial word I such that (P, I) is a de Bruijn sequence.

Definition 2.3. For an integer i such that 0  i < q, the ith column function induced by P is a function
from As to As defined as

gi(x1, . . . , xs) = (x2, . . . , xs, Pi(x1, . . . , xs)).

Clearly, gi defines at least one cycle of length k � 1. That is, a sequence of k s-words v1, . . . , vk in As

such that gi(vj) = vj+1 for j = 1, . . . , k � 1 and gi(vk) = v1.
Theorem 3.1 and Corollary 3.2 in Alhakim [4] provide a characterization of complete preference functions,

along with legitimate initial words I. We will refer to these initial words as de Bruijn seeds. Briefly, in
a complete preference function, the column function gq�1 must have exactly one cycle. Also a de Bruijn
seed (I1, . . . , In) must be such that (I1, . . . , In�1) is a path on gq�1. For example, the corresponding cycles
of the complete preference functions of Table 1 are respectively 2 ! 2, 0 ! 1 ! 0, 0 ! 1 ! 2 ! 0
and 00 ! 01 ! 10 ! 00. The first cycle means that 2 · · · 20 = 2n�10, 2 · · · 21 = 2n�11 and 2n are all

2

110

0 ! 0, 1, 2
1 ! 0, 1, 2
2 ! 0, 1, 2

0 ! 2, 0, 1
1 ! 1, 2, 0
2 ! 0, 2, 1

0 ! 0, 2, 1
1 ! 0, 1, 2
2 ! 2, 1, 0

00 ! 0, 2, 1
01 ! 1, 2, 0
02 ! 2, 1, 0

10 ! 1, 2, 0
11 ! 0, 1, 2
12 ! 1, 2, 0

20 ! 1, 2, 0
21 ! 0, 2, 1
22 ! 0, 2, 1

Table 1. Top: complete preference diagrams of span 0 (left), and span 1 (middle and
right). Bottom: one complete preference diagram of span 2.

de Bruijn seeds of length n > 1. Likewise, 01,010, 0101 and 01010 are de Bruijn seeds of various lengths
for the second preference function, while 01201201 and 001100110 · · · are examples of seeds for the last
two preference functions. Proofs and more details are given in [4].

3. The minimality of a de Bruijn sequence

We begin this section with the following definition.

Definition 3.1. Let P be a preference function of span s and n � s. Then

(a) P defines an operator T
(n)
P that acts on arbitrary sequence S = d1 . . . dl of length l > s as T

(n)
P (S) =

d1 . . . dn|c1 . . . cl�n, where for i = 1, . . . , l � n dn+i = Pci(dn+i�s . . . dn+i�1).
We refer to the the first n digits as the leading digits, and to the digits ci as the preference trail digits,

or simply the trail digits of S.
(b) We define the P -lex order, denoted �P , as the total order on the set of sequences: for two sequences

S1 = d1 . . . dl and S2 = d01 . . . d0m, S1 �P S2 if and only if c1 . . . cl�s is lexicographically smaller than
c01 . . . c0m�s, where c1 . . . cl�s and c01 . . . c0m�s are resp. the trail sequences of S1 and S2 without the leading
digits.

As an example, using the matrices in Table 1, the base 3 sequence 012210 is encoded using n = s as
|012210, 0|21122, 0|22010 and 01|1120 respectively. Observe that the first preference function has no leading
digits and it outputs the same input sequence. It is also evident that, for all preference functions, the initial
sequence can be recovered uniquely by tracing the corresponding matrix, thanks to the leading digits.
Another obvious but important observation is that the same sequence can have various lexicographical
orders depending on the underlying function P .

In order to compare two de Bruijn sequences using the P -lex order, we will exclude the trail digits within
the initial words and compare the trail of the dn+1 . . . dqn .

Theorem 3.2. Let P be a complete preference function of span s and I = d1 . . . dn, n > s be a de Bruijn

seed such that T
(s)
P (I) = d1 . . . ds|(q�1)n�s. For an arbitrary de Bruijn sequence dB0

n that is not rotationally
equivalent to dBn we have dBn �P dB0

n where dBn = (P, I).

For convenience of notation, we will denote T
(n)
P (dB0

n) = d01 . . . d0n|c01 . . . c0qn for any de Bruijn sequence.

That is, we apply T
(n)
P to a version of dB0

n that begins and ends with d01 . . . d0n. In the case of dBn, this
amounts to appending the trail digits (q � 1)s at the end of the sequence, which obviously has no e↵ect on
the P -lex order of dBn.

Proof. Denote dBn and dB0
n respectively by d1 . . . dqn and d01 . . . d0qn and let

T
(n)
P (dBn) = d1 . . . dn|c1 . . . cqn and T

(n)
P (dB0

n) = d01 . . . d0n|c01 . . . c0qn .
We begin by establishing the inequality when d01 . . . d0n = d1 . . . dn. Suppose, for a contradiction, that
dB0

n �P dBn. Then there exists a minimal i � 1 such that c0i < ci. Since dBn follows the preference
strategy of P , the pattern ci�n+s+1 . . . ci�1c

0
i must have appeared earlier, preceded by the same s leading

digits di�n+1 . . . di�n+s. By the minimality of i, all trail digits of dBn and dB0
n are identical up to i � 1.

Thus by the assumption that d01 . . . d0n = d1 . . . dn = I, dB0
n includes a repeated n-word, contradicting the

fact that it is a de Bruijn sequence.
We will now tackle the case when d01 . . . d0n 6= I, that is, when dB0 is rotated to start at any word other

than I. We do this in two steps. First, consider the sequence S = (P, d01 . . . d0n) whose trail sequence is
3

111

d01 . . . d0n|b1 . . . bl, and which may or may not be a de Bruijn sequence. Since both S and dB0
n begin with the

same initial word, the same argument as above establishes that S �P dB0
n. Furthermore, since S follows

the preference strategy of P , any digit placed after the terminal trail digit bl leads to a repetition. So the
first disagreement (bi < c0i) occurs at some i < l or else dB0

n cannot be continued into a de Bruijn sequence.
Next we compare S and dBn. Since d01 . . . d0n 6= I, it is not of the form d1 . . . ds|(q � 1)n�s. Thus, one

or more of the wrap-around words d01 . . . d0n, d02 . . . d0n+1, . . . , d
0
n . . . d02n�1 is not a wrap-around word of dBn,

and therefore an internal word of the latter. Let j be the smallest index where a wrap-around word w of
S is encountered for a second time upon proposing a trail digit bj = c, it is avoided in S by either using
higher preference bj > c if possible, or else S is stopped at bj�1 (i.e., l = j � 1). In dBn however, w is not
a wrap-around word so that cj = c.

Clearly, if j < l then dBn �P S, and by the earlier proof above S �P dB0
n, which shows that dBn �P

dB0
n. If j�1 = l then S �P dBn, as b1 . . . bl = c1 . . . cl and l < qn. However, we proved above that the first

disagreement between S and dB0
n occurs at i < l, implying that ci = bi < c0i. This completes the proof. ⇤

All complete binary preference functions of span 1 are represented by the matrices

F =


1 0
1 0

�
; O =


1 0
0 1

�
; S =


0 1
1 0

�
; and Z =


0 1
0 1

�
.

Observe that The Ford sequence, or prefer-one sequence is (F, 0n), first attributed to Martin [10], and
(Z, 1n) is clearly its bitwise complement. (O, 0n) is the prefer-opposite sequence, see Alhakim [1], while
(S, 010 · · ·) is the prefer-same sequence, where 010 · · · is the alternating string of length n. Alhakim
et. al. [3] shows that the last two sequences respectively have the lexicographically smallest and largest
representation in run length encoding. These results follow almost immediately from Theorem 3.2, the
proofs are omitted for brevity.

4. Factoring Into Lyndon words

Recall that a Lyndon word is a finite word that is smaller than all of its rotations. For example, 0012
and 0021 are Lyndon words of size 4 but 0101 is not because it is equal to one of its rotations. Note that
single symbols are Lyndon words. It is well known that the lexicographically least de Bruijn sequence
is a concatenation of Lyndon words of lengths diving n and arranged in increasing lexicographical order.
In this section we present a Lyndon decomposition of the trail sequence of the prefer-opposite sequence
on = (O, I = 0n), where the preference function O is given at the end of the previous section.

For a Lyndon word ⌘, we define the weight w(⌘) to be the number of zeros in ⌘. The following
theorem states that the preference trail of the prefer-opposite sequence is a concatenation of words that
are essentially Lyndon words except for few exceptions, depending on the size n, that are well-defined
rotations of Lyndon words. Let n̄ = n � 1 and L(n̄) be the set of all Lyndon words with a length that
divides n̄. Recall that ⌘2 is a concatenation of two copies of the word ⌘.

Theorem 4.1. The trail sequence part of T
(n)
O (on) is a concatenation of all Lyndon words in L(n̄), such

that each word appears twice, starting with two consecutive 0, with the other words appended inductively
as follows. Suppose ⌘0 has just been appended and let ⌘ = ⌧01j be the lexicographically next word in L(n̄),
where ⌧ = c1 . . . c��j�1 and � is the length of ⌘. Let w = w(⌘) mod 2. Then

(1) If either w = j = 1 or w = 1, j = 2 and ⌧ = 0��j�1 then append ⌘2.
(2) If w = 1, j > 2 and ⌧ = 0��j�1 then append ⌘ · ⌘̃1 . . . ⌘̃j�2 · ⌘ where ⌘̃1 = 0��j101j�2, ⌘̃2 =

0��j1101j�3,. . . ,⌘̃j�2 = 0��j1j�201.

(3) If w = 1, j > 1 and ⌧ 6= 0��j�1 then if ⌘̃1 is a Lyndon word append ⌘ · ⌘̃1 . . . ⌘̃j�1 · ⌘ otherwise (if ⌘̃1

is not a Lyndon word) append ⌘2, where ⌘̃1 = ⌧001j�1, ⌘̃2 = ⌧0101j�2,. . . ,⌘̃j�1 = ⌧01j�201.

(4) If w = 0 and ⌧ 6= 0��j�1 then append ⌘.
(5) If w = 0 and ⌧ = 0��j�1 then append ⌘1 ? ⌘2 ? · · · ? ⌘j+1, where ⌘1 = ⌘ = 0��j1j, ⌘2 = 0��j�1101j�1,

⌘3 = 0��j�11101j�2,. . .,⌘j = 0��j�11j�201, ⌘j+1 = 0��j�11j0. The stars (?) indicate segments of the
sequence that contain the possible Lyndon words which are lexicographically ordered between ⌘i and ⌘i+1,
arranged according to (1)-(4).

4

112

We will give a proof of this in the extended paper, due to the lack of space. We also omit a similar
factorization theorem for the prefer-same sequence and only present some examples. We first list the
factorization of the prefer-opposite sequence for orders 4 to 7. the Lyndon words are separated by one dot,
blocks of types (1)-(4) are separated by an asterik (⇤), while words of type (5) are in bold. Note that there
is a missing 1 relating to the missing word 1n in (O, 0n).

n = 4 : 0000|0 · 0 ⇤ 001 · 010 ⇤ 011 · 011 ⇤ 1
n = 5 : 00000|0 · 0 ⇤ 0001 · 0001 ⇤ 0011 · 01 · 01 ⇤ 0110 ⇤ 0111 · 0111 ⇤ 1
n = 6 : 000000|0 · 0 ⇤ 00001 · 00010 ⇤ 00011 · 00011 ⇤ 00101 · 00101 ⇤ 00111 ⇤ 01011 ⇤ 01101 ⇤ 01110 ⇤

01111 · 01111 ⇤ 1
n = 7 : 0000000|0 · 0 ⇤ 000001 · 000001 ⇤ 000011 ⇤ 000101 ⇤ 000110 ⇤ 000111 · 000101 · 000111 ⇤ 001⇤
⇤001011 ·001 ·001011⇤001101 ·001101⇤001111⇤01 ·01⇤010111⇤011 ·011⇤011101⇤011110⇤011111 ·

011111 ⇤ 1
The following is a factorization of trail sequences of the prefer-same sequence with n = 4 and 5.
n = 4 : 0101|0 ⇤ 001 · 0 · 001 ⇤ 011 ⇤ 1 · 011 ⇤ 1
n = 5 : 01010|0 ⇤ 0001 · 0 · 0001 ⇤ 0011 ⇤ 01 · 01 ⇤ 01110̇011 · 0111 ⇤ 1
Finally, letting P be the preference function of span 2 given in Table 1, which was arbitrarily chosen,

we give a factorization of (P, 0010). Note that Lyndon words of sizes 1 and 2, that divide n � 2 are each
repeated 32 = 9 times. Also note that there is only one rotated Lyndon word (underlined).

n = 4, q = 3 : 0010|0 · 0 · 0 · 01 · 0 · 0 · 02 · 1 · 0 · 0 · 0 · 01 · 01 · 10 · 12 · 01 · 1 · 01 · 01 · 02 · 0 · 01 · 02 · 02 · 02 ·
02 · 01 · 02 · 02 · 1 · 1 · 1 · 1 · 1 · 12 · 12 · 02 · 2 · 2 · 12 · 1 · 12 · 1 · 12 · 12 · 2 · 2 · 2 · 2 · 12 · 12 · 2 · 2 · 2

5. Discussion and Conclusion

We introduced a transform that maps a de Bruijn sequence (or any sequence) to a trail sequence using
an arbitrary but fixed preference function. Observe that the prefer-zero sequence (Z, 1n) is identical to
its trail sequence when the leading digits 1n are not considered. It is a concatenation of Lyndon words
that appear one time each. In this paper we have presented binary de Bruijn sequences of span 1 whose
trail sequence is a concatenation of Lyndon words, appearing twice each. More numerical experimentation
strongly suggest that the trail sequence of any q-ary de Bruijn sequence generated by a preference function
of span s is equally a concatenation of Lyndon words that divide n � s, and each appearing qs times, in a
way that if ⌘1 is less than ⌘2 then the first appearance of ⌘1 occurs before the first appearance of ⌘2. This
is a subject of further research.

References

[1] A. Alhakim. A Simple Combinatorial Algorithm for de Bruijn Sequences. The American Mathematical Monthly, 117,
Number 8, (2010) 728-732.

[2] A. Alhakim. Spans of preference functions. Discrete Applied Mathematics, Vol. 160, 7-8, (2012) 992-998.
[3] A. Alhakim, E. Sala, J. Sawada. Revisiting the prefer-same and prefer-opposite de Bruijn Sequence Constructions. The-

oretical Computer Science, (2020).
[4] A. Alhakim, Designing preference functions for de Bruijn sequences with forbidden words. Des. Codes Cryptogr. 90,

2319-2335, (2022).
[5] C. Eldert, H. J. Gray, H. M. Gurk, M. Rubino↵. Shifting Counters. AIEE Trans., 77, (1958), 70-74.
[6] L. R. Ford, A Cyclic Arrangement of m-tuples, Report P-1071, Rand Corp., 1957.
[7] H. Fredricksen, A Survey of Full Length Nonlinear Shift Register Cycle Algorithms, SIAM Review, 24 (1982) 195-221.
[8] S. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.
[9] D. Knuth, The Art of Computer Programming, vol. 4, Addison Wesley, 2011.

