Radboud University g5t

S
miNes©

On round functions of permutations

Joan Daemen, Radboud University NL
BFA, September 7, 2023
Voss, Norway 7N
-
=7
ESCADA

1/53

Permutation-based cryptography

Keccak (SHA—3) [Bertoni et al. 2007]

)

C input) output
— ~ ~ ~ ~ ~
r||0 rap
outer |f| M| |f| (A |f
inner :
c||0
L] U U U O U

absorbingisqueezing

2/53

Keccak (SHA—3) [Bertoni et al. 2007]

C input) (output)

] M M M M M M
r{{0 D D
o[_J_t_qt:_ f f f f f f
inner
c||0
L] U U U O U)

absorbingisqueezing

A priori for unkeyed hashing

2/53

Mac computation with sponge

Key Padded message MAC
}
ly (Y ¥ () ¥ Yy ()
I I o>
ol |f | f |l fl |f
I AN / .

3/53

Stream encryption with sponge

Key | IV
v O M
S» > >
o |f | f | f
My
Key stream

4/53

Authenticated encryption with sponge/duplex [Bertoni et al., SAC 2011]

Key | IV Padded message MAC
'}
Yy (Y Yy () ¢ Yy ()
S+ 7O O &> >
0 f f fll.. f f
L L L — L
Yy O
Key stream

5/53

Authenticated encryption with sponge/duplex [Bertoni et al., SAC 2011]

Key | IV Padded message MAC
'}
Yy (Y Yy () ¢ Yy ()
S+ 7O O &> >
0 f f fll.. f f
L L L — L
Yy O
Key stream

Ideal for lightweight!

5/53

Authenticated encryption with sponge/duplex [Bertoni et al., SAC 2011]

Key | IV Padded message MAC
'}
Yy (Y Yy () ¢ Yy ()
S+ 7O O &> >
0 f f fll.. f f
L L L — L
Yy O
Key stream

Ideal for lightweight!

Especially the variant MonkeyDuplex that we proposed in [Bertoni et al., DIAC 2012]

5/53

Ascon [Dobraunig et al. 2016]

E A A E P.C; Py Ceq P: C; E T
E=\|Jr' ’é’” E=ér = ’&' =\%I—T E = 128
L2) NN I A - B AR - 0 I 2§
() > r—— ()t > r————— (D
T iy Y
IVIIK|IN - 0*]|K: 0%[1: Klor K
Initialization Associated Data Plaintext Finalization

NIST’s new standard for lightweight authenticated encryption!

6/53

Farfalle construction [Bertoni et al., 2017]
K]|10* --{I!II

7/53

Farfalle construction [Bertoni et al., 2017]

8/53

Farfalle construction [Bertoni et al., 2017]

® Farfalle builds a deck function

® A keyed primitive more versatile than a block cipher

8/53

Farfalle construction [Bertoni et al., 2017]

® Farfalle builds a deck function
® A keyed primitive more versatile than a block cipher
® For everything keyed, see “Jammin on the deck” [Bicuieti et al., Asiacrypt 2022]

8/53

Farfalle construction [Bertoni et al., 2017]

® Farfalle builds a deck function

® A keyed primitive more versatile than a block cipher

® For everything keyed, see “Jammin on the deck” [Bicuieti et al., Asiacrypt 2022]
® XOOFFF [Bertoni et al., 2018]

® Farfalle with XOODOO permutation

8/53

Farfalle construction [Bertoni et al., 2017]

® Farfalle builds a deck function
® A keyed primitive more versatile than a block cipher
® For everything keyed, see “Jammin on the deck” [Bicuieti et al., Asiacrypt 2022]
® XOOFFF [Bertoni et al., 2018]
® Farfalle with XOODOO permutation
® Competitive with AES even on CPUs with AES-NI instruction
8/53

Ingredients that make permutation-based cryptography efficient

9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used

9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used

® adversary cannot make inverse queries

9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used
® adversary cannot make inverse queries
® more liberty in designing round function

9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used
® adversary cannot make inverse queries
® more liberty in designing round function
e Farfalle is computationally efficient thanks to limiting exposure of permutation

9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used
® adversary cannot make inverse queries
® more liberty in designing round function

e Farfalle is computationally efficient thanks to limiting exposure of permutation
® it feeds the output of a keyed compression straight into a stream cipher

9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used
® adversary cannot make inverse queries
® more liberty in designing round function

e Farfalle is computationally efficient thanks to limiting exposure of permutation
® it feeds the output of a keyed compression straight into a stream cipher
® input and output separated by 3 permutation layers

9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used
® adversary cannot make inverse queries
® more liberty in designing round function

e Farfalle is computationally efficient thanks to limiting exposure of permutation
® it feeds the output of a keyed compression straight into a stream cipher
® input and output separated by 3 permutation layers

® Duplex-based authenticated encryption is compact

9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used
® adversary cannot make inverse queries
® more liberty in designing round function

e Farfalle is computationally efficient thanks to limiting exposure of permutation
® it feeds the output of a keyed compression straight into a stream cipher
® input and output separated by 3 permutation layers

® Duplex-based authenticated encryption is compact
® during operation no need for key storage

9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used
® adversary cannot make inverse queries
® more liberty in designing round function

e Farfalle is computationally efficient thanks to limiting exposure of permutation
® it feeds the output of a keyed compression straight into a stream cipher
® input and output separated by 3 permutation layers

® Duplex-based authenticated encryption is compact
® during operation no need for key storage
® in monkeyDuplex presence of nonce allows reducing # rounds after init

9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used
® adversary cannot make inverse queries
® more liberty in designing round function
e Farfalle is computationally efficient thanks to limiting exposure of permutation
® it feeds the output of a keyed compression straight into a stream cipher
® input and output separated by 3 permutation layers
® Duplex-based authenticated encryption is compact
® during operation no need for key storage
® in monkeyDuplex presence of nonce allows reducing # rounds after init
® |nteresting hardware benchmarks related to lightweight:
® https://eprint.iacr.org/2020/1207
® https://eprint.iacr.org/2020/1459
® https://eprint.iacr.org/2021/049
9/53

https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1459
https://eprint.iacr.org/2021/049

Taken from https://eprint.iacr.org/2021/049

Gimi
300)
Forkag
a
200
®———Romulus-
100) ’
50 ,
a0
70
50 s Xoagyak .
504 p p A p - Xogdyak
/ /) / S
20 , P L ,
Locus— At p SKINNY-AEAD)
o ; PHOTON Beetie —
g ~Elephant [mixFeed
Lowus s
D g g CoieT: spocH A
3 g) schwagim
§ x 4 g
g S / e / : Ly spook - A)
510) / % % ¢ 4 v o Ac
2 08 g S % S & 9. 4 P S i + AESGCM
07 _ % : + « Ascon
/ e - y % . « comeT
oe P) p * z»prvyc scon s ¥ L% " DryGASCON
) v
0s)))) , or Ao T T w o geonens
. ™ ’ A o
o4 s % v Gimii
0) o <« 158
x * « Kot
Ji + tocus
Ascont * toms
82 & PHOTON-Beetle
* Romulus
« scrwamm
-+ SKNNY-ABAD
- s
01 + spoc
* Spook
A subterranean
subtempnea | TinyaMBU
N
 Xoodyal
w mixFeed
002 005 20 030 0% 150 250 o0 500 1600 20
Throughput (bpc)

https://eprint.iacr.org/2021/049

Focus on the permutation

Implementation properties required from the permutations

® |n dedicated hardware
® main criterion: energy-efficiency
® achievable speed
® lightweight: power-efficiency, area

11/53

Implementation properties required from the permutations

® |n dedicated hardware
® main criterion: energy-efficiency
® achievable speed
® lightweight: power-efficiency, area
® |n software

® main criterion: speed
® . .on a wide range of CPUs
® |ightweight: RAM, code size, etc.

11/53

Implementation properties required from the permutations

® |n dedicated hardware
® main criterion: energy-efficiency
® achievable speed
® lightweight: power-efficiency, area
® |n software

® main criterion: speed
® . .on a wide range of CPUs
® |ightweight: RAM, code size, etc.

® \When side-channel attacks are a threat

11/53

Implementation properties required from the permutations

® |n dedicated hardware
® main criterion: energy-efficiency
® achievable speed
® lightweight: power-efficiency, area
® |n software

® main criterion: speed
® . .on a wide range of CPUs
® |ightweight: RAM, code size, etc.

® \When side-channel attacks are a threat

® permutation should run in constant time

11/53

Implementation properties required from the permutations

® |n dedicated hardware
® main criterion: energy-efficiency
® achievable speed
® lightweight: power-efficiency, area
® |n software

® main criterion: speed
® . .on a wide range of CPUs
® |ightweight: RAM, code size, etc.

® \When side-channel attacks are a threat

® permutation should run in constant time
® suitability for masking: low algebraic degree building blocks

11/53

Implementation properties required from the permutations

® |n dedicated hardware
® main criterion: energy-efficiency
® achievable speed
® lightweight: power-efficiency, area
® |n software

® main criterion: speed
® . .on a wide range of CPUs
® |ightweight: RAM, code size, etc.

® \When side-channel attacks are a threat

® permutation should run in constant time
® suitability for masking: low algebraic degree building blocks

® As opposed to block ciphers: no need for efficient inverse

11/53

Propagation properties required from a permutation (of [FJ)

12/53

Propagation properties required from a permutation (of [FJ)

Differential probability (DP) of a differential (a, b)

DP(a, b) = #{x e F] | f(X2+na)+f(X): b}

12/53

Propagation properties required from a permutation (of [FJ)

Differential probability (DP) of a differential (a, b)

DP(a, b) = #{x e F] | f(X2+na)+f(X): b}

Correlation and linear potential (LP) of a linear approximation (a, b)

Tx+bTf(x
> em (—1)7 W

C(a,b) = >

and LP(a, b) = C?(a, b)