[10] M. H. Martin, A Problem in Arrangements, Bulletin of the American Mathematical Society, 40 (1934) 859-864.
[11] Evan Sala, E., Sawada, J., Alhakim, A. E�cient constructions of the Prefer-same and Prefer-opposite de Bruijn sequences.

Submitted Manuscript.

E-mail address: aa145@aub.edu.lb

5

113

A Nonlinear Mapping Based on Squaring
Denise Verbakel1, Daniel Kuijsters1, Silvia Mella1, Stjepan Picek1, Luca

Mariot2 and Joan Daemen1

1 Radboud University, Digital Security Department, Nijmegen, The Netherlands
2 Semantics, Cybersecurity and Services Group, University of Twente, The Netherlands

Abstract. Many modern symmetric cryptographic primitives operate in an iterated
way: they consist of the repeated application of a relatively simple round function
over a state, alternated with the addition of secret round keys or round constants. A
crucial component of the round function is the nonlinear layer, usually defined via an
invertible map. However, many modes of operations do not require invertibility of
the underlying primitive and recently Grassi proposed the usage of non-invertible
nonlinear mappings in MPC-/FHE-/ZK-friendly symmetric cryptographic primitives.
In this work, we consider one of these maps. It is a simple yet e�cient nonlinear map,
that we call “, based on squaring over Fq, with q an odd prime power. We discuss for
the first time the di�erential and linear propagation properties of such a nonlinear
map and observe that they follow the same rules. This is an intriguing property that,
as far as we know, only occurs with “ and the binary mapping ‰3 used in Xoodoo.
Keywords: Nonlinear layer, Squaring, Finite fields

1 Introduction
The round functions in most of the modern symmetric cryptographic primitives usually
consist of a non-linear mapping and a number of linear mappings. These mappings are
chosen and combined so that there is no exploitable di�erential propagation from input to
output or exploitable correlations between input and output. The relevant properties of
these mappings over binary fields have been studied extensively by an expert community
of mathematicians, leading to solid designs. But, this community does not stop at the
binary case and also studies similar functions over Fp and its extensions, with p an odd
prime. For instance, Kölbl et al. designed a ternary cryptographic hash function called
Troika [KTDB19]. Other examples are the MPC-/FHE-/ZK-friendly symmetric primitives
defined over Fn

p like MiMC [AGR+], Poseidon [GKR+21], and many others.
There are interesting di�erences between the binary case and the odd-prime case, and

to a certain extent, the fields of odd characteristics are richer in functionality than binary
fields. For example, addition and subtraction are the same in F2. In Fp, this is no longer
the case. In F2d , squaring is a linear operation. In Fpd squaring is, in a certain sense, an
optimally nonlinear operation. In F2, correlations between input and output bits have
values that are rational and range from ≠1 to +1. In Fp, correlations are complex numbers
in the unit disk.

This work investigates a mapping over Fn
q recently proposed by Grassi [Gra22], that we

call “. We investigate the di�erential and linear propagation properties of such mapping,
both in the forward and backward direction. Our results are useful in determining the
maximum probabilities of di�erentials and trails and correlations of linear approximations
and trails over transformations making use of this mapping in their round function, as in
computer-assisted trail search [DA].

115

2 A Nonlinear Mapping Based on Squaring

2 Preliminaries
Let Fq be a finite field with q = pd an odd prime power. Let Fn

q be a vector space of
dimension n over the finite field Fq. We denote the coordinates of a vector x œ Fn

q by
xi with i œ {0, 1, . . . n ≠ 1} and call them digits. We denote by ei the vector with all
coordinates equal to 0 except coordinate i equal to 1. The Hamming weight HW(x) of a
vector x œ Fn

q is the number of non-zero digits in the vector.
Given two vectors x, y œ Fn

q , we denote their vector subtraction by x ≠ y, hence
x ≠ y = x + (≠1)y. We denote by xTy the value

q
i xiyi œ Fq.

Given a vector x œ Fn
q its activity pattern Âx is a vector in Fn

q with Âxi = 1 if xi ”= 0 and
0 otherwise.

3 Our non-linear mapping “

In this work, we consider a mapping defined in [Gra22] that we will denote by “ : Fn
q æ Fn

q

as
“(x) = y with yi = xi + x2

i+1 mod n’i.
From now on, we will omit the modular reduction in the index and always assume it is
reduced modulo n.

4 Di�erential properties of “

We analyzed the di�erential properties of the map “. We will first define di�erential
probability and weight for the non-binary case and then summarize our findings for “.

4.1 Di�erentials, di�erential probability and weight
Let x œ Fn

q and xú œ Fn
q be inputs of a transformation – : Fn

q æ Fn
q and let their di�erence

be a = xú ≠x. Likewise, let y œ Fn
q and yú œ Fn

q be outputs of – and let their di�erence be
b = yú ≠ y. The (ordered) pair (a, b) œ Fn

q ◊ Fn
q containing the input and output di�erence

is called a di�erential over –.
The di�erential probability (DP) of a di�erential (a, b) over the transformation – is

defined as
DP–(a, b) =

--x œ Fn
q : –(x + a) ≠ –(x) = b

--
qn

.

If DP–(a, b) > 0, we say that a and b are compatible di�erences over –. We define the
weight of a di�erential (a, b) over – with a and b compatible as:

w–(a, b) = ≠ logq(DP–(a, b)) .

4.2 Forward propagation from a given input di�erence
Consider the function — : Fq æ Fq : x ‘æ x2. Given an input pair (x + a, x), the
corresponding output di�erence b is given by

b = (x + a)2 ≠ x2 = x2 + 2ax + a2 ≠ x2 = 2ax + a2 . (1)

This is a linear equation and for any output di�erence b œ Fq there is exactly one input
pair (x + a, x). Solving (2) gives x = (2a)≠1(b ≠ a2) yielding the pair

3
b

2a + a

2 ,
b

2a ≠ a

2

4
.

116

Denise Verbakel, Daniel Kuijsters, Silvia Mella, Stjepan Picek, Luca Mariot and Joan
Daemen 3

It follows that the set of output di�erences b compatible over — with a non-zero input
di�erence a coincides with Fq and they all have DP—(a, b) = q≠1.

For the map “, we have

bi = xi + ai + (xi+1 + ai+1)2 ≠ xi ≠ x2
i+1 = ai + a2

i+1 + 2ai+1xi+1 , (2)

From (2) we can characterize the full di�erence distribution table (DDT) of “.

Lemma 1. An output di�erence b is compatible to an input di�erence a over “ if for
every i, bi = ai or ai+1 ”= 0, and, if so, DP(a, b) = q≠HW(a).

Therefore, for an input di�erence a œ Fn
q , the compatible output di�erences over “ form

an a�ne space with dimension HW(a). The o�set and a basis with minimal Hamming
weight for such a�ne space is given by:

• the i-th digit of the o�set is equal to ai if ai+1 ”= 0 and 0 otherwise;
• for each non-zero digit in the input di�erence a, the basis contains the vector ei≠1.

It follows that for all b compatible with an input di�erence a we have DP“(a, b) = q≠HW(a)

and likewise w“(a, b) = HW(a) and therefore only depends on the input di�erence.

4.3 Backward propagation from a given output di�erence
For a given output di�erence b, the compatible input di�erences do not form an a�ne
space. However, we will show in this section how to e�ciently generate all compatible
input di�erences a with DP“(a, b) Æ W with W some limit weight.

To this end, we introduce the concept of compatible activity pattern. We say that an
activity pattern Âa is compatible with b if there exists an input di�erence a compatible with
b that has activity pattern Âa.

The generation of all compatible input di�erences is done in two phases: in the first
phase, we generate the set of activity patterns compatible with b, and in the second phase,
we determine for each compatible activity pattern the set of compatible input di�erences
with that pattern.

We generate the compatible activity patterns in a recursive way making use of the
following facts:

• if ai = 0 and bi≠1 = 0 then ai≠1 = 0;
• if ai = 0 and bi≠1 ”= 0 then ai≠1 ”= 0.

We specify our algorithm in Algorithm 1. We start with a fully unspecified activity pattern
k. Then we specify whether an≠1 is active or not (and thus whether kn≠1 = 1 or 0) and
based on this we incrementally determine the activity of all other digits from an≠2 to a0
using the rules given above.

Given an output di�erence b and a compatible input activity pattern k, all compatible
input di�erences a with activity pattern k can be determined as follows:

• if ki = 0, then ai = 0;
• if ki = 1 and ki+1 = 0, then ai = bi;
• if ki = 1 and ki+1 = 1, then ai can have all values.
The di�erentials (a, b) with given output di�erence b and input di�erences a compatible

with b do not all have the same weight. We define the minimum reverse weight of an
output di�erence b as:

wrev
“ (b) = min

a : DP“(a,b)>0
w“(a, b) .

4.4 Computing the minimum reverse weight of an output di�erence
The minimum reverse weight of an output di�erence b is fully determined by its activity
vector Âb and is given by the compatible activity patterns with minimum Hamming weight.

117

4 A Nonlinear Mapping Based on Squaring

Algorithm 1 Generation of input activity patterns compatible with output di�erence b

Input: di�erence b œ Fn
q at output of “ and limit weight W

Output: list L of activity patterns k compatible with b at input of “
Coordinates in k: ú denotes unspecified, 0 denotes passive, 1 denotes active

L Ω empty
k Ω ún
kn≠1 Ω 0; buildA(n ≠ 1, k, b,W)
kn≠1 Ω 1; buildA(n ≠ 1, k, b,W)

procedure buildA(i, k, b,W)
if HW(k) > W then return
if (i = 0) then

if (kn≠1 = 1) OR (Âb0 = k0) then add k to L
return

kÕ Ω k
if (ki = 1) OR (Âbi≠1 = 1) then kÕ

i≠1 Ω 1; buildA(i ≠ 1, kÕ, b,W)
if (ki = 1) OR (Âbi≠1 = 0) then kÕ

i≠1 Ω 0; buildA(i ≠ 1, kÕ, b,W)
return

Let a 1-run of length ¸ in Âb be a sequence of ¸ coordinates bi, bi+1, · · · , bi+¸≠1 with
activity 1 and such that bi≠1 = 0 = bi+¸ (where indexes are considered modulo n). Namely,
the sequence is preceded by at least one coordinate 0 and followed by at least one coordinate
0.

We see that for each 1-run of length ¸ in Âb, the digit Âai+¸≠1 must be 1 and in the
sequence Âai,Âai+1, · · · ,Âai+¸≠1 there can be at most a single zero digit in between two active
digits. It follows that for each 1-run in Âb of length ¸, a has at least ¸/2 active digits if ¸ is
even and (¸ + 1)/2 if ¸ is odd. So to determine the minimum reverse weight, we decompose
its output activity pattern in a sequence of 1-runs of lengths ¸j yielding minimum reverse
weight

q
jÁ¸j/2Ë.

5 Input-output correlation properties of “

We analyzed the correlation properties of the map “. We will first define linear approxima-
tions and their correlations and then summarize our findings for “.

5.1 Linear approximations, correlation and weight
Given a complex number x, we write its complex conjugate as x. In the following section we
will write Ê as shorthand for e

2fii
p . We will also make use of the trace function Tr: Fpd æ Fp

as Tr(x) =
qd≠1

i=0 xp
i .

The correlation between two functions f, g : Fn
pd æ Fp is defined as:

C(f, g) = q≠n
ÿ

xœFnq

Êg(x)≠f(x) .

For correlations of functions f, g : Fn
q æ Fq we first must project the output from Fq to Fp.

A way to do that in a basis-agnostic way is by using the trace function:

C(Tr(uf),Tr(vg)) = q≠n
ÿ

xœFnq

ÊTr(vg(x)≠uf(x)) .

118

Denise Verbakel, Daniel Kuijsters, Silvia Mella, Stjepan Picek, Luca Mariot and Joan
Daemen 5

Let – be a transformation : Fn
q æ Fn

q with q = pd. We call a pair of masks (u, v), with
u œ Fn

q and v œ Fn
q a linear approximation over –, with u the input mask and v the output

mask. The correlation of this linear approximation is the correlation between the functions
Tr(uTx) and Tr(vT–(x)):

C–(u, v) = q≠n
ÿ

xœFnq

ÊTr(vT–(x)≠uTx) .

If C–(u, v) ”= 0, we say that masks u and v are compatible over –.
Correlations are, in general, complex numbers. The linear potential (LP) is real and

related to a correlation by LP(u, v) = C(u, v)C(u, v).
We define the weight of a linear approximation (u, v) over – with u and v compatible

as

w–(u, v) = ≠ logq(LP–(u, v)) .

5.2 Correlation properties of “

Consider again the function — : Fpd æ Fpd : x ‘æ x2. By applying Theorem 5.33 from
[LN97], we obtain that the correlation between x ‘æ vx2 and x ‘æ ux (where u, v œ Fq) is
equal to:

C—(u, v) = 1
q

ÿ

xœFq
ÊTr(vx2≠ux) =

Y
]
[

(≠1)d≠1
Ô
q ÊTr(≠u2(4v)≠1)÷(v) if p © 1 (mod 4)

(≠1)d≠1
Ô
q idÊTr(≠u2(4v)≠1)÷(v) if p © 3 (mod 4)

with ÷(v) = 1 if v is a square in Fq and ≠1 otherwise. It follows that for all u, v œ Fpd and
v ”= 0 we have LP—(u, v) = q≠1.

We can compute the correlation of linear approximations over “ from those over —:

C“(u, v) = q≠n
ÿ

xœFnq

ÊTr(vT“(x)≠uTx) (3)

= q≠n
ÿ

xœFnq

ÊTr(
q

i
vi(xi+x2

i+1)≠uixi) (4)

= q≠n
ÿ

xœFnq

Ÿ

i

ÊTr((vi≠ui)xi+vi≠1x
2
i) (5)

=
Ÿ

i

q≠1
ÿ

xiœFq
ÊTr((vi≠ui)xi+vi≠1x

2
i) (6)

=
Ÿ

i

C—(vi ≠ ui, vi≠1) . (7)

From (3) we can characterize the full table of LPs of “.

Lemma 2. An input mask u is compatible to an output mask v over “ if for every i,
ui = vi or vi≠1 ”= 0, and, if so, LP(u, v) = q≠HW(v).

Clearly, Lemma 1 and Lemma 2 are very alike and therefore propagation of di�erences
and masks over “ follow similar laws. Concretely, let fi : Fn

q æ Fn
q : x ‘æ y with ’i : y≠i =

xi. Then we have

for v = fi(a), u = fi(b) : LP“(u, v) = DP“(a, b) .

So masks propagate as di�erences, taking into account following correspondence:

119

6 A Nonlinear Mapping Based on Squaring

• output masks play the role of input di�erences and vice versa;
• indexes shall be reversed: index i in a mask corresponds to index ≠i in a di�erence.

For a nonlinear mapping this is an intriguing property that, as far as we know, occurs only
in “ and the mapping ‰3 [DHVK18].