12/53

Propagation properties required from a permutation (of [FJ)

Differential probability (DP) of a differential (a, b)

#{x € Fy | f(x+ a) + f(x) = b}
2”

DP(a, b) =

Correlation and linear potential (LP) of a linear approximation (a, b)

Tx+bTf(x
> em (—1)7 W

C(a,b) = >

and LP(a, b) = C?(a, b)

LC DC requirements are of the following type:

V(a, b) # (0,0) : DP(a, b) < limit
Y(a, b) # (0,0) : LP(a, b) < limit

12/53

Propagation properties required from a permutation (cont’d)

® There are other propagation properties that play a role in certain attacks

13/53

Propagation properties required from a permutation (cont’d)

® There are other propagation properties that play a role in certain attacks

® The most powerful in many scenario's are summing attacks

13/53

Propagation properties required from a permutation (cont’d)

® There are other propagation properties that play a role in certain attacks
® The most powerful in many scenario's are summing attacks

® AKA higher order differentials, cube attacks, division property, ...

13/53

Propagation properties required from a permutation (cont’d)

® There are other propagation properties that play a role in certain attacks
® The most powerful in many scenario's are summing attacks

® AKA higher order differentials, cube attacks, division property, ...
® principle: summing the outputs corresponding to inputs in a large set V

13/53

Propagation properties required from a permutation (cont’d)

® There are other propagation properties that play a role in certain attacks

® The most powerful in many scenario's are summing attacks
® AKA higher order differentials, cube attacks, division property, ...
® principle: summing the outputs corresponding to inputs in a large set V

® Often V is an affine space

13/53

Propagation properties required from a permutation (cont’d)

® There are other propagation properties that play a role in certain attacks
® The most powerful in many scenario's are summing attacks
® AKA higher order differentials, cube attacks, division property, ...
® principle: summing the outputs corresponding to inputs in a large set V
® Often V is an affine space
® used as a distinguisher

13/53

Propagation properties required from a permutation (cont’d)

® There are other propagation properties that play a role in certain attacks

® The most powerful in many scenario's are summing attacks

AKA higher order differentials, cube attacks, division property, ...
principle: summing the outputs corresponding to inputs in a large set V

Often V is an affine space

used as a distinguisher
or to harvest (linear) equations in unknown state bits

Requirements related to summing attacks are of the following type:

YV C Fj such that Vx € F5 : Y f(x+v) =0,|V| > limit
vev

13/53

Iterated permutations

® Permutation as the repetition of a relatively simple round function

® similar to block ciphers, e.g., DES, Rijndael
® cfficient in hardware but also software

14/53

Iterated permutations

® Permutation as the repetition of a relatively simple round function

® similar to block ciphers, e.g., DES, Rijndael
® cfficient in hardware but also software

® There are different kinds of round functions

® Feistel: function applied to one half, result added to other half and swap
® generalized Feistel: multiple parts
® Addition, Rotation, XOR (ARX), ...

14/53

Iterated permutations

® Permutation as the repetition of a relatively simple round function
® similar to block ciphers, e.g., DES, Rijndael
e efficient in hardware but also software
® There are different kinds of round functions
® Feistel: function applied to one half, result added to other half and swap

® generalized Feistel: multiple parts
® Addition, Rotation, XOR (ARX), ...
® symmetric, consisting of a non-linear layer and a linear layer

14/53

Iterated permutations

® Permutation as the repetition of a relatively simple round function
® similar to block ciphers, e.g., DES, Rijndael
e efficient in hardware but also software
® There are different kinds of round functions
® Feistel: function applied to one half, result added to other half and swap

® generalized Feistel: multiple parts
® Addition, Rotation, XOR (ARX), ...
® symmetric, consisting of a non-linear layer and a linear layer

® \We assume the latter with R =y o A

14/53

Iterated permutations

® Permutation as the repetition of a relatively simple round function
® similar to block ciphers, e.g., DES, Rijndael
o efficient in hardware but also software
® There are different kinds of round functions
® Feistel: function applied to one half, result added to other half and swap
® generalized Feistel: multiple parts
® Addition, Rotation, XOR (ARX), ...
® symmetric, consisting of a non-linear layer and a linear layer
® \We assume the latter with R =y o A

® non-linear layer 7 of identical S-boxes (we'll assume)

14/53

Iterated permutations

® Permutation as the repetition of a relatively simple round function

® similar to block ciphers, e.g., DES, Rijndael
® cfficient in hardware but also software

® There are different kinds of round functions

® Feistel: function applied to one half, result added to other half and swap
® generalized Feistel: multiple parts
[)

Addition, Rotation, XOR (ARX), ...
® symmetric, consisting of a non-linear layer and a linear layer

® \We assume the latter with R =y o A

® non-linear layer 7 of identical S-boxes (we'll assume)
® linear layer A\ where y = A(x) = Mx + ¢ (affine really)

14/53

Propagation over an iterated permutation

15/53

Propagation over an iterated permutation

® For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard

15/53

Propagation over an iterated permutation

® For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
® But over a single round computing DP(a, b) or LP(a, b) is easy

15/53

Propagation over an iterated permutation

® For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
® But over a single round computing DP(a, b) or LP(a, b) is easy

® Round diff/approx (a°, a'), (a', a%), ... chain to trails @ = (a°,a',2%,...)