It follows that we can extend the results obtained in Section 4 to masks. In particular,
for a given output mask, we can build the a�ne space of compatible input masks as in
Section 4.2. Moreover, for a given input mask, the compatible output masks can be found
by applying Algorithm 1. For a given input masks u, there can be several compatible
output masks v. Among them, there will be one realizing the minimum value of w(u, v).
The minimum reverse weight of u is defined as

wrev
“ (u) = min

v : LP“(u,v)>0
w“(u, v) .

and is determined by the number of 1-runs in u and their weight, as in Section 4.4.

6 Non-invertibility and imbalance
A non-zero input di�erence a can lead to a zero output di�erence if 0 is in the a�ne space
of compatible output di�erences, or equivalently, if its o�set is 0. This can only happen if,
for all positions, both ai and ai+1 are active. Therefore, the input di�erences a that can
lead to a collision are those with all coordinates active. There are (q ≠ 1)n such di�erences
and for all of them DP(a, 0) = q≠n.

Similarly, a non-zero output mask v can only be imbalanced if 0 is in the a�ne space
of compatible input masks, or equivalently, if its o�set is 0. This can only happen if, for
all positions, both vi and vi+1 are active. Therefore the output masks v that can lead to a
collision are those with all coordinates active. There are (q ≠ 1)n such masks and for all of
them LP(a, 0) = q≠n.

The collision probability of a mapping is the probability that when randomly choosing
two di�erent inputs, the outputs collide. A permutation naturally has collision probability
0. A random transformation over Fn

q has collision probability q≠n: the probability that
the two chosen inputs have the same image. For “, the collision probability is the number
of colliding pairs divided by the total number of pairs:

(q ≠ 1)n!
qn

2
" = 2(q ≠ 1)n

qn(qn ≠ 1) ¥ 2(q ≠ 1)n
q2n

So the collision probability of “ is that of a random transformation times a factor
2

1
1 ≠ 1

q

2n

.

References
[AGR+] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. MiMC:

E�cient encryption and cryptographic hashing with minimal multiplicative
complexity. Advances in Cryptology - ASIACRYPT 2016.

[DA] J. Daemen and G. Van Assche. Di�erential propagation analysis of keccak.
Fast Software Encryption - 19th International Workshop, FSE 2012.

[DHVK18] J. Daemen, S. Ho�ert, G. Van Assche, and R. Van Keer. The design of
Xoodoo and Xoo�f. IACR Transactions on Symmetric Cryptology, 2018(4):1–
38, December 2018.

120

Denise Verbakel, Daniel Kuijsters, Silvia Mella, Stjepan Picek, Luca Mariot and Joan
Daemen 7

[GKR+21] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger.
Poseidon: A new hash function for zero-knowledge proof systems. 30th USENIX
Security Symposium, 2021.

[Gra22] L. Grassi. Bounded surjective quadratic functions over fnp for mpc-/zk-/fhe-
friendly symmetric primitives. Cryptology ePrint Archive, Paper 2022/1313,
2022. https://eprint.iacr.org/2022/1313.

[KTDB19] S. Kölbl, E. Tischhauser, P. Derbez, and A. Bogdanov. Troika: a ternary
cryptographic hash function. Designs, Codes and Cryptography, 88(1):91–117,
August 2019.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University
Press, 1997.

121

Springer Nature 2021 LATEX template

On quadratic APN functions

F (x) + Tr(x)L(x)

Hiroaki Taniguchi1*

1*Department of Education, Yamato University, 2-5-1,
Katayamacho, Suita City, 564-0082, Japan.

Corresponding author(s). E-mail(s):
taniguchi.hiroaki@yamato-u.ac.jp;

Abstract

We first characterize how two (n−1, m) functions f and g can be com-
bined into an APN (n, m)-function F of the form F (x) = f(x) and
F (x + e0) = g(x) for x ∈ Fn−1

2 with e0 ∈ Fn
2 \Fn−1

2 . Next we spe-
cialize this cahracterization to the case when f is quadratic and g(x) =
f(x)+L(x) for some linearized polynomial L. Lastly for a qudratic APN
(n, n)-function F and a linearized polynomial L, we give a characteri-
zation of APN-ness for (n, n)-function F (x) + Tr(x)L(x). With some
computational experiments, we see that CCZ-inequivalent APN func-
tions F (x)+Tr(x)L(x) can be obtained from F using this construction.

1 Preliminaries

Let F2 be the binary field, and n, m positive integers. A function F : Fn
2 → Fm

2

is called an almost perfect nonlinear (APN) function if the cardinality |{x |
F (x+a)+F (x) = b}| is less than or equal to 2 for any nonzero a ∈ Fn

2 and for
any b ∈ Fm

2 . APN functions have been studied for many years because of their
applications in cryptography. See [1], [2] or [5] for known APN functions. We
call a function F quadratic if F (x + y) + F (x) + F (y) + F (0) is F2-bilinear.
Two functions F1 and F2 from Fn

2 to Fm
2 are called CCZ-equivalent if the

graphs GF1
:= {(x, F1(x)) | x ∈ Fn

2} and GF2
:= {(x, F2(x)) | x ∈ Fn

2} in
Fn

2 ⊕ Fm
2 are affine equivalent, that is, if there exists an F2-linear isomorphism

l ∈ GL2(Fn
2 ⊕ Fm

2) and an element v ∈ Fn
2 ⊕ Fm

2 such that l(GF1
) + v = GF2

.
The Γ-rank of a function F : Fn

2 → Fm
2 is the rank of the incidence matrix over

1

123

Springer Nature 2021 LATEX template

2 On quadratic APN functions F (x) + Tr(x)L(x)

F2 of the incidence structure {P, B, I}, where P = Fn
2 ⊕Fm

2 , B = Fn
2 ⊕Fm

2 and
(a, b)I(u, v) for (a, b) ∈ P and (u, v) ∈ B if and only if F (a + u) = b + v. We
know that if two functions F1 and F2 from Fn

2 to Fm
2 are CCZ-equivalent, then

they have the same Γ-rank (see [3]). Let F2n be the finite field of 2n elements.
We sometimes identify F2n with Fn

2 as an F2-vector space. We denote the set
F2n\{0} by F×

2n and Fn
2\{0} by (Fn

2)×. For finite fields K ⊃ F of characteristic
2, we denote the trace function from K to F by TrK

F . We denote TrK
F2

by Tr
and call it the absolute trace of K.

For a function F on F2n , the value at a ∈ F2n of the Walsh transformation
of the Boolean function F2n % x &→ Tr(bF (x)) ∈ F2 for b ∈ F×

2n is defined by

WF (a, b) =
∑

x∈F2n

(−1)Tr(bF (x)+ax).

The Walsh spectrum of F is defined by WF = {WF (a, b) | a ∈ F2n , b ∈ F×
2n}.

For a quadratic APN function F on F2n , it is known that WF ∈ {0, ±2(n+1)/2}
if n is odd. For the case n is even, it is said that a quadratic APN function
F has the classical Walsh spectrum if WF = {0, ±2n/2, ±2(n+2)/2}, and F has
the non-classical Walsh spectrum if otherwise (see [4]).

2 A condition to have an APN function F from
Fn

2 to Fm
2 using APN functions f, g from Fn−1

2
to Fm

2

Let f, g be functions from Fn−1
2 to Fm

2 . We regard Fn−1
2 ⊂ Fn

2 as an F2-linear
subspace. Let e0 ∈ Fn

2 with e0)∈ Fn−1
2 and Fn−1

2 + e0 := {x + e0 | x ∈ Fn−1
2 }.

Then Fn
2 = Fn−1

2 ∪ (Fn−1
2 + e0). , We want to have an APN function F from

Fn
2 = Fn−1

2 ∪ (Fn−1
2 + e0) to Fm

2 defined by F (x) = f(x) and F (x + e0) = g(x)
for x ∈ Fn−1

2 .

Proposition 1 F defined above is an APN function if and only if

(1) f and g are APN functions from Fn−1
2 to Fm

2 ,
(2) f(x + a) + f(x))= g(y + a) + g(y) for any x, y ∈ Fn−1

2 and for any nonzero
a ∈ Fn−1

2 , and
(3) Ga : Fn−1

2 % x &→ f(x + a) + g(x) ∈ Fm
2 are one-to-one mappings for any

a ∈ Fn−1
2 .

Proof Recall that F is an APN function if and only if, for any nonzero A ∈ Fn
2 and

for X, Y ∈ Fn
2 , F (X +A)+F (X) = F (Y +A)+F (Y) implies X = Y or X = Y +A.

Firstly assume that F is an APN function, and we will see that f and g must
satisfy the conditions (1), (2) and (3).

Let A = a ∈ (Fn−1
2)×. For any Y = y ∈ Fn−1

2 , we must have X = y ∈ Fn−1
2 or

X = y + a ∈ Fn−1
2 from F (X + a) + F (X) = F (y + a) + F (y). Since X ∈ Fn−1

2 , we

124

Springer Nature 2021 LATEX template

On quadratic APN functions F (x) + Tr(x)L(x) 3

have f(X + a) + f(X) = f(y + a) + f(y) from F (X + a) + F (X) = F (y + a) + F (y).
Thus f must be an APN function. Next, for any Y = y + e0 with y ∈ Fn−1

2 we must
have X = y+e0 or X = y+a+e0 from F (X +a)+F (X) = F (y+e0+a)+F (y+e0).
Since X = x + e0 for some x ∈ Fn−1

2 , we have g(x + a)+ g(x) = g(y + a)+ g(y) from
F (X + a) + F (X) = F (y + e0 + a) + F (y + e0). Hence g must be an APN function.
Thus the condition (1) must be satisfied.

Let A = a ∈ (Fn−1
2)×. For any Y = y ∈ Fn−1

2 , since X = y or X = y + a,
F (X + a) + F (X) = F (y + a) + F (y) does not have a solution X = x + e0 for
x ∈ Fn−1

2 . Thus F (x + e0 + a) + F (x + e0) "= F (y + a) + F (y) for any x, y ∈ Fn−1
2 ,

therefore we must have g(x + a) + g(x) "= f(y + a) + f(y) for any x, y ∈ Fn−1
2 . Thus

the condition (2) must be satisfied.
Let A = a+e0 with a ∈ Fn−1

2 and Y = y ∈ Fn−1
2 . We have X = y ∈ Fn−1

2 or X =

y+a+e0 with y+a ∈ Fn−1
2 . For X ∈ Fn−1

2 , we have g(X+a)+f(X) = g(y+a)+f(y)
from F (X+a+e0)+F (X) = F (y+a+e0)+F (y), hence g(X+a)+f(X) = g(y+a)+
f(y) must have only one solution X = y for any y, a ∈ Fn−1

2 . For X "∈ Fn−1
2 , we have

f(X +a)+g(X) = g(y+a)+f(y) from F (X +a)+F (X +e0) = F (y+a+e0)+F (y),
hence f(X + a) + g(X) = g(y + a) + f(y) must have only one solution X = y + a.
Thus we see that the condition (3) must be satisfied.

Conversely, let us assume the conditions (1), (2) and (3). Assume F (X + A) +
F (X) = F (Y +A)+F (Y) with A "= 0. We will prove that X = Y or X = Y +A. We
divide the case into the following four cases (i) A = a ∈ (Fn−1

2)× and Y = y ∈ Fn−1
2 ,

(ii) A = a ∈ (Fn−1
2)× and Y = y + e0 with y ∈ Fn−1

2 , (iii) A = a + e0 with a ∈ Fn−1
2

and Y = y with y ∈ Fn−1
2 , and (iv) A = a + e0 with a ∈ Fn−1

2 and Y = y + e0 with

y ∈ Fn−1
2 .

Firstly let us consider the case (i). If X = x ∈ Fn−1
2 , then we have f(x + a) +

f(x) = f(y + a) + f(y) hence x = y or x = y + a by (1). Let X = x + e0 with
x ∈ Fn−1

2 , then we have g(x + a) + g(x) = f(y + a) + f(y) which has no solution by
(2). Therefore, X = Y or X = Y + A in case (i).

Next, we consider the case (ii). Assume X = x ∈ Fn−1
2 , then we have f(x + a) +

f(x) = g(y+a)+g(y) which has no solution by (2). If X = x+e0 with x ∈ Fn−1
2 , then

we have g(x+a)+g(x) = g(y+a)+g(y), hence x+e0 = y+e0 or x+e0 = y+e0 +a
by (1). Thus we have X = Y or X = Y + A in case (ii).

Let us consider the case (iii). If X = x ∈ Fn−1
2 , then we have g(x + a) + f(x) =

g(y+a)+f(y). Since Ga : x+a #→ f(x)+g(x+a) is a one-to-one mapping by (3), we
have x = y. If X = x+e0 with x ∈ Fn−1

2 , then we have f(x+a)+g(x) = g(y+a)+f(y).
By the same reason as above, we have x + e0 = y + (a + e0). Thus we have X = Y
or X = Y + A in case (iii).

Lastly we consider the case (iv). If X = x ∈ Fn−1
2 , then we have g(x+a)+f(x) =

f(y + a) + g(y). Since Ga : x #→ f(x + a) + g(x) is a one-to-one mapping by (3),
we have x = (y + e0) + (a + e0). If X = x + e0 with x ∈ Fn−1

2 , then we have
f(x+a)+g(x) = f(y+a)+g(y). By the same reason as above, we have x+e0 = y+e0.
Thus we also have X = Y or X = Y + A in case (iv).

Hence F must be an APN function under the conditions (1), (2) and (3). !

125

Springer Nature 2021 LATEX template

4 On quadratic APN functions F (x) + Tr(x)L(x)

3 The case f is a quadratic APN function and
g(x) = f(x) + L′(x) with L′ a linear mapping

Let f be a function from Fn−1
2 to Fm

2 and Bf (x, a) := f(x+a)+f(x)+f(a)+
f(0). Recall that f is quadratic if Bf (x, a) is an F2-bilinear mapping. In this
section, we consider the case that f is a quadratic APN function from Fn−1

2 to
Fm

2 , and g(x) = f(x)+L′(x) for x ∈ Fn−1
2 with L′ an F2-linear mappings from

Fn−1
2 to Fm

2 . We note that, if f is quadratic, Fn−1
2 % x &→ L′(x)+Bf (x, a) ∈ Fm

2

are linear mappings for any a ∈ Fn−1
2 . We check the conditions (1), (2) and (3)

in Proposition 1. We regard Fn−1
2 as an (n − 1)-dimensional subspace of Fn

2 .

Proposition 2 Let f be a quadratic APN function from Fn−1
2 to Fm

2 , and g(x) =

f(x)+L′(x) with L′ an F2-linear mapping from Fn−1
2 to Fm

2 . Let F be a function from
Fn

2 to Fm
2 defined in Section 2, that is, F (x) := f(x) and F (x + e0) := f(x) + L′(x)

for some fixed e0 ∈ Fn
2 \Fn−1

2 for x ∈ Fn−1
2 . Then F is an APN function if and only

if Fn−1
2 % x #→ L′(x) + Bf (x, a) ∈ Fm

2 are one-to-one mappings for any a ∈ Fn−1
2 .