15/53

Propagation over an iterated permutation

® For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
® But over a single round computing DP(a, b) or LP(a, b) is easy
® Round diff/approx (a°, a'), (a', a%), ... chain to trails @ = (a°,a',2%,...)
® General approach for differential propagation
® approximate trail DP(Q) by EDP(Q) = [[; DP(a'%,a’)

15/53

Propagation over an iterated permutation

® For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
® But over a single round computing DP(a, b) or LP(a, b) is easy
® Round diff/approx (a°, a'), (a', a%), ... chain to trails @ = (a°,a',2%,...)
® General approach for differential propagation
® approximate trail DP(Q) by EDP(Q) = [[; DP(a'%,a’)
® bound EDP(Q) (often during the design effort)

15/53

Propagation over an iterated permutation

® For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
® But over a single round computing DP(a, b) or LP(a, b) is easy
® Round diff/approx (a°, a'), (a', a%), ... chain to trails @ = (a°,a',2%,...)
® General approach for differential propagation
® approximate trail DP(Q) by EDP(Q) = [[; DP(a'%,a’)
® bound EDP(Q) (often during the design effort)
® then verify DP(Q) ~ EDP(Q): hypothesis of stochastic equivalence

15/53

Propagation over an iterated permutation

® For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
® But over a single round computing DP(a, b) or LP(a, b) is easy
® Round diff/approx (a°, a'), (a', a%), ... chain to trails @ = (a°,a',2%,...)
® General approach for differential propagation
® approximate trail DP(Q) by EDP(Q) = [[; DP(a'%,a’)
bound EDP(Q) (often during the design effort)
then verify DP(Q) ~ EDP(Q): hypothesis of stochastic equivalence
and check clustering of trails in differentials as DP(a, b) = DP g¢(4,)(Q)

15/53

Propagation over an iterated permutation

® For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
® But over a single round computing DP(a, b) or LP(a, b) is easy

Round diff/approx (a°, at), (a',a?),... chain to trails Q = (a°, at,a%,...)

General approach for differential propagation
® approximate trail DP(Q) by EDP(Q) = [[; DP(a'%,a’)
bound EDP(Q) (often during the design effort)
® then verify DP(Q) ~ EDP(Q): hypothesis of stochastic equivalence
® and check clustering of trails in differentials as DP(a, b) = DP g¢(4,0)(Q)

® General approach for correlation
® correlation contribution of a trail is C(Q) = [[; C(a'1,a’)

15/53

Propagation over an iterated permutation

® For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
® But over a single round computing DP(a, b) or LP(a, b) is easy
Round diff/approx (a°, at), (a',a?),... chain to trails Q = (a°, at,a%,...)
General approach for differential propagation
® approximate trail DP(Q) by EDP(Q) = [[; DP(a'%,a’)
bound EDP(Q) (often during the design effort)
® then verify DP(Q) ~ EDP(Q): hypothesis of stochastic equivalence
® and check clustering of trails in differentials as DP(a, b) = DP g¢(4,0)(Q)

® General approach for correlation
® correlation contribution of a trail is C(Q) = [[; C(a'1,a’)
® bound LP(Q) (= C%(Q)) (during the design effort)

15/53

Propagation over an iterated permutation

® For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
® But over a single round computing DP(a, b) or LP(a, b) is easy
Round diff/approx (a°, at), (a',a?),... chain to trails Q = (a°, at,a%,...)
General approach for differential propagation
® approximate trail DP(Q) by EDP(Q) = [[; DP(a'%,a’)
bound EDP(Q) (often during the design effort)
® then verify DP(Q) ~ EDP(Q): hypothesis of stochastic equivalence
® and check clustering of trails in differentials as DP(a, b) = DP g¢(4,0)(Q)

® General approach for correlation
® correlation contribution of a trail is C(Q) = [[; C(a'1,a’)
® bound LP(Q) (= C%(Q)) (during the design effort)
® then check clustering of trails as C(a, b) = Cqe(a,n)(Q)

15/53

Differential over a round function

For a differential (a°, a*) over R we have

DPg(a°% a') = DP.(b°, a*) with b° = Ma°

16/53

Differential over a round function

For a differential (a°, a*) over R we have

DPg(a°% a') = DP.(b°, a*) with b° = Ma°

We can further split DPV(bO, al) with b® = (bg, by, ... bm_1),a* = (a0, a1, - .- am-1)
DPg(a% a') = DP,(#°,a") = [[DPs(br, a))

16/53

Differential over a round function

For a differential (a°, a*) over R we have

DPg(a°% a') = DP.(b°, a*) with b° = Ma°

We can further split DPV(bO, al) with b® = (bg, by, ... bm_1),a* = (a0, a1, - .- am-1)
DPg(a% a') = DP,(#°,a") = [[DPs(br, a))