Proof Since f and g = f + L′ are APN functions, the condition (1) is satisfied. The
condition (2) implies f(x+a)+ f(x) "= f(y +a)+ f(y)+L′(a) for any x, y ∈ Fn−1

2 if

a "= 0, that is, L′(a) + (f(x + a) + f(x)) + (f(y + a) + f(y)) "= 0 for any x, y ∈ Fn−1
2

if a "= 0, which means L′(a)+Bf (a, x+ y) "= 0 if a "= 0, a ∈ Fn−1
2 . The condition (3)

implies Ga : Fn−1
2 % x #→ f(x+a)+g(x) = L′(x)+(f(x+a)+f(x)) ∈ Fm

2 are one-to-

one mappings for any a ∈ Fn−1
2 , that is, Fn−1

2 % x #→ L′(x) + Bf (x, a) + f(a) ∈ Fm
2

are one-to-one mappings for any a ∈ Fn−1
2 . Thus we see that the conditions (1), (2)

and (3) in Proposition 1 are satisfied if and only if Fn−1
2 % x #→ L′(x)+Bf (x, a) ∈ Fm

2

are one-to-one mappings for any a ∈ Fn−1
2 . !

4 F (x) + Tr(x)L(x) for a quadratic APN
function F on F2n

Let T0 := {x ∈ F2n | Tr(x) = 0} and e0 ∈ F2n with Tr(e0) = 1. Let F be a
quadratic APN function on F2n and BF (x, a) := F (x+a)+F (x)+F (a)+F (0)
for x, a ∈ F2n . Let L be an F2-linear mapping on F2n .

Theorem 3 Let F be a quadratic APN function on F2n and L an F2-linear mapping
on F2n . Let e0 ∈ F2n with Tr(e0) = 1. Then, F (x) + Tr(x)L(x) is a quadratic APN
function on F2n if and only if La : T0 % x #→ L(x) + BF (x, a + e0) ∈ F2n are one-to-
one mappings from T0 to F2n for any a ∈ T0. (Hence, F (x)+Tr(x)L(x) is a quadratic
APN function on F2n if, and only if, La(x) = 0 implies x = 0 for any a ∈ T0).

Proof Let f := F |T0
be the restriction of F to T0; f is a quadratic APN function

from T0 to F2n . For x ∈ T0, we have F (x) + Tr(x)L(x) = f(x) and F (x + e0) +

126

Springer Nature 2021 LATEX template

On quadratic APN functions F (x) + Tr(x)L(x) 5

Tr(x + e0)L(x + e0) = f(x) + L(x) + BF (x, e0) + L(e0) + F (e0). Let G be a function
on F2n defined by G(x) := f(x) and G(x + e0) := f(x) + L(x) + BF (e0, x) for
x ∈ T0, then G(x) = F (x) + Tr(x)(L(x) + L(e0) + F (e0)) for x ∈ F2n , which is CCZ
equivalent to F (x) + Tr(x)L(x). By Proposition 2, G is an APN function if and only
if T0 % x #→ L(x) + BF (x, e0) + BF (x, a) ∈ F2n are one-to-one mappings for any
a ∈ T0. Thus F (x) + Tr(x)L(x) is a quadratic APN function on F2n if and only if
La : T0 % x #→ L(x) + BF (x, a + e0) ∈ F2n are one-to-one mappings from T0 to F2n

for any a ∈ T0. !

Let e0 be some fixed element of F2n with Tr(e0) = 1. Using a computer, for
linear mappings L on F2n such that La : T0 % x &→ L(x) + B(x, a + e0) ∈ F2n

are one-to-one mappings from T0 to F2n for any a ∈ T0, we have 448 L’s with
L(e0) = 0 for F (x) = x3 on F24 , 4608 L’s with L(e0) = 0 for F (x) = x3 on
F25 , and many (about 40, 000) L’s with L(e0) = 0 for F (x) = x3 on F26 .

Example 1 Let F (x) = x3 on F26 . The Γ-rank of F is 1102. Using a computer, we see
that there are linear mappings L satisfying the conditions in Theorem 3 such that the
Γ-ranks of F (x) + Tr(x)L(x) are 1144, 1146, 1158, 1166, 1168, 1170, 1172 and 1174.

We also see that F (x) + Tr(x)L(x) with L(x) = α42x + α19x2 + α51x22

+ α59x23

+

α26x24

+ α38x25

, where α is a primitive element of F26 , has non-classical Walsh
spectrum WF = {0, ±8, ±16, ±32} with the Γ-rank 1170. Since F (x) + Tr(x)L(x)

with L(x) = α42x + α47x2 + α35x22

+ α54x23

+ α23x24

+ α27x25

has classical Walsh
spectrum WF = {0, ±8, ±16} with the Γ-rank 1170, we see that there are inequivalent
APN functions F (x) + Tr(x)L(x) with the same Γ-rank.

Let F (x) = x3 on F27 . The Γ-rank of F is 3610. Using a computer, we find that

the linear mapping L(x) := x+x23

+x25

+x26

satisfies the conditions in Theorem 3
and the Γ-rank of F (x) + Tr(x)L(x) is 4048.

References

[1] M. Calderini, L. Budaghyan and C. Carlet, On known constructions of
APN and AB functions and their relation to each other, Proceedings of
the 20th Central European Conference on Cryptography, Matematicke
znanosti 25, pp. 79–105 (2021).

[2] C. Carlet, Boolean Functions for Cryptography and Coding Theory,
Cambridge University Press, Cambridge (2021).

[3] Y. Edel and A. Pott, A new almost perfect nonlinear function which is
not quadratic, Advances in Mathematics of Communications 3, pp. 59–81
(2009).

[4] A. Pott, Almost perfect and planar functions, Designs, Codes and
Cryptography 78, pp. 141–195 (2016).

[5] https://boolean.h.uib.no/mediawiki/index.php/ .

127

On the Spread Sets of Planar Dembowski-Ostrom

Monomials∗

Christof Beierle1 and Patrick Felke2

1Faculty of Computer Science, Ruhr University Bochum, Bochum, Germany
2University of Applied Sciences Emden-Leer, Emden, Germany

Abstract

Let g 2 Fpn [x] be a planar Dembowski-Ostrom (DO) polynomial, where p is an odd
prime and n a positive integer. Let Quot(Dg) be the set of quotients XY �1 with Y 6= 0, X
being elements from the spread set of the commutative presemifield corresponding to g. We
analyze the algebraic structure of Quot(Dg) for all planar DO monomials. More precisely,
for g being CCZ-equivalent to a planar DO monomial, we show that every non-zero element
X 2 Quot(Dg) generates a field Fp[X] ✓ Quot(Dg). In particular, Quot(Dg) contains the
field Fpn .

1 Introduction and Preliminaries

Let p be an odd prime and n a positive integer. By MatFp(n, n), we denote the ring of all n⇥ n
matrices with coe�cients in the prime field Fp and by GL(n, Fp) the subgroup of all invertible
matrices in MatFp

(n, n). Given A 2 MatFp
(n, n), we denote by Fp[A] the Fp-algebra generated

by A, i.e., Fp[A] = {Pi aiA
i | ai 2 Fp}. A polynomial g 2 Fpn [x] is called planar if, for all

↵ 2 F⇤
pn ,

�g,↵(x) := g(x + ↵) � g(x) � g(↵)

is a permutation polynomial in Fpn [x] i.e., its evaluation map Fpn ! Fpn , y 7! �g,↵(y) is 1-to-1.
Planar polynomials were introduced by Dembowski and Ostrom in [5]. Since we only study
properties of evaluation maps in Fpn , we assume that g 2 Fpn [x]/(xpn � x), i.e., g has degree at
most pn � 1. A special type of polynomials in Fpn [x] are Dembowski-Ostrom (DO) polynomials,
which are those of the form

X

0ijn�1

ui,j · xpi+pj

, ui,j 2 Fpn .

If g is DO, �g,↵ is a linearized polynomial (i.e., its evaluation map is linear) for every ↵ 2 Fpn .
Let us denote by Mg,↵ the matrix (after fixing a choice of basis) associated to the evaluation
map of �g,↵. For a planar DO polynomial g, we define its spread set Dg as

Dg := {Mg,↵ | ↵ 2 Fpn} ✓ GL(n, Fp) [{0}.

∗This extended abstract is extracted from the full article available at https://arxiv.org/abs/2211.17103.

1

129

Remark 1. In [3], Coulter and Henderson showed a one-to-one correspondence between commu-
tative presemifields of odd order and planar Dembowski-Ostrom polynomials. Dg is equal to the
set of matrices corresponding to the mappings x ! a ? x of left-multiplications with elements a
in the corresponding commutative presemifield Rg, hence Dg is equal to the spread set of Rg

(see e.g., [6, Sec. 2.1]).

An equivalence relation between two polynomials that leaves the planarity property invariant
is CCZ-equivalence [2]. CCZ-equivalence of two planar DO polynomials coincides with linear
equivalence [1].

We study the set of quotients in Dg, defined as

Quot(Dg) :=
[

Y 2Dg\{0}
DgY

�1 = {XY �1 | X, Y 2 Dg and Y 6= 0}.

The following observation is immediate from the fact that g(x+y)�g(x)�g(y) is symmetric
in x and y and bilinear.

Lemma 1. Let g 2 Fpn [x] be a DO polynomial and {↵1, ↵2, . . . , ↵n} be an Fp-basis of Fpn . For
each Y 2 GL(n, Fp), the set DgY

�1 is an n-dimensional Fp-vector space with basis

{Mg,↵1
Y �1, Mg,↵2

Y �1, . . . , Mg,↵n
Y �1}.

The reason we are interested in the set Quot(Dg) is that it stays invariant up to a di↵erent
choice of basis under linear-equivalence of g, hence yielding an invariant for the CCZ-equivalence
of DO planar functions.

Proposition 1. Let g, g0 2 Fpn [x] be two planar DO polynomials within the same linear-
equivalence class. Then, Quot(Dg0) = A�1 · Quot(Dg) · A for an element A 2 GL(n, Fp).

Proof. This immediately follows from the fact that the spread sets of g and g0 are related via
Dg0 = X�1 · Dg · Y for some X, Y 2 GL(n, Fp) (see also [6, Sec. 2.1]).

We would like to recall that any finite field Fpn (resp., a proper subfield Fpm) is isomorphic to
Fp[T�], where T� denotes a matrix corresponding to the linear mapping x 7! �x over Fpn , for � 2
F⇤

pn defining a polynomial basis of Fpn (resp., of Fpm). For more details on matrix representations
of finite fields, we refer to, e.g., [7] or [8]. Applying a change of basis transformation to all elements
of a matrix algebra Fp[T] does not a↵ect the property of being a field, hence Fp[T] is a finite
field if and only if A�1 · Fp[T] · A is for all A 2 GL(n, Fp).

2 The Structure of Quot(Dg) for a planar DO monomial g

In [4], Coulter and Matthews showed that any planar DO monomial in Fpn [x] is CCZ-equivalent

to xpk+1 2 Fpn [x] with n/ gcd(k, n) being odd. We show that for any DO polynomial h 2 Fpn [x]
CCZ-equivalent to a planar monomial, the set Quot(Dh) always contains the finite field of order
pn. More precisely, we show the following.

Theorem 1. Let p be an odd prime and n a positive integer. Let g(x) 2 Fpn [x] be a planar
DO monomial. For any ↵, � 2 F⇤

pn , the element X := Mg,�M�1
g,↵ 2 Quot(Dg) generates a field

isomorphic to Fp(↵
�1�) viz. Fp[X], and Fp[X] ✓ Quot(Dg).

Let us denote by �↵ : Fpn ! Fpn , x 7! ↵xpk

+ ↵pk

x the evaluation map of �
xpk+1,↵

2 Fpn [x].

It is well known that �↵ is invertible if and only if n/ gcd(k, n) is odd (see [4]). We have the
following for the inverse, which is a special case of of Thm. 2.1 of [10]. It can also be proven by
straightforward calculation of ��1

↵ (�↵(x)).

2

130

Lemma 2 (Special case of Thm. 2.1 of [10]). Let k be such that n/ gcd(k, n) is odd. Let d :=

n/ gcd(k, n). For ↵ 2 F⇤
pn , the inverse of �↵ : x 7! ↵xpk

+ ↵pk

x is given by

��1
↵ : x 7! ↵

2
·

d�1X

i=0

(�1)i↵�(pk+1)pki

xpki

.

The following lemma is immediate.

Lemma 3. Let k be such that n/ gcd(k, n) is odd and let �↵ : x 7! ↵xpk

+ ↵pk

x. For any

↵, � 2 F⇤
pn , we have ��(��1

↵ (x)) = (�pk � ↵pk�1�) · ��1
↵ (x) + ↵�1�x.

The monomial g(x) = xpk+1 admits a non-trivial self equivalence via g(x) = ��(pk+1) · g(�x),
where � is an arbitrary non-zero element of Fpn . From this, we obtain the following.

Lemma 4. Let k be such that n/ gcd(k, n) is odd and let �↵ : x 7! ↵xpk

+ ↵pk

x. For any

↵, �, � 2 Fpn , ↵, � 6= 0, we have ��(��1
↵ (x)) = ��(pk+1) · ���(��1

�↵(�pk+1x)).

To show Theorem 1, we will first deduce that each element in Quot(Dg) generates (a subfield
of) Fpn . To do so, we show that each element in Quot(Dg) corresponds (up to a choice of basis)
to a multiplication with an element of Fpn .

Lemma 5. Let k be such that n/ gcd(k, n) is odd. Let ↵, � 2 Fpn , ↵ 6= 0. If ↵�1� 2 Fpgcd(k,n) ,
the mapping �� � ��1

↵ is equal to x 7! ↵�1�x. If ↵�1� lies not in Fpgcd(k,n) , the mapping

 ↵,� � �� � ��1
↵ � �1

↵,� is equal to x 7! (↵�1�)pk

x, where

 ↵,� : x 7! ↵pk · �↵
✓

1

�pk � ↵pk�1�
· x

◆
.

Proof. We first observe that �pk �↵pk�1� is equal to zero if and only if � = 0 or (↵�1�)pk�1 = 1,
i.e., if and only if ↵�1� is contained in the subfield Fpgcd(k,n) ✓ Fpn . Hence, by Lemma 3, the
statement is trivial for the case of ↵�1� 2 Fpgcd(k,n) ✓ Fpn .

In the other case, the mapping ↵,� is well defined and we can decompose ↵,� as C �B �A,

where A is a multiplication by (�pk �↵pk�1�)�1, B = �↵, and C is a multiplication by ↵pk

. For
all x 2 Fpn , we then have:

L1(x) := A(��(��1
↵ (A�1(x)))) = ��1

↵

⇣
(�pk � ↵pk�1�)x

⌘
+ ↵�1�x.

L2(x) := B(L1(B
�1(x))) = (�pk � ↵pk�1�) · ��1

↵ (x) + �↵(↵�1� · ��1
↵ (x))

= �pk ·
⇣
��1
↵ (x) + ↵�pk+1(��1

↵ (x))pk
⌘

.

L3(x) := C(L2(C
�1(x))) = �pk ·

⇣
↵pk

��1
↵ (↵�pk

x) + ↵(��1
↵ (↵�pk

x))pk
⌘

= �pk · �↵(��1
↵ (↵�pk

x)) = (↵�1�)pk

x.

The proof is complete since L3 = ↵,� � �� � ��1
↵ � �1

↵,� .