Switching from DP to weight with: 2-*(2:6) — DP(a, b) makes it additive

wr (2%, ') = > w(bj, a;) with b° = Ma°

i

16/53

Differential over a round function

For a differential (a°, a*) over R we have

DPg(a°% a') = DP.(b°, a*) with b° = Ma°

We can further split DPV(bO, al) with b® = (bg, by, ... bm_1),a* = (a0, a1, - .- am-1)

DPg(a% a') = DP,(#°,a") = [[DPs(br, a))

Switching from DP to weight with: 2-*(2:6) — DP(a, b) makes it additive

wr (2%, ') = > w(bj, a;) with b° = Ma°

i

An S-box with zero input difference contrib/utes 0 to the weight: it is passive.
16/53

Linear approximation over a round function

For a linear approximation (a° a') over R we have

LPg(a°% a') = LP,(b°, a') with a® = M*h°

17/53

Linear approximation over a round function

For a linear approximation (a° a') over R we have

LPg(a°% a') = LP,(b°, a') with a® = M*h°

We can further split LP,(b%, a') with % = (bo, bi,...bm-1),a* = (a0, a1,...am_1)
LPg(a% a') = LP(HLPs(b,,a

17/53

Linear approximation over a round function

For a linear approximation (a° a') over R we have

LPg(a°% a') = LP,(b°, a') with a® = M*h°

We can further split LP,(b%, a') with % = (bo, bi,...bm-1),a* = (a0, a1,...am_1)
LPg(a% a') = LP(HLPs(b,,a

Switching from LP to weight with: 2-%(2:6) = L P(a, b) makes it additive

wr(2%,a") = > w(Ap, A,) with a° = MTp

i

17/53

Linear approximation over a round function

For a linear approximation (a° a') over R we have

LPg(a°% a') = LP,(b°, a') with a® = M*h°

We can further split LP,(b%, a') with % = (bo, bi,...bm-1),a* = (a0, a1,...am_1)
LPg(a% a') = LP(HLPs(b,,a

Switching from LP to weight with: 2-%(2:6) = L P(a, b) makes it additive

wr(2%,a") = > w(Ap, A,) with a° = MTp

i

An S-box with zero output mask contributes 0 to the weight: it is passive.
17/53

Weight of trails

The weight of a differential trail is the sum of the weights of its active S-boxes

w(Q) = w(b[! af) with ¥ =Ma' and DP(Q)~ EDP(Q) =2

i

ir

The weight of a linear trail is the sum of the weights of its active S-boxes

w(Q) =Y w(b L af) with &' = MTH" and LP(Q) =2"(?

ir

18/53

Wide trail strategy [Daemen, 1991-1993]

® Design strategy addressing resistance against LC and DC

19/53

Wide trail strategy [Daemen, 1991-1993]

® Design strategy addressing resistance against LC and DC
® reaction to DC/LC attacks on DES that made use of light trails

19/53

Wide trail strategy [Daemen, 1991-1993]

® Design strategy addressing resistance against LC and DC

® reaction to DC/LC attacks on DES that made use of light trails
® quasi consensus among cryptographers: we need wider S-boxes

19/53

Wide trail strategy [Daemen, 1991-1993]

® Design strategy addressing resistance against LC and DC
® reaction to DC/LC attacks on DES that made use of light trails
® quasi consensus among cryptographers: we need wider S-boxes
® wide trail: no, we need more active S-boxes (or non-linear operations)

19/53

Wide trail strategy [Daemen, 1991-1993]

® Design strategy addressing resistance against LC and DC

® reaction to DC/LC attacks on DES that made use of light trails

® quasi consensus among cryptographers: we need wider S-boxes

® wide trail: no, we need more active S-boxes (or non-linear operations)
® |dea: round composed of three layers

® non-linear layer operating locally

® mixing layer operating locally

® shuffle layer(s): moving nearby bits/cells away from each other

® Two flavours: aligned (or cell-oriented) and non-aligned (or bit-oriented)

19/53

Wide trail strategy [Daemen, 1991-1993]

® Design strategy addressing resistance against LC and DC

® reaction to DC/LC attacks on DES that made use of light trails

® quasi consensus among cryptographers: we need wider S-boxes

® wide trail: no, we need more active S-boxes (or non-linear operations)
® |dea: round composed of three layers

® non-linear layer operating locally

® mixing layer operating locally

® shuffle layer(s): moving nearby bits/cells away from each other

® Two flavours: aligned (or cell-oriented) and non-aligned (or bit-oriented)

® Symmetry plays an important role

19/53

Wide trail strategy [Daemen, 1991-1993]

® Design strategy addressing resistance against LC and DC
® reaction to DC/LC attacks on DES that made use of light trails
® quasi consensus among cryptographers: we need wider S-boxes
® wide trail: no, we need more active S-boxes (or non-linear operations)
® |dea: round composed of three layers
® non-linear layer operating locally
® mixing layer operating locally
® shuffle layer(s): moving nearby bits/cells away from each other
® Two flavours: aligned (or cell-oriented) and non-aligned (or bit-oriented)
® Symmetry plays an important role