The more complicated part is to show that, for any X 2 Quot(Dg), the matrix algebra Fp[X]
is indeed a subset of Quot(Dg). We do this in the following.

3

131

Proof of Theorem 1. Let ↵, � 2 F⇤
pn and let X := Mg,�M�1

g,↵. By Lemma 5, the linear mapping
�� � ��1

↵ is similar to x 7! ↵�1�x. Hence, the Fp-algebra Fp[X] is isomorphic to Fp(↵
�1�) and

thus a field. It is left to show that Fp[X] ✓ Quot(Dg). The case of ↵�1� 2 Fpgcd(k,n) is trivial
and we therefore assume in the following that ↵�1� /2 Fpgcd(k,n) . We will first handle the case of

↵ = 1 and show that
�
Mg,�M�1

g,1

�r 2 Quot(Dg) for any integer r � 2. By Lemma 5, we have

 1,� �
�
�� � ��1

1

�r � �1
1,�(x) =

⇣
 1,� � �� � ��1

1 � �1
1,�

⌘r

(x) = �rpk

x.

Further,

�rpk

x =

(
 1,�r � ��r � ��1

1 � �1
1,�r (x) if �r /2 Fpgcd(k,n)

�rx = ��r � ��1
1 (x) otherwise

,

and thus

�
�� � ��1

1

�r
=

(
 �1

1,� � 1,�r � ��r � ��1
1 � �1

1,�r � 1,� if �r /2 Fpgcd(k,n)

 �1
1,� � ��r � ��1

1 � 1,� otherwise
. (1)

We will now prove that the latter composition is equal to �� � ��1
� for properly chosen field

elements �, �.

Case �r 2 Fpgcd(k,n) . In this case,
�
�� � ��1

1

�r
(x) = �1

1,� � ��r � ��1
1 � 1,�(x) = �1

1,�(�r ·
 1,�(x)) = �r · �1

1,�(1,�(x)) = �rx = ��r � ��1
1 (x), since 1,� is Fpgcd(k,n) -linear.

Case �r /2 Fpgcd(k,n) . We first observe that �1
1,� � 1,�r (x) = �pk��

�rpk��r
x. Let us define � :=

�pk��

�rpk��r
2 F⇤

pn . The image of the mapping x 7! xpk+1 over Fpn is equal to the set of squares in

Fpn . Indeed, every element in the image is a square as pk + 1 is even, and x 7! xpk+1 is 2-to-1

as a DO planar function [9]. Hence, if � is a square, we have � = �pk+1 for an element � 2 F⇤
pn

and, otherwise, we have � = u�pk+1 with u 2 F⇤
pn being an arbitrary non-square. Note that

we can always choose u 2 F⇤
pgcd(k,n) . Indeed, let n = 2m` and k = 2m0

`0 with `, `0 being odd,

we necessarily have m0 � m, as otherwise n/ gcd(k, n) would be even. So, Fpgcd(k,n) contains
Fp2m as a subfield and the extension degree [Fpn : Fpgcd(k,n)] is odd. The claim then follows as a
non-square in a finite field stays a non-square in any extension field of odd extension degree.

Let us therefore assume that � = u�pk+1 with � 2 F⇤
pn and u 2 F⇤

pgcd(k,n) . We have

 �1
1,� � 1,�r � ��r � ��1

1 � �1
1,�r � 1,�(x) = � ·

�
��r � ��1

1

� �
��1x

�

= �pk+1 ·
�
��r � ��1

1

� ⇣
��(pk+1)x

⌘
,

(2)

where the last equality follows from the fact that u 2 F⇤
pgcd(k,n) . By Lemma 4, we have �pk+1 ·

�
��r � ��1

1

� ⇣
��(pk+1)x

⌘
= ���r � ��1

� (x).

To handle the case of ↵ 6= 1, we apply Lemma 4 with � = ↵�1 and obtain ��(��1
↵ (x)) =

↵pk+1 · �↵�1�(��1
1 (↵�(pk+1)x)), hence,

(�� � ��1
↵)r(x) = ↵pk+1 · (�↵�1� � ��1

1)r(↵�(pk+1)x)

= ↵pk+1 ·
⇣
��0 � ��1

�0 (↵�(pk+1)x)
⌘

= �↵�0 � ��1
↵�0(x)

4

132

for appropriate elements �0, �0. We have now established that, for ↵�1� being a generator of F⇤
pn ,

the algebra Fp[X] is a field of order pn contained in Quot(Dg).
To handle the general case where ↵�1� is not a generator of F⇤

pn , we will show that X is equal

to (Mg,�0M�1
g,↵0)r for some generator ↵0�1

�0 of F⇤
pn and some non-negative integer r. Then, it

would immediately follow that Fp[X] ✓ Fp[Mg,�0M�1
g,↵0] ✓ Quot(Dg). Indeed, let �̄ be a generator

of F⇤
pn such that �̄r = ↵�1� and let

�̄pk � �̄

�̄rpk � �̄r
= u�pk+1

with � 2 F⇤
pn and u 2 F⇤

pgcd(k,n) . By extensively applying Lemma 4 and the result we established

above, we obtain

(�↵��1�̄ � ��1
↵��1)

r(x) =
⇣
(↵�1�)�(pk+1) · ��̄ � ��1

1 ((↵�1�)pk+1x)
⌘r

= (↵�1�)�(pk+1) ·
�
��̄ � ��1

1

�r
((↵�1�)pk+1x)

= (↵�1�)�(pk+1) · ���̄r � ��1
� ((↵�1�)pk+1x)

= (↵�1�)�(pk+1) · �↵�1�� � ��1
� ((↵�1�)pk+1x) = �� � ��1

↵ (x).

Remark 2. For g(x) = xpk+1 2 Fpn [x] planar, we have |Quot(Dg)| = (pn�pgcd(k,n))·(pn�1)
pgcd(k,n)�1

+

pgcd(k,n).

References

[1] L. Budaghyan and T. Helleseth. New commutative semifields defined by new PN multino-
mials. Cryptogr. Commun., 3(1):1–16, 2011.

[2] C. Carlet, P. Charpin, and V. A. Zinoviev. Codes, bent functions and permutations suitable
for des-like cryptosystems. Des. Codes Cryptogr., 15(2):125–156, 1998.

[3] R. S. Coulter and M. Henderson. Commutative presemifields and semifields. Adv. Math.,
217(1):282–304, 2008.

[4] R. S. Coulter and R. W. Matthews. Planar functions and planes of lenz-barlotti class II.
Des. Codes Cryptogr., 10(2):167–184, 1997.

[5] P. Dembowski and T. G. Ostrom. Planes of order n with collineation groups of order n2.
Math. Z., 103(3):239–258, 1968.

[6] U. Dempwol↵. Semifield planes of order 81. J. Geom., 89:1–16, 2008.

[7] D. Hachenberger and D. Jungnickel. Topics in Galois fields. Springer, 2020.

[8] R. Lidl and H. Niederreiter. Introduction to finite fields and their applications. Cambridge
university press, 1994.

[9] G. Weng and X. Zeng. Further results on planar DO functions and commutative semifields.
Des. Codes Cryptogr., 63(3):413–423, 2012.

[10] B. Wu. The compositional inverses of linearized permutation binomials over finite fields.
arXiv preprint arXiv:1311.2154, 2013.

5

133

A computation of D(9) using FPGA

Supercomputing

Lennart Van Hirtum1,2,3, Patrick De Causmaecker1, Jens
Goemaere1, Tobias Kenter2,3, Heinrich Riebler2,3, Michael Lass2,3,

and Christian Plessl2,3

1KU Leuven, Department of Computer Science, KULAK
2Department of Computer Science, Paderborn University

3Paderborn Center for Parallel Computing, Paderborn University
e-mail adresses in footnote∗

April 2023

Abstract

This paper reports on the first computation the 9th Dedekind Number.
This was done by building an e�cient FPGA Accelerator for the core
operation of the process, and parallelizing it on the Noctua 2 Supercluster
at Paderborn University. The resulting value is

286386577668298411128469151667598498812366

This value can be verified in two steps. We have made the data file
containing the 490M subresults available upon request, each of which can
be verified separately on CPU, and the whole file sums to our proposed
value.

1 Introduction

Let us consider the finite set A = {1, . . . , n}, which we will call the base set,
and let us denote the set of subsets of A by P(A). Dedekind numbers count the
number of monotone Boolean functions on P(A). The set of monotone Boolean
functions with respect to inclusion on P(A) is denoted by Dn. The number of
such monotone Boolean functions is denoted by D(n) and this is called the nth

Dedekind number.

∗lennart.vanhirtum@gmail.com, patrick.decausmaecker@kuleuven.be,
jens.goemaere@kuleuven.be, kenter@uni-paderborn.de, heinrich.riebler@uni-paderborn.de,
michael.lass@uni-paderborn.de, christian.plessl@uni-paderborn.de

1

135

The set of permutations of the elements of base set A generates an equivalence
relation on Dn. The set of equivalence classes of this relation are denoted by
Rn and the number of such equivalence classes is denoted by R(n).
Richard Dedekind first defined the numbers D(n) in 1897 [1]. Over the previ-
ous century, Dedekind numbers have been a challenge for computational power
in the evolving domain of computer science. Computing the numbers proved
exceptionally hard, and so far only formula’s with a double exponential time
complexity are known. Until recently, the largest known Dedekind number was
D(8). In this paper, we report on a computation of D(9). Table 1 shows the
known numbers, including the result of our computation. As we explain below,
some uncertainty about the correctness of the number existed at the time of the
first computation and we planned a verification run. In the mean time however,
results of an independent computation were reported [2], confirming our result.
Since computational methods as well as hardware implementation di↵er signifi-
cantly between the two computations, we can conclude that the result is correct
with a probability very close to 1.
Table 2 shows the known numbers R(n) of equivalence classes of monotone
Boolean functions under permutation of the elements of the base set. Note that
the last result dates from 2023.

D(0) 2 Dedekind (1897)
D(1) 3 Dedekind (1897)
D(2) 6 Dedekind (1897)
D(3) 20 Dedekind (1897)
D(4) 168 Dedekind (1897)
D(5) 7581 Church (1940)
D(6) 7828354 Ward (1946)
D(7) 2414682040998 Church (1965)
D(8) 56130437228687557907788 Wiedemann (1991)
D(9) 286386577668298411128469151667598498812366 Our result (2023)

Table 1: Known Dedekind Numbers [3] and our first result.

R(0) 2
R(1) 3
R(2) 5
R(3) 10
R(4) 30
R(5) 210
R(6) 16353
R(7) 490013148 Tamon Stephen & Timothy Yusun (2014) [4]
R(8) 1392195548889993358 Bart lomiej Pawelski (2021) [5]
R(9) 789204635842035040527740846300252680 Bart lomiej Pawelski (2023) [6]

Table 2: Known Equivalence Class Counts

2

136

For clarity of this paragraph, let us assume that we consider monotonically
decreasing Boolean functions. Note that a monotonically decreasing Boolean
function is completely defined by the set of sets which are maximal among the
sets for which the function value is true. For any monotone Boolean function,
no two of its maximal sets include one another. Such a set of sets is called
an anti-chain. A monotone Boolean function is completely determined by its
associated anti-chain, and any anti-chain is completely determined by its asso-
ciated monotone Boolean function. We will use any of the two representations
whichever is more convenient. We will represent monotone Boolean functions or
anti-chains by letters from the Greek alphabet. If we say that X 2 ↵, we mean
that X is a maximal set among the sets for which ↵ is True, in other words

8Y ✓ X : ↵(Y) = True and 8Z) X : ↵(Z) = False

If we say that ↵ = {X, Y, Z}, we mean that the sets X, Y, Z ✓ A are the maximal
sets among the sets for which ↵ is True. For the set Dn of monotone Boolean
functions on the base set a natural partial order  is defined by

8↵, � 2 Dn : ↵  � , 8X ✓ A : ↵(X)) �(X) (1)

This partial ordering defines a complete lattice on Dn. We denote by ? and >
the smallest, respectively the largest, element of Dn:

8X ✓ A : ?(X) = False,>(X) = True (2)

?(X) = {},>(X) = {A} (3)

Intervals in Dn are denoted by

8↵, � 2 Dn : [↵, �] = {� 2 Dn : ↵  �  �} (4)

For ↵, � 2 Dn, the join ↵ _ � and the meet ↵ ^ � are the monotone Boolean
functions defined by

8X ✓ A : (↵ _ �)(X) = ↵(X) or �(X) (5)

8X ✓ A : (↵ ^ �)(X) = ↵(X) and �(X) (6)

Finally, in the formulas below, a number defined for each pair ↵  � 2 Dn plays
an important role. We refer to this number as the connector number C↵,� of ↵
and �. It counts the number of connected components of the anti-chain � with
respect to ↵. Two such sets X, Y 2 � are connected if ↵(X \ Y) = False or if
there is a path X, Z1, ..., Zn, Y of such subsets X, Z1, ..., Zn, Y ✓ A in which for
every two subsequent sets ↵(X \ Z1) = ↵(Z1 \ Z2) = ... = ↵(Zn \ Y) = False.
It turns out that the number of solutions of

� _ � = � (7)

� ^ � = ↵ (8)

for �, � 2 Dn is given by 2C↵,� . This is called the P-Coe�cient [7, 8].

3

137

2 Method, Theory

We start from the original P-Coe�cient Formula as taken from [7].

D(n + 2) =

X

↵,�2Dn

|[?, ↵]|2C↵,� |[�,>]| (9)

In the master thesis of the first author of the current paper, Lennart Van Hirtum
[9], the author reworked this formula to a form making use of equivalence classes
to reduce the total number of terms.

D(n + 2) =

X

↵2Rn

|[?, ↵]|D↵

X

�2Rn
9�'�:↵�

|[�,>]|D�

n!

X

�2Permut�
↵�

2C↵,� (10)

The Permut� term is the collection of all n! equivalents of � under permutation
of the base set. D� is the number of di↵erent equivalents, and hence, Permut�
contains duplicates i↵ D� < n!. These duplicates are divided out by the

D�

n!
factor.
For D(9), this means iterating through D7. That would require iterating over
an estimated 4.59 ⇤ 1016 ↵, � pairs. The total number of P-Coe�cients (C↵,�)
that needed to be computed was 1.148 ⇤ 1019. However we were able to improve
on this further using the process of ‘deduplication’, where we can halve the
total amount of work again, by noticing that pairs of ↵, � give identical results
to their dual pair �, ↵. As per Equation 11. This allowed us to halve the total
amount of work to 5.574 ⇤ 1018 P-Coe�cients. 1

|[?, ↵]|2C↵,� |[�,>]| = |[↵,>]|2C�,↵ |[?, �]| (11)

3 Computing P-Coe�cients on FPGA

Computing P-Coe�cients is uniquely well-suited for hardware implementation.
Computing these terms requires solving the problem of counting the number of
distinct connected components within a standard graph structure. An exam-
ple of such a graph with its distinct connected components colored is shown in
Figure 1. The standard depth first search algorithm for this problem is linear
in the sum of the number of vertices (sets) and the number of edges between
these vertices. Given the number of P-coe�cients to be evaluated, it is clear
that traditional instruction-based computing methods, particularly Single In-
struction Multiple Data (SIMD), fare poorly on it. Since counting connected
components in such fixed-sizes graphs (in this case 128-node 7-d hypercubes)
consists almost purely of plain Boolean operations, it translates very well to a
hardware implementation and provides a highly e�cient implementation of the

1We made sure not to deduplicate pairs that were their own dual, ie when � = ↵

4

138

algorithm. A simple schematic implementation is shown in Figure 2. A detailed
explanation of how it works is provided in the first author’s master thesis [9].
In this thesis, some optimizations are derived that bring the average number
of iterations down to 4.061. This corresponds to the number of cycles in the
hardware design.