® |eads to simple specification

19/53

Wide trail strategy [Daemen, 1991-1993]

® Design strategy addressing resistance against LC and DC

® reaction to DC/LC attacks on DES that made use of light trails

® quasi consensus among cryptographers: we need wider S-boxes

® wide trail: no, we need more active S-boxes (or non-linear operations)
® |dea: round composed of three layers

® non-linear layer operating locally

® mixing layer operating locally

® shuffle layer(s): moving nearby bits/cells away from each other
® Two flavours: aligned (or cell-oriented) and non-aligned (or bit-oriented)
® Symmetry plays an important role

® |eads to simple specification

® less corners where weaknesses can hide

19/53

=
(=]
(=]
L]
<
(]
£
o=
x
3
c
o
(=
(]
5]
=}
=)
(o]
T
o
(3]
=]
=
o=
@
=
oo
(7]
Q
=]
‘S
P .
=)
Q
=
3
=]
Q
-
=
Q
‘=
<}
-
o
Q
e
o
Q2
Q.
g
[¢]
X
W

Sl

N

[sIsIsIsisIsIsIsIs]s[s[s[s]s[s[s]

[sIsfsIsisls[ssIs]s[s[s[s]s[s]s]

[sIs[s[s[s|s[s[s[s|s[s[s[s|s[s]s]

20/53

=
(=]
(=]
L]
<
(]
£
o=
x
3
c
o
(=
(]
5]
=}
=)
(o]
T
o
(3]
=]
=
o=
@
c
oo
(7]
Q
=]
‘S
P .
=)
Q
=
3
=]
Q
-
=
Q
‘=
<}
-
o
Q
e
o
Q2
Q.
=
[¢]
X
W

s[s[s]s

s[s[sTs

s[s[sTs

s[s[s]s

s[s[sTs

s[s[s]s

s[s[sTs

s[s[s]s

s[s[s]s

s[s[s]s

s[s[s]s

s[s[s]s

s[s[s]s

N
=

s[s[s]s

s[s[s]s

s[s[s]s

20/53

=
(=]
(=]
L]
<
(]
£
o=
x
3
c
o
(=
(]
5]
=}
=)
(o]
T
o
(3]
=]
=
o=
@
=
oo
(7]
Q
=]
‘S
P .
=)
Q
=
3
=]
Q
-
=
Q
=
<}
-
o
Q
e
o
Q2
Q.
g
[¢]
X
W

s[s[s]s

M,

s[s

s[s

s[s[s]s

M,

s[s

M,

s[s[s]s

s[s

s[s[s]s

M,

s|s

M,

M,

s[s[s]s

s|s

s[s[s]s

M,

s|s

M,

s[s[s]s

s|s

M,

s[s[s]s

Thanks to superboxes proving any 4-round trail has at least 25 active S-boxes is easy!

20/53

Example of bit-oriented wide trail design: Subterranean [Daemen 1992]

BT [T T T T
S e'a-j e‘j eﬁ !
'/ ; b, afb]

64 88 ITO 112 124 136 -
ST T LTI T TTTTTT

21/53

Example of bit-oriented wide trail design: Subterranean [Daemen 1992]

BT [[l] T

Y Y Y Y v
D— GB-j GBj 6945

S
/ 0
by o[b]
64 88 100 112 124 136 W
|
[|

ST T T T I I TTTTTIT

-

Proving trail bounds requires computer-assisted search

21/53

Choice of the S-box

® Permutation operating on 5 for some small n typically € {3,4,5,6,8}

22/53

® Permutation operating on 5 for some small n typically € {3,4,5,6,8}

® For block ciphers n was quasi always a power of 2
® For permutations this is no longer required

e \Wish list:

22/53

® Permutation operating on 5 for some small n typically € {3,4,5,6,8}

® For block ciphers n was quasi always a power of 2
® For permutations this is no longer required

o Wish list:
® no differentials with high DP

22/53

® Permutation operating on 5 for some small n typically € {3,4,5,6,8}

® For block ciphers n was quasi always a power of 2
® For permutations this is no longer required

e \Wish list:

® no differentials with high DP
® no linear approximations with high LP

22/53

® Permutation operating on 5 for some small n typically € {3,4,5,6,8}

® For block ciphers n was quasi always a power of 2
® For permutations this is no longer required

o Wish list:
® no differentials with high DP

® no linear approximations with high LP
® low degree (for protection against masking)