Figure 1: Connected components of an example graph. In this case there are 3
connected components.

Figure 2: Register Transfer Level Design of the CountConnected Core

5

139

4 Computation on Noctua 2

We implemented this hardware accelerator on the Intel Stratix 10 GX 2800
cards found in Paderborn University’s Noctua 2 supercomputer. We were able
to fit 300 of these CountConnected Cores on a single field-programmable gate
array (FPGA) die. These CountConnected Cores run at 450MHz. This gives
us a throughput of about 33 Billion CountConnected operations per second. At
this rate, a single FPGA processes about 5.2 ↵ values per second, taking 47’000
FPGA hours to compute D(9) on Noctua 2, or about 3 months real-time.
The computation is split across the system along the lines of Equation 10. ↵
values (also named tops) are divided on the job level. There are 490M tops to
be processed for D(9). We split these into 15000 jobs of 30000 tops each. The
� values per top (also named bottoms) are placed in large bu↵ers of 46M bots
on average, and sent over PCIe (Peripheral Component Interconnect Express)
to the FPGA. The FPGA then computes all 5040 permutations (�) of each
bottom, computes and adds up their P-Coe�cients. This result is stored in an
output bu↵er of the same size.
The artifact of this computation is a dataset with an intermediary result for
each of the 490M ↵ values. Each of these can be checked separately2, and the
whole file sums to 286386577668298411128469151667598498812366.

Figure 3: The FPGA Accelerator Die

2It takes about 10-200s to compute a single ↵ result on 128 AMD Epyc CPU cores

6

140

5 Correctness

As much of the code as possible is written generically. This means the same
system is used for computing D(3) - D(8). All of these yield the correct results.
Of course, the FPGA kernel is written specifically for D(9) computation, so its
correctness was verified by comparing its results with the CPU results for a
small sample. In e↵ect, both methods verified each other’s correctness.
We did apply a number of additional checks to increase our confidence in the
result:

• The most direct is the D(9) ⌘ 6 mod 210 check provided by Pawelski &
Szepietowski [10]. Our result passes this check. Sadly, due to the structure
of our computation, nearly all terms are divisible by 210, which strongly
hampers the usefulness of this check. One thing that this check does
give us is that no integer overflow has occurred, which was an important
concern given we were working with integers of 128 and 192 bits wide.

• Our computation was plagued by one issue in particular. Namely that
there is a bug in the vendor library for communication over PCIe, wherein,
occasionally and at a low incidence rate, full 4K pages of FPGA data are
not copied properly from FPGA memory to host memory. This results
in large blocks of incorrect bottoms for some tops. We encountered this
issue in about 2300 tops. We were able to mitigate this issue by including
extra data from the FPGA to host memory, namely the ‘valid permutation
count’. By checking these values, we could determine if a bottom bu↵er
had been corrupted. Additionally, adding all of these counts yields the
value for D(8), which shows that the correct number of terms have been
added.

• Finally, there is an estimation formula, which gives us an estimation which
is relatively close to our result. The Korshunov estimation formula esti-
mates D(9) = 1.15 ⇤ 1041 which is o↵ by about a factor 2. 3

6 The danger of SEU events

The one way our result could have still been wrong was due to a Single Event
Upset (SEU), such as a bitflip in the FPGA fabric during processing, or a bitflip
during data transfer from FPGA DDR memory to Main Memory.
It is di�cult to characterise the odds of these SEU events. The expected number
of occurrences for the FPGAs we used are not available to the best of our
knowledge. But example values shown on Intel’s website pin the error rate at
around 5000 SEU events per billion FPGA hours. In that case, given our 47000
FPGA hours, we expected to see 0.235 errors Poisson distributed, giving us a

3This isn’t too unusual though, as the results for odd values are o↵ by quite a lot. Esti-
mation for D(3) overestimates by a factor 2, D(5) also overestimates by a factor 2, and D(7)
overestimates roughly 10%

7

141

chance of 20% of a hit. Of course, this is just an example and the real odds
might be have been higher than that.
But, given that we have Jäkel reaching an identical result [2], the odds of a
stochastic error a↵ecting both implementations in exactly the same way are so
astronomically small, that we can rule them out.

7 Conclusion

In conclusion, our method for computing D(9) works, our implementation should
theoretically give the correct result. All that remains is: Have any bit errors
occurred during this first computation? Our plan was to start up a second run.
Each subresult would have been computed a second time, and any values that
di↵er could be recomputed a third time as a tiebreaker. On April 4th however,
a preprint claiming D(9) was published, right before the present publication by
Christian Jäkel [2]. This paper confirmed our result as we obtained it on the
8th of March. So, the 9th Dedekind Number was found on the 8th of March,
2023 using the Noctua 2 supercluster at Paderborn University. This value was
registered in the corresponding github commit: https://github.com/VonTum/
Dedekind/commit/1cf7b019afca655586e8210f97fbb5399d61e842 All code is
available at https://github.com/VonTum/Dedekind.

References

[1] R. Dedekind. Über Zerlegungen von Zahlen Durch Ihre Grössten
Gemeinsamen Theiler, pages 1–40. Vieweg+Teubner Verlag, Wiesbaden,
1897.

[2] Christian Jäkel. A computation of the ninth dedekind number, 2023.

[3] Doug Wiedemann. A computation of the eighth dedekind number. https:
//link.springer.com/article/10.1007%2FBF00385808, 1991.

[4] Tamon Stephen and Timothy Yusun. Counting inequivalent monotone
boolean functions. Discrete Applied Mathematics, 167:15–24, 2014.

[5] Bart lomiej Pawelski. On the number of inequivalent monotone boolean
functions of 8 variables, 2021.

[6] Bart lomiej Pawelski. On the number of inequivalent monotone boolean
functions of 9 variables, 2023.

[7] Patrick De Causmaecker and Stefan De Wannemacker. On the number of
antichains of sets in a finite universe, 2014.

[8] Patrick De Causmaecker, Stefan De Wannemacker, and Jay Yellen. Inter-
vals of antichains and their decompositions, 2016.

8

142

[9] Lennart Van Hirtum. A path to compute the 9th dedekind number us-
ing fpga supercomputing. https://hirtum.com/thesis.pdf, 2021. KU
Leuven, Masters Thesis.

[10] Bartlomiej Pawelski and Andrzej Szepietowski. Divisibility properties of
dedekind numbers, 2023.

9

143

1

A family of optimal linear codes from simplicial
complexes

Zhao Hu, Zhexin Wang, Nian Li, Xiangyong Zeng, and Xiaohu Tang

Abstract

In this paper, we construct a large family of projective linear codes over Fq from the general simplicial
complexes of Fm

q via the defining-set construction, which generalizes the results of [IEEE Trans. Inf. Theory
66(11):6762-6773, 2020]. The parameters and weight distribution of this class of codes are completely determined.
By using the Griesmer bound, we give a necessary and sufficient condition such that the codes are Griesmer codes
and a sufficient condition such that the codes are distance-optimal. For a special case, we also present a necessary
and sufficient condition for the codes to be near Griesmer codes. Moreover, by discussing the cases of simplicial
complexes with one, two and three maximal elements respectively, many infinite families of optimal linear codes
with few weights over Fq are obtained, including Griesmer codes, near Griesmer codes and distance-optimal codes.

Index Terms

Optimal linear code, Simplicial complex, Griesmer code, Near Griesmer code, Weight distribution

I. INTRODUCTION

Let Fqm be the finite field with qm elements and F⇤
qm = Fqm\{0}, where q is a power of a prime p and m

is a positive integer. An [n,k,d] linear code C over Fq is a k-dimensional subspace of Fn
q with minimum

(Hamming) distance d. An [n,k,d] linear code C over Fq is called distance-optimal if no [n,k,d +1] code
exists (i.e., C has the largest minimum distance for given n and k) and it is called almost distance-optimal
if there exists an [n,k,d + 1] distance-optimal code. An [n,k,d] linear code C is called optimal (resp.
almost optimal) if its parameters n, k and d (resp. d + 1) meet any bound on linear codes with equality
[8]. The Griesmer bound [7], [14] for an [n,k,d] linear code C over Fq is given by

n � g(k,d) :=
k�1

Â
i=0

d d
qi e,

where d·e denotes the ceiling function. An [n,k,d] linear code C is called a Griesmer code (resp. near
Griesmer code) if its parameters n (resp. n�1), k and d achieve the Griesmer bound. Griesmer codes have
been an interesting topic of study for many years due to not only their optimality but also their geometric
applications [4], [5]. In coding theory, it’s a fundamental problem to construct (distance-)optimal codes.

Recently, constructing optimal or good linear codes from mathematical objects attracts much attention
and many attempts have been made in this direction. In the various kinds of mathematical objects,
simplicial complexes (which are certain subsets of Fm

q with good algebraic structure) are really useful
to construct optimal or good linear codes. The investigation of constructing linear codes from simplicial
complexes, to the best of our knowledge, first appeared in [3] (in 2018), in which Chang and Hyun
constructed the first infinite family of binary minimal linear codes violating the Ashikhmin-Barg condition
[2] by employing simplicial complexes of Fm

2 with two maximal elements. In 2020, Hyun et al. [10]

Z. Hu, X. Zeng and X. Tang are with the Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei
University, Wuhan, 430062, China. Z. Wang and N. Li are with the Hubei Key Laboratory of Applied Mathematics, School of Cyber Science
and Technology, Hubei University, Wuhan, 430062, China. X. Tang is also with the Information Coding & Transmission Key Lab of Sichuan
Province, CSNMT Int. Coop. Res. Centre (MoST), Southwest Jiaotong University, Chengdu, 610031, China. Email: zhao.hu@aliyun.com,
zhexin.wang@aliyun.com, nian.li@hubu.edu.cn, xiangyongzeng@aliyun.com, xhutang@swjtu.edu.cn

*The full version of this paper has been submitted to the journal IEEE Transactions on Information Theory

145

2

constructed infinite families of optimal binary linear codes from the general simplicial complexes of Fm
2

via the defining-set construction. Later, by using simplicial complexes of Fm
2 with one maximal element,

several classes of optimal or good binary linear codes with few weights were derived in [11], [16], [18]
via different construction approaches. Shortly after, simplicial complexes of Fm

2 with one and two maximal
elements were utilized to construct quaternary optimal linear codes in [17], [19] by studying new defining
sets of Fm

4 . Recently, some researchers also concentrated on linear codes constructed from simplicial
complexes of Fm

q with q > 2. Hyun et al. [9] first defined the simplicial complexes of Fm
p for an odd prime

p in 2019, and after that several classes of optimal p-ary few-weight linear codes were constructed in [9],
[13], [15] by using different simplicial complexes of Fm

p with one maximal element. Later, Pan and Liu
[12] defined the simplicial complexes of Fm

3 in another way and presented three classes of few-weight
ternary codes with good parameters from their defined simplicial complexes of Fm

3 with one and two
maximal elements.

In this paper, we first define the simplicial complexes of Fm
q for any prime power q (see the details in

next section) in a different way from the definitions given by [9], [12] for a prime p and q = 3 resepctively.
Then we employ the general simplicial complexes of Fm

q to construct projective linear codes C over Fq
via the defining-set construction. We completely determine the parameters and weight distribution of C .
Moreover, we characterize the optimality of this family of linear codes, which shows that many (distance-
)optimal codes can be produced from this construction. In addition, by studying the three cases of simplicial
complexes of Fm

q with one, two and three maximal elements respectively, it shows that infinite families
of optimal linear codes with few weights are produced from our construction, including Griesmer codes,
near Griesmer codes and distance-optimal codes.

II. PRELIMINARIES

In this section, we present some preliminaries which will be used for the subsequent sections.
Here we introduce the concept of simplicial complexes of Fm

q , where q can be any prime power. For
two vectors u = (u1,u2, . . . ,um) and v = (v1,v2, . . . ,vm) in Fm

q , we say that u covers v, denoted v � u,
if Supp(v) ✓ Supp(u), where Supp(u) = {1  i  m : ui 6= 0} is the support of u. A subset D of Fm

q is
called a simplicial complex if u 2 D and v � u imply v 2 D. An element u in D with entries 0 or 1 is
said to be maximal if there is no element v 2 D such that Supp(u) is a proper subset of Supp(v). For a
simplicial complex D ✓ Fm

q , let F = {F1,F2, . . . ,Fh} be the set of maximal elements of D, where h is the
number of maximal elements in D and Fi’s are maximal elements of D. Let Ai = Supp(Fi) for 1  i  h,
which implies Ai ✓ [m] := {1,2, . . . ,m}. Note that Ai \A j 6= /0 for any 1  i 6= j  h by the definition. Let
A = {A1,A2, . . . ,Ah} be the set of supports of maximal elements of D, and A be called the support of D,
denoted Supp(D) = A . Then one can see that a simplicial complex D is uniquely generated by A , denoted
D = hAi. Notice that both the set of maximal elements F and the support A of D are unique for a fixed
simplicial complex D. For any set B consisting of some subsets of [m], we say that a simplicial complex
D of Fm

q is generated by B , denoted D = hBi, if D is the smallest simplicial complex of Fm
q containing

every element in Fm
q with the support B 2 B .

Notice that the above definition of simplicial complexes of Fm
q is a generalization of the original

definition of simplicial complexes of Fm
2 [1], [10], and it is different from the two definitions presented

in [9] for Fm
p and in [12] for Fm

3 .
We will construct a large family of linear code from simplicial complexes of Fm

q via the defining-
set construction in this paper. In 2007, Ding and Niederreiter [6] introduced a nice and generic way to
construct linear codes via trace functions. Let D ⇢ Fqm and define

CD = {ca = (Trqm

q (ax))x2D : a 2 Fqm}. (1)

Then CD is a linear code over Fq of length n := |D|. The set D is called the defining set of CD and the
above construction is accordingly called the defining-set construction.

146

3

The following notation will be used frequently in this paper. Let 0 T < qm�1 be an integer. Then T can
be uniquely written as T = Âm�2

j=0 t jq j, where 0  t j  q�1 is an integer for 0  j  m�2. Let v(T) (resp.
u(T)) denote the smallest (resp. largest) integer in the set {0  j  m�2 : t j 6= 0} and `(T) = Âm�1

j=0 t j.

III. THE PROJECTIVE LINEAR CODES OVER Fq FROM THE GENERAL SIMPLICIAL COMPLEXES

Let D be a simplicial complex of Fqm , and Dc be the complement of D, namely, Dc = Fm
q \D. Notice

that if x 2 D, then yx 2 D for any y 2 F⇤
q due to the definition of simplicial complexes. Hence for any

simplicial complex D, Dc can be expressed as

Dc = F⇤
qDc

= {yz : y 2 F⇤
q and z 2 Dc}

where zi/z j /2 F⇤
q for distinct elements zi and z j in Dc, and clearly |Dc| = |Dc|/(q�1).

In this section, we investigate the projective codes CDc defined as in (1).

Theorem 1. Let D be a simplicial complex of Fqm with the support A = {A1,A2, . . . ,Ah}, where 1  |A1| 
|A2|  · · ·  |Ah| < m. Assume that Ai\([1 jh, j 6=iA j) 6= /0 for any 1  i  h and qm > Â1ih q|Ai|. Denote
T = Â1ih q|Ai|�1. Let CDc be defined as in (1). Then

1) CDc has parameters [(qm �|D|)/(q�1),m,qm�1 �T], where |D| = Â/0 6=S✓A(�1)|S|�1q|\S| and \S is
defined as \S = \A2SA.

2) CDc is a Griesmer code if and only if |Ai\A j| = 0 for any 1  i < j  h and at most q�1 of |Ai|’s
are the same.

3) CDc is distance-optimal if |D|�1+(q�1)(v(T)+1) > qT � `(T).
4) CDc has the following weight enumerator

Â
/0 6=R✓W

|YR|zqm�1�ÂS2R(�1)|S|�1q|\S|�1
+(qm�|[h

i=1Ai| �1)zqm�1
+1

where W = {S : S ✓ A ,S 6= /0} and

|YR| = qm�|[S2W\R(\S)| � Â
/06=E✓R

(�1)|E|�1qm�|([L2E(\L))[([S2W\R(\S))|.

Remark 1. Note that qT �|D| = ÂS✓A ,|S|�2(�1)|S|�1q|\S| whose value heavily relies on those of |Ai\A j|
for 1  i < j  h. By the definition, v(T) � |A1| and `(T)  h. Thus the condition in 3) of Theorem 1 can
be easily satisfied if |A1| is large enough and |Ai \A j|’s are small enough.

Remark 2. The given formula in 4) of Theorem 1 to compute the weight distribution of CDc is completely
computable for a given D with support A = {A1,A2, . . . ,Ah} although the expression seems not so simple.
Thus we say that the weight distribution of CDc is completely determined in Theorem 1.

In the following corollary, we take a more in-depth discussion on the case that |Ai \A j| = 0 for all
1  i < j  h for the code CDc in Theorem 1.

Corollary 1. Let D be a simplicial complex of Fqm with the support A = {A1,A2, . . . ,Ah}, where 1 
|A1|  |A2|  · · ·  |Ah| < m. Assume that |Ai \A j| = 0 for 1  i < j  h. Denote T = Â1ih q|Ai|�1. Let
CDc be defined as in (1). Then CDc is an at most 2h-weight [(qm �Âh

i=1 q|Ai| +h�1)/(q�1),m,qm�1 �T]
linear code with weight enumerator

Â
/06=R✓[h]

(qm�Âi2[h]\R |Ai| � Â
/06=E✓R

(�1)|E|�1qm�Âi2E |Ai|�Âi2[h]\R |Ai|)zqm�1�Âi2R q|Ai|�1
+(qm�Âh

i=1 |Ai| �1)zqm�1
+1.

Moreover, we have the followings:
1) CDc is a Griesmer code if and only if at most q�1 of |Ai|’s are the same;
2) CDc is a near Griesmer code if and only if `(T) = h� (q�1); and

147

4

3) CDc is distance-optimal if `(T)+(q�1)(v(T)+1) > h. Specially, when |Ai| = e for 1  i  h, where
e is a positive integer, it is distance-optimal if `(h)+(q�1)(v(h)+ e) > h.

Remark 3. The Griesmer codes in Corollary 1 (or Theorem 1) are indeed the Solomon-Stiffler codes.
Definitely, for the other cases (not the Griesmer codes), our codes CDc in Corollary 1 and Theorem 1 are
different from the Solomon-Stiffler codes.

Remark 4. Notice that the condition in 2) of Corollary 1 can be easily satisfied by selecting proper Ai’s.
Moreover, the condition `(T)+(q�1)(v(T)+1) > h for CDc to be distance-optimal can be easily satisfied
if |A1| is large enough since 1 `(T) h and v(T)� |A1|, and consequently many distance-optimal linear
codes can be produced in Corollary 1 besides (near) Griesmer codes.

Next, we give more explicit results on the cases h = 1,2,3 of Theorem 1.

Corollary 2. Let D be a simplicial complex of Fqm with exactly one maximal element and its support is {A}
with A ✓ [m] and 1  |A| < m. Then CDc defined by (1) is a 2-weight [(qm�q|A|)/(q�1),m,qm�1�q|A|�1]
linear code with weight distribution

Weight w Multiplicity Aw

0 1
qm�1 qm�|A| �1
qm�1 �q|A|�1 qm �qm�|A|

and it is a Griesmer code.

Corollary 3. Let D be a simplicial complex of Fqm with the support A = {A1,A2}, where 1  |A1|  |A2| <
m. Assume that qm > q|A1| +q|A2|. Let T = q|A1|�1 +q|A2|�1. Then CDc defined by (1) is an at most 5-weight
[(qm � q|A1| � q|A2| + q|A1\A2|)/(q� 1),m,qm�1 � q|A1|�1 � q|A2|�1] linear code and its weight distribution
is given by

Weight w Multiplicity Aw

0 1
qm�1 qm�|A1[A2| �1
qm�1 �q|A2|�1 qm�|A1| �qm�|A1[A2|

qm�1 �q|A1|�1 qm�|A2| �qm�|A1[A2|

qm�1 �q|A1|�1 �q|A2|�1 qm�|A1\A2| �qm�|A1| �qm�|A2| +qm�|A1[A2|

qm�1 �q|A1|�1 �q|A2|�1 +q|A1\A2|�1 qm �qm�|A1\A2|

Moreover, we have the followings:
1) When |A1 \A2| = 0 and |A1| = |A2|, CDc is a near Griesmer code (also distance-optimal) if q = 2

and it is a Griesmer code if q > 2. It reduces to a 3-weight code in this case.
2) When |A1 \A2| = 0 and |A1| < |A2|, CDc is a Griesmer code and it reduces to a 4-weight code.
3) When |A1\A2| > 0 and |A1| = |A2|, CDc is distance-optimal if `(T)+(q�1)(v(T)+1) > q|A1\A2| +1

and it reduces to a 4-weight code. Specially, CDc is a near Griesmer code if q > 2 and |A1\A2| = 1.
4) When |A1 \A2| > 0 and |A1| < |A2|, CDc is distance-optimal if (q�1)|A1|+1 > q|A1\A2|. Specially,

CDc is a near Griesmer code if |A1 \A2| = 1.

Corollary 4. Let D be a simplicial complex of Fqm with the support A = {A1,A2,A3}, where 1  |A1| 
|A2|  |A3| < m. Assume that Ai\([1 j3, j 6=iA j) 6= /0 for any 1  i  3, and qm > Â1i3 q|Ai|. Let T =

Â1i3 q|Ai|�1. Then CDc defined by (1) is a [(qm � |D|)/(q� 1),m,qm�1 �T] linear code, where |D| =

Â3
i=1 q|Ai| �Â1i< j3 q|Ai\A j| +q|A1\A2\A3|. Moreover, we have the followings:
1) CDc is a Griesmer code if and only if |Ai \A j| = 0 for 1  i < j  3 and at most q�1 of |Ai|’s are

the same (which always holds for q > 3).

148

5

2) CDc is a near Griesmer code if one of the followings holds: i) |Ai \A j| = 1 for only one element
(i, j) in the set {(i, j) : 1  i < j  3} and |Ai \A j| = 0 for the other two (i, j)’s, and at most q�1
of |Ai|’s are the same; ii) q = 3, |Ai \A j| = 0 for 1  i < j  3, and |A1| = |A2| = |A3|; and iii)
q = 2, |Ai \A j| = 0 for 1  i < j  3, and |A1| = |A2| < |A3|�1 or |A1|  |A2| = |A3|.

3) CDc is distance-optimal if (q�1)(v(T)+1)+ `(T)�1 > Â1i< j3 q|Ai\A j| �q|A1\A2\A3|.

Remark 5. The weight distribution of CDc in Corollary 4 also can be determined by the formula in 4) of
Theorem 1, which is at most 19-weight.

IV. CONCLUDING REMARKS

The main contributions of this paper are summarized as follows:
• We constructed a large family of projective linear codes CDc over Fq from the general simplicial

complexes D of Fm
q via the defining-set construction. This totally extends the results of [10] from F2

to Fq. To the best of our knowledge, this paper is the first to study linear codes over Fq constructed
from the general simplicial complexes of Fm

q for a prime power q > 2.
• The parameters and weight distribution of CDc were completely determined (see Theorem 1) in this

paper. Thus this paper also determines the weight distribution of the binary codes constructed from
the general simplicial complexes of Fm

2 in [10, Theorem IV.6], in which the weight distribution of the
binary codes were studied only for the case of simplicial complexes of Fm

2 with two maximal elements.
Moreover, as a byproduct, the weight distributions of the Solomon-Stiffler codes are determined in
Corollary 1 for the case that the corresponding subspaces in Fm

q of the projective subspaces Ui are
spanned by some subsets of a certain basis of Fm

q .
• By using the Griesmer bound, we gave a necessary and sufficient condition such that CDc is a Griesmer

code and a sufficient condition such that CDc is distance-optimal. In addition, we also presented a
necessary and sufficient condition for CDc to be a near Griesmer code in a special case. This shows
that many infinite families of (distance-)optimal linear codes can be produced from our construction.

• By studying the cases of the simplicial complexes D with one, two and three maximal elements
respectively, we derived infinite families of optimal linear codes with few weights over Fq including
Griesmer codes, near Griesmer codes and distance-optimal codes.

REFERENCES

[1] M. Adamaszek, Face numbers of down-sets, Amer. Math. Monthly 122(4) (2015), pp. 367-370.
[2] A. Ashikhmin, A. Barg, Minimal vectors in linear codes, IEEE Trans. Inf. Theory 44(5) (1998), pp. 2010-2017.
[3] S. Chang, J.Y. Hyun, Linear codes from simplicial complexes, Des. Codes Cryptogr. 86 (2018), pp. 2167-2181.
[4] C. Ding, Codes from Difference Sets, World Scientific, Singapore (2015).
[5] C. Ding, Designs from Linear Codes, World Scientific, Singapore (2018).
[6] C. Ding, H. Niederreiter, Cyclotomic linear codes of order 3, IEEE Trans. Inf. Theory 53(6) (2007), pp. 2274-2277.
[7] J.H. Griesmer, A bound for error correcting codes, IBM J. Res. Dev. 4 (1960), pp. 532-542.
[8] W. Huffman, V. Pless, Fundamentals of error-correcting codes, Cambridge University Press (1997).
[9] J.Y. Hyun, H.K. Kim, M. Na, Optimal non-projective linear codes constructed from down-sets, Discrete Appl. Math. 254 (2019), pp.

135-145.
[10] J.Y. Hyun, J. Lee, Y. Lee, Infinite families of optimal linear codes constructed from simplicial complexes, IEEE Trans. Inf. Theory

66(11) (2020), pp. 6762-6773.
[11] X. Li, M. Shi, A new family of optimal binary few-weight codes from simplicial complexes, IEEE Communications Letters 25(4)

(2021), pp. 1048-1051.
[12] Y. Pan, Y. Liu, New classes of few-weight ternary codes from simplicial complexes, AIMS Math. 7(3) (2022), pp. 4315-4325.
[13] M. Shi, X. Li, Two classes of optimal p-ary few-weight codes from down-sets, Discret. Appl. Math. 290 (2021), pp. 60-67.
[14] G. Solomon, J.J. Stiffler, Algebraically punctured cyclic codes, Inform. and Control 8 (1965), pp. 170-179.
[15] Y. Wu, J.Y. Hyun, Few-weight codes over Fp +uFp associated with down sets and their distance optimal Gray image, Discret. Appl.

Math. 283 (2020), pp. 315-322.
[16] Y. Wu, Y. Lee, Binary LCD codes and self-orthogonal codes via simplicial complexes, IEEE Communications Letters 24(6) (2020),

pp. 1159-1162.
[17] Y. Wu, C. Li, F. Xiao, Quaternary linear codes and related binary subfield codes, IEEE Trans. Inf. Theory 68(5) (2022), pp. 3070-3080.
[18] Y. Wu, X. Zhu, Q. Yue, Optimal few-weight codes from simplicial complexes, IEEE Trans. Inf. Theory 66(6) (2020), pp. 3657-3663.
[19] X. Zhu, Y. Wei, Few-weight quaternary codes via simplicial complexes, AIMS Math. 6(5) (2021), pp. 5124-5132.

149

Stability of x3 + x2 + 1 from the perspective of periodic
sequences

Tong Lin1 Qiang Wang1

Abstract

We have recently proved [10] the conjecture by Ahmadi and Monsef-Shokri [2] that
f(x) = x3 + x2 + 1 is stable over F2. In this paper, we introduce a periodic sequence
(Sk,n,i)i��1 for each k 2 N, n 2 N0 satisfying a non-linear recurrence relation, and
establish connections between the stability of f over F2k and properties of (Sk,n,i)i��1

(namely, its recurrence relations, least period and distribution of zero terms). We
also give equivalent characterizations of the roots of (fk,n)n�0 as well as closed-form
formulas for (Sk,n,i)i��1 in terms of the Fibonacci sequence.

1 Introduction and main results

We say a polynomial t(x) 2 K[x], where K is a field, is stable over K if for each
n 2 N, the n-th iterate t(n)(x) = t(t(. . . t(t(x)))) of t is irreducible over K. Problems
concerning stability of polynomials over fields date back to the 1980s, when Odoni
came up with one of the first examples [11, Proposition 4.1] and one of the first
counter-examples [12, Corollary 1.6], respectively, of stable polynomials over a field.
Stability of polynomials, especially those of low degrees, over various fields have been
extensively studied ever since.

In 2012, Jones and Boston [8, Proposition 2.3] gave necessary and su�cient con-
ditions for a quadratic polynomial to be stable over a finite field of odd characteristic
in terms of the so-called adjusted critical orbits (using which Ostafe and Shparlinski
[13, Corollary 2] estimated the complexity of testing stability of quadratic polyno-
mials over a finite field of odd characteristic.) Then Ahmadi et al. [1, Theorem 4,
Corollary 11] showed that almost all monic quadratic polynomials in Z[x] are stable
over Q and that no quadratic polynomial is stable over a finite field of characteristic
2. In 2014, Goméz-Pérez and Nicolás, in collaboration with Ostafe and Sardonil [6,
Theorem 5.5], estimated the number of stable polynomials of any degree d 2 N over
a finite field of odd characteristic.

When it comes to polynomials of degree greater than 2, determining whether
they are stable over a field is more sophisticated than in the quadratic case. It is
conjectured in [2, Conjecture 14] that f(x) = x3 + x2 + 1 is stable over F2, and a
stability test based on Capelli’s Lemma is proposed.