22/53

® Permutation operating on 5 for some small n typically € {3,4,5,6,8}
® For block ciphers n was quasi always a power of 2
® For permutations this is no longer required
® Wish list:
® no differentials with high DP
® no linear approximations with high LP
® low degree (for protection against masking)

low computational complexity

22/53

® Permutation operating on 5 for some small n typically € {3,4,5,6,8}
® For block ciphers n was quasi always a power of 2
® For permutations this is no longer required
® Wish list:
® no differentials with high DP
® no linear approximations with high LP
® low degree (for protection against masking)

low computational complexity
® symmetry: as much as we can get

22/53

® Permutation operating on 5 for some small n typically € {3,4,5,6,8}
® For block ciphers n was quasi always a power of 2
® For permutations this is no longer required
® Wish list:
® no differentials with high DP
® no linear approximations with high LP
® low degree (for protection against masking)
® Jow computational complexity
® symmetry: as much as we can get

e Computational complexity

22/53

® Permutation operating on 5 for some small n typically € {3,4,5,6,8}
® For block ciphers n was quasi always a power of 2
® For permutations this is no longer required
® Wish list:
® no differentials with high DP
® no linear approximations with high LP
® low degree (for protection against masking)
® Jow computational complexity
® symmetry: as much as we can get
e Computational complexity

® in hardware: # gate equivalent, circuit depth

22/53

® Permutation operating on 5 for some small n typically € {3,4,5,6,8}
® For block ciphers n was quasi always a power of 2
® For permutations this is no longer required
o Wish list:
® no differentials with high DP
® no linear approximations with high LP
® low degree (for protection against masking)
® Jow computational complexity
® symmetry: as much as we can get
e Computational complexity
® in hardware: # gate equivalent, circuit depth
® in bit-sliced software: number of bitwise Boolean operations

22/53

Let’s generalize

We can generalize to transformations of F,» with p a prime

23/53

Let’s generalize

We can generalize to transformations of F,» with p a prime

DP of differentials (a, b) of a transformation of F .

DP(a7 b) _ #{X | f(X +:2’— f(X) = b}

23/53

Let’s generalize

We can generalize to transformations of F,» with p a prime

DP of differentials (a, b) of a transformation of F .

DP(a7 b) _ #{X | f(X +:‘7’2’— f(X) = b}

i

For correlation we need the trace function that maps Fy» to Fp: Tr(x) = > o, xP

23/53

Let’s generalize

We can generalize to transformations of F,» with p a prime

DP of differentials (a, b) of a transformation of F .

DP(a7 b) _ #{X | f(X +Z)n— f(X) = b}

i

For correlation we need the trace function that maps Fy» to Fp: Tr(x) = > o, xP
Correlation and LP of linear approximations (a, b) of a transformation of F .

Tr(ax—bf(x)) -
2w T ~ with w = e’
p

LP(a, b) = C(a, b)C(a, b)

C(a, b) =

23/53

Transformations in F,» with much symmetry:

Transformations in [F,» with much symmetry: power functions

® Functions of the form y < x©

® Invertible if e is coprime to p” — 1
® |nvertible power functions form a group
® isomorphic to (Z/(p" — 1)Z)*
® order is p(p" — 1)
® Inverse of y < x® is y < x? with d = e~ mod (p" — 1)

24/53

Symmetry in power functions

e Differentials and correlation:
© DP(a,b) = p~"#{x | (x +)¢ — x° = b}
° C(a, b) —p " Zx wTr(ax—bx€)

25/53

Symmetry in power functions

e Differentials and correlation:
© DP(a,b) = p~"#{x | (x +)¢ — x° = b}
° C(a, b) —p " Zx wTr(ax—bx€)

® Symmetry in propagation

25/53

Symmetry in power functions

e Differentials and correlation:
© DP(a,b) = p~"#{x | (x +)¢ — x° = b}
° C(a, b) —p " Zx wTr(ax—bx€)

® Symmetry in propagation
® DP(a, b) = DP(1, ba—¢) = DP(ab ¢, 1)

25/53

Symmetry in power functions

e Differentials and correlation:
© DP(a,b) = p~"#{x | (x +)¢ — x° = b}
° C(a, b) — p—n ZX wTr(ax—bxe)

® Symmetry in propagation
® DP(a, b) = DP(1, ba—¢) = DP(ab ¢, 1)
® C(a,b) = C(1,ba¢) = C(ab9,1)

25/53

Symmetry in power functions

e Differentials and correlation:
© DP(a,b) = p~"#{x | (x +)¢ — x° = b}
° C(a, b) — p—n ZX wTr(ax—bxe)

® Symmetry in propagation
® DP(a, b) = DP(1, ba—¢) = DP(ab ¢, 1)
® C(a,b) = C(1,ba¢) = C(ab9,1)

® Power functions with e = p’ are linear, giving additional symmetry

25/53

Symmetry in power functions

® Differentials and correlation:
© DP(a,b) = p~"#{x | (x +)¢ — x° = b}
o Ca,b) = p "y, Wiax—bx)
® Symmetry in propagation
® DP(a, b) = DP(1, ba—¢) = DP(ab ¢, 1)
® C(a,b) = C(1,ba¢) = C(ab9,1)
® Power functions with e = p’ are linear, giving additional symmetry
® Vi < n:DP(1,p'b) = DP(1, b)
® Vi< n:C(1,p'b)=C(1,b)