1School of Mathematics and Statistics, Carleton University, 1125 Colonel By Drive, Ottawa ON K1S
5B6, Canada.
The authors were supported by the Natural Sciences and Engineering Research Council of Canada (RGPIN-
2017-06410).
E-mail addresses: tonglin4@cmail.carleton.ca (T. Lin), wang@math.carleton.ca (Q. Wang).

1

151

T. Lin and Q. Wang Stability of a cubic polynomial

Lemma 1.1 ([2, Lemma 13]). Let q > 1 be a prime power, and let F (x) 2 Fq[x]
be an irreducible polynomial of degree d 2 N. If G(x) 2 Fq[x], then F (G(x)) is
irreducible over Fq i↵ G(x) � ↵ is irreducible over Fqd

⇠= Fq[x]/ hF (x)i, where ↵ is a
root of F (x) in Fqd.

Let k 2 N. Using the above result, we construct a sequence (↵k,n)n�0 such that
for each n 2 N0, ↵k,n is a root of f (n) in F23nk and that f(↵k,n+1) = ↵k,n. Two new
sequences (�k,n)n�0 and (fk,n)n�0 arise from (↵k,n)n�0. More precisely,

�k,n = 1 + ↵k,n 2 F23nk (1)

fk,n(x) = x3 + x + �k,n (2)

In [10], with the help of the above-mentioned sequences, we proved the following
result having [2, Conjecture 14] as a special case.

Theorem 1.2. Let k 2 N.

(1) If 3 - k, then fk,n is irreducible over F23nk for each n 2 N0. In particular,
f(x) = x3 + x2 + 1 is stable over F2k .

(2) If 3 | k, then fk,n splits completely into linear factors over F23nk for each n 2 N0.

We note that for each k 2 N, n 2 N0, xfk,n(x) = x4 + x2 + �k,nx is a linearized
polynomial over F23nk . From works in [7] and [14, Corollary 4] on inverses of linearized
polynomials, we construct a sequence (Sk,n,i)i��1, where

(1) Sk,n,�1 = 0 and Sk,n,0 = 1;

(2) Sk,n,i = Sk,n,i�1 + �2i�1

k,n Sk,n,i�2.

Remark 1.3. We note that every three consecutive terms in (Sk,n,i)i��1 satisfy a
di↵erent non-linear relation. However, (Sk,n,i)i��1 can be defined by means of a
single non-linear recurrence relation, namely, for each i 2 N,

Sk,n,i = S2
k,n,i�1 + �2

k,nS4
k,n,i�2 (3)

To view stability of f over F2k (or equivalently, irreducibility of (fk,n)n�0) from
the perspective of (Sk,n,i)i��1, we present our main results.

Theorem 1.4. Let k 2 N be odd. For each n 2 N0, (Sk,n,i)i��1 is periodic, and if
tk,n is its least period, then the following are equivalent.

(1) fk,n is irreducible over F23nk ;

(2) xfk,n(x) is a permutation polynomial over F23nk ;

(3) Sk,n,3nk + �k,nS2
k,n,3nk�2 = 1;

(4) Sk,n,3nk�1 6= 0;

(5) tk,n = 3n+1k;

(6) 3 - k.

Moreover, f is stable over F2k i↵ for each n 2 N0, any of the above conditions holds.

We remark that for general k 2 N, (1), (2), (3), (4), (6) are still equivalent and (5)
implies all of them.

2

152

T. Lin and Q. Wang Stability of a cubic polynomial

2 Properties of (Sk,n,i)i��1

In order to structurally understand the solutions to the equation x2`+1 + x + a = 0
in F2m , where ` < m are positive integers and a 2 F⇤

2m , a sequence of polynomials
(Ci(x))r+1

i=1 , where m = rd and d = gcd(`, m), defined over F2 is introduced in [7,
Equation (5)]. (We also note that a more general sequence is studied in [9].)

(1) C1(x) = C2(x) = 1;

(2) Ci+2(x) = Ci+1(x) + x2i`
Ci(x) (1  i  r � 1).

Clearly, (Ci(x))r+1
i=1 can be extended to an infinite sequence satisfying the above

relations. Let C0(x) = 0. Let k 2 N, n 2 N0. When ` = d = 1 and m = r = 3nk,
induction yields that Sk,n,i = Ci+1(�k,n). Moreover, the following results follow
immediately from properties of (Ci(x))i�0.

Proposition 2.1. For each i 2 N,

(1) Sk,n,i = S2
k,n,i�1 + �2

k,nS4
k,n,i�2;

(2) �2i

k,n+1 = Sk,n,i�1�
2
k,n+1 +

⇣
S2

k,n,i�2�k,n

⌘
�k,n+1;

(3) Sk,n,m + �k,nS2
k,n,m�2 2 F2.

As a consequence of the above results, one can show that (Sk,n,i)i��1 is periodic.
For each n 2 N0, let F2

rk,n be the smallest subfield of F23nk containing �k,n.

Proposition 2.2. For each n 2 N0,

(1) rk,n+1 = rk,n or 3rk,n;

(2) if rk,n < rk,n+1, then (Sk,n,i)i��1 is of least period rk,n+1;

(3) if rk,n = rk,n+1, then Sk,n,rk,n
= 1 or ��1

k,n�k,n+1;

(4) if rk,n = rk,n+1, Sk,n,rk,n
= 1, then (Sk,n,i)i��1 is of least period rk,n;

(5) if rk,n = rk,n+1, Sk,n,rk,n
= ��1

k,n�k,n+1, then (Sk,n,i)i��1 is of least period 2rk,n.

While studying solutions to x3 + x + a = 0, where a 2 F⇤
2m for some m 2 N,

Berlekamp et al. constructed the following polynomial sequence (Pi(x))i�1, which
turns out to be also closely related to (Sk,n,i)i��1.

Theorem 2.3. [4, Theorem 4] Let m 2 N and a 2 F⇤
2m . The polynomial x3 + x + a

splits completely into linear factors over F2m i↵ Pm(a) = 0, where

(1) P1(x) = P2(x) = x;

(2) Pi(x) = Pi�1(x) + x2i�3
Pi�2(x) for each i � 3.

In fact, if we add an initial term P0(x) = 0 to (Pi(x))i�1, then it is easy to see
that the extended sequence (Pi(x))i�0 satisfies the above relations. By induction,
the following holds.

Proposition 2.4. For each k 2 N, n, t 2 N0 and each i 2 N0 [{�1},

S2t�1

k,n,i = ��2t

k,n Pi+1

⇣
�2t

k,n

⌘
(4)

Together, these propositions lead to Theorem 1.4.

3

153

T. Lin and Q. Wang Stability of a cubic polynomial

3 Formulas for (Sk,n,i)i��1

Let k 2 N, n 2 N0. We give three closed-form formulas for (Sk,n,i)i��1.

Proposition 3.1. For each i 2 N0, if m =

�
i

2

⌫
, then

Sk,n,i = 1 +
i�1X

j1=1

�2j1

k,n +
i�1X

j2=3

j2�2X

j1=1

�2j1+2j2

k,n + · · · +
i�1X

jm=2m�1

· · ·
j2�2X

j1=1

�2j1+···+2jm

k,n (5)

In fact, this result follows from a property of (Pi(x))i�1. Let (Bi)i�0 be such
that B0 = 0 and that the subsequence (Bi)i�1 is the ascending sequence of positive
integers whose binary representations start with 1 and contain no consecutive 1’s.
Let (Fi)i�0 be the Fibonacci sequence. Then Eq. (5) is equivalent to the following.

Proposition 3.2. For each i 2 N0 [{�1},

Sk,n,i =

Fi+1�1X

j=0

�
2Bj

k,n (6)

A third formula of (Sk,n,i)i��1 as a polynomial in ��1
k,n can also be derived to

reduce computational complexity that comes with the usage of Eq. (6). Let C0 = 0
and (Cj)j�1 = (1, 3, 5, 7, 11, . . .) be the ascending sequence of positive integers whose
binary representations begin and end with 1 and contain no consecutive 0’s.

Proposition 3.3. If T 2 N is a period of (Sk,n,i)i��1, then

Sk,n,T�i =

Fi+1�1X

j=Fi

�
�Cj2

T�(i�1)

k,n (0  i  T) (7)

4 Characterization of roots of (fk,n)n�0

Let k 2 N. In view of Theorem 1.2, studying stability of f over F2k is equivalent
to determining whether fk,n is irreducible over F23nk for each n 2 N0. When fk,n is
reducible over F23nk , it is natural to ask what its roots are in F23nk . Using the fact

that �3
k,n+1 + �k,n+1 = �k,n and that Tr3nk

⇣
��1

k,n

⌘
= Tr3nk(1), one can show that if

fk,n has a root in F23nk , then it splits completely into linear factors over F23nk . [10]

Remark 4.1. According to [3, Equations 8, 9], we note that fk,n splits completely
into linear factors over F23nk i↵ there exists some v 2 F23nk \ F22 such that

�k,n =
v + v�1

(1 + v + v�1)3
(8)

If Eq. (8) is satisfied, then the roots of fk,n in F23nk are

x0 =
v + v�1

1 + v + v�1
, x1 =

v

1 + v + v�1
, x2 =

v�1

1 + v + v�1
(9)

4

154

T. Lin and Q. Wang Stability of a cubic polynomial

Alternatively, if x0 is a root of fk,n in F23nk , then

fk,n(x) = (x + x0)
�
x2 + x0x +

�
x2

0 + 1
��

(10)

where the quadratic factor have two roots in F23nk . Then by Vieta’s formulas, the
three roots of fk,n in F23nk are x0, u

2x0 and
�
1 + u2

�
x0. The two characterizations

are equivalent, and the latter in fact follows from [5, Theorem 2.5], [9, Theorem 8].

References

[1] O. Ahmadi, F. Luca, A. Ostafe, I.E. Shparlinski, On stable quadratic polynomials,
Glasgow Mathematical Journal. 54(2): 359–369, 2012.

[2] O. Ahmadi, K. Monsef-Shokri, A note on the stability of trinomials over finite fields,
Finite fields and Their Applications. 63: 101649, 2020.

[3] E.R. Berlekamp, H. Rumsey, G. Solomon, Solutions of algebraic equations over fields of
characteristic 2, JPL Space Program Summary. IV(37–39), 1966.

[4] E.R. Berlekamp, H. Rumsey, G. Solomon, On the solution of algebraic equations over
finite fields, Information and Control. 10(6): 553–564, 1967.

[5] A.W. Bluher, On xq+1 + ax + b, Finite fields and Their Applications. 10(3): 285–305,
2004.

[6] D. Goméz-Pérez, A.P. Nicolás, A. Ostafe, D. Sardonil, Stable polynomials over finite
fields, Revista Matemática Iberoamericana. 30(2), 523–535, 2014.

[7] T. Helleseth, A. Kholosha, x2`+1+x+a = 0 and related a�ne polynomials over GF
�
2k
�
,

Cryptography and Communications. 2: 85–109, 2010.

[8] R. Jones, N. Boston, Settled polynomials over finite fields, Proceedings of the American
Mathematical Society. 140(6): 1849–1863, 2012.

[9] K.H. Kim, J. Choe, S. Mesnager, Solving Xq+1 + X + a over finite fields. Finite Fields
and Their Applications. 70: 101797, 2021.

[10] T. Lin, Q. Wang, On stability of x3 + x2 + 1, https://arxiv.org/abs/2304.03992.

[11] R.W.K. Odoni, On the prime divisors of the sequence wn+1 = 1 + w1 . . . wn, Journal of
the London Mathematical Society. (Ser. 2) 32(1), 1–11, 1985.

[12] R.W.K. Odoni, The Galois theory of iterates and composites of polynomials, Proceedings
of the London Mathematical Society. (Ser. 3) 51(3) 385–414, 1985.

[13] A. Ostafe, I.E. Shparlinski, On the length of critical orbits of stable quadratic polyno-
mials, Proceedings of the American Mathematical Society. 138(8), 2653—2656, 2010.

[14] Y. Zheng, Q. Wang, W. Wei, On inverses of permutation polynomials of small degree
over finite fields, IEEE Transactions on Information Theory. 66(2), 914–922, 2020.

5

155

	Invited Talks
	Uni/Multi variate polynomial embeddings for zkSNARKs Guang Gong
	On Division Property and Degree Bounds Aleksei Udovenko
	An optimal universal construction of threshold implementation Enrico Piccione
	Relevant classes of polynomial functions with applications to Cryptography Daniele Bartoli
	Side-channel analysis of cryptographic implementations: Lessons learned and future directions Lejla Batina
	On round functions of permutations Joan Daemen
	Resemblance Robert Coulter

	Accepted Abstracts
	Truncated rotation symmetric Boolean functions Thomas W. Cusick, Younhwan Cheon
	A new method to represent the inverse map as a composition of quadratics in a binary finite field Florian Luca, Santanu Sarkar, Pantelinom Stănică
	A class of Weightwise Almost Perfectly Balanced Boolean Functions with High Weightwise Nonlinearity Deepak Kumar Dalai, Krishna Mallick
	The second-order zero differential spectra of some power maps Kirpa Garg, Sartaj Ul Hasan, Constanza Riera, Pantelinmon Stănică
	Optimizing Implementations of Boolean Functions Meltem Sönmez Turan
	On the matrix equation MX = and self-dual Butson bent J. A. Armario, R. Egan, P. Ó Catháin
	Upper bounds on the numbers of binary plateaued and bent functions V. N. Potapov
	On bent functions satisfying the dual bent condition Alexander Polujan, Enes Pasalic, Sadmir Kudin, Fengrong Zhang
	Asymptotic Lower Bounds On The Number Of Bent Functions Having Odd Many Variables Over Finite Fields of Odd characteristic V. N. Potapov, Ferruh Özbudak
	Normality of Boolean bent functions in eight variables, revisited Alexander Polujan, Luca Mariot, Stjepan Picek
	S0-equivalent classes, a new direction to ﬁnd better weightwise perfectly balanced functions, and more Agnese Gini, Pierrick Méaux
	Orientable sequences over nonbinary alphabet Abbas Alhakim, Chris J. Mitchell, Janusz Szmidt, Peter R. Wild
	Improving differential properties of S-boxes with local changes of DDT Pavol Zajac
	Counting unate and balanced monotone Boolean functions Aniruddha Biswas and Palash Sarkar
	More De Bruijn Sequences as Concatenation of Lyndon Words Abbas Alhakim
	A Nonlinear Mapping Based on Squaring Denise Verbakel, Daniel Kuijsters, Silvia Mella, Stjepan Picek, Luca Mariot, Joan Daemen
	On quadratic APN functions F(x) + Tr(x)L(x) Hiroaki Taniguchi
	On the Spread Sets of Planar Dembowski-Ostrom Monomials Christof Beierle, Patrick Felke
	A computation of D(9) using FPGA Supercomputing Lennart Van Hirtum, Patrick De Causmaecker, Jens Goemaere, To- bias Kenter, Heinrich Riebler, Michael Lass, Christian Plessl
	A family of optimal linear codes from simplicial complexes Zhao Hu, Zhexin Wang, Nian Li, Xiangyong Zeng, Xiaohu Tang
	Stability of x3 + x2 + 1 from the perspective of periodic sequences Tong Lin, Qiang Wang