25/53

Converting power functions in . to S-boxes in [}

26/53

Converting power functions in . to S-boxes in [}

® Converting from Fpn to] requires choice of a basis

26/53

Converting power functions in . to S-boxes in [}

e Converting from Fp» to Fj; requires choice of a basis

0 n—1
® Normal basis: {a,a”,...,aP "}

26/53

Converting power functions in . to S-boxes in [}

e Converting from Fp» to Fj; requires choice of a basis
0 n—1
® Normal basis: {a,a”,...,aP "}

® Raising to a power p' in [Fpn corresponds to a cyclic coordinate shift in Fy

26/53

Converting power functions in . to S-boxes in [}

e Converting from Fp» to Fj; requires choice of a basis

e Normal basis: {a,a?,... ,ap"_l}
® Raising to a power p' in [Fpn corresponds to a cyclic coordinate shift in Fy
® (x®)P = xP¢ = (xP)®: power function gives a shift-invariant S-box

26/53

Converting power functions in . to S-boxes in [}

e Converting from Fp» to Fj; requires choice of a basis

e Normal basis: {a,a?,... ,ap"_l}
® Raising to a power p' in [Fpn corresponds to a cyclic coordinate shift in Fy
® (x®)P = xP¢ = (xP)®: power function gives a shift-invariant S-box

® |t also implies a partitioning of exponents in classes

26/53

Converting power functions in . to S-boxes in [}

e Converting from Fp» to Fj; requires choice of a basis

e Normal basis: {a,a?,... ,ap"_l}
® Raising to a power p' in [Fpn corresponds to a cyclic coordinate shift in Fy
® (x°)P = xP¢ = (xP)¢: power function gives a shift-invariant S-box

® |t also implies a partitioning of exponents in classes

® 50 x <+ xP€is just x < x€ followed by a cyclic shift

26/53

Converting power functions in . to S-boxes in [}

e Converting from Fp» to Fj; requires choice of a basis

e Normal basis: {a,a?,... ,ap"_l}
® Raising to a power p' in [Fpn corresponds to a cyclic coordinate shift in Fy
® (x°)P = xP¢ = (xP)¢: power function gives a shift-invariant S-box

® |t also implies a partitioning of exponents in classes

® 50 x <+ xP€is just x < x€ followed by a cyclic shift
® cyclic shift can be absorbed in linear layer

26/53

Converting power functions in . to S-boxes in [}

e Converting from Fp» to Fj; requires choice of a basis

e Normal basis: {oz,ap,...,ap"_l}
® Raising to a power p' in [Fpn corresponds to a cyclic coordinate shift in Fy
® (x°)P = xP¢ = (xP)¢: power function gives a shift-invariant S-box

® |t also implies a partitioning of exponents in classes

® 50 x <+ xP€is just x < x€ followed by a cyclic shift
® cyclic shift can be absorbed in linear layer
® exponents e, pe, p’e. .. are equivalent with respect to our analysis

26/53

Let’s try building an invertible 4-bit S-box from a power function

® We take p=2,n=4

27/53

Let’s try building an invertible 4-bit S-box from a power function

® We take p=2,n=4

® (algebraic degree in IF] is Hamming weight of binary representation of e)

27/53

Let’s try building an invertible 4-bit S-box from a power function

® We take p=2,n=4
® (algebraic degree in IF] is Hamming weight of binary representation of e)
® (2% — 1) = 8 candidate exponents in two classes: {1,2,4,8} and {7,14,13,11}

27/53

Let’s try building an invertible 4-bit S-box from a power function

We take p=2,n=14

(algebraic degree in Fj is Hamming weight of binary representation of e)
¢(2* — 1) = 8 candidate exponents in two classes: {1,2,4,8} and {7,14,13,11}

® exponents in {1,2,4,8} give linear power functions

27/53

Let’s try building an invertible 4-bit S-box from a power function

We take p=2,n=14

(algebraic degree in Fj is Hamming weight of binary representation of e)
¢(2* — 1) = 8 candidate exponents in two classes: {1,2,4,8} and {7,14,13,11}

® exponents in {1,2,4,8} give linear power functions

Let us take 14

27/53

Let’s try building an invertible 4-bit S-box from a power function

We take p=2,n=14

(algebraic degree in Fj is Hamming weight of binary representation of e)
¢(2* — 1) = 8 candidate exponents in two classes: {1,2,4,8} and {7,14,13,11}

® exponents in {1,2,4,8} give linear power functions

Let us take 14

® additional symmetry: involution because 14°> mod 15 = 1 so 14 = —1

27/53

Let’s try building an invertible 4-bit S-box from a power function

We take p=2,n=14

(algebraic degree in Fj is Hamming weight of binary representation of e)
¢(2* — 1) = 8 candidate exponents in two classes: {1,2,4,8} and {7,14,13,11}

® exponents in {1,2,4,8} give linear power functions

Let us take 14

® additional symmetry: involution because 14°> mod 15 = 1 so 14 = —1
® represents the mapping that takes the multiplicative inverse and maps 0 to 0

27/53

Let’s try building an invertible 4-bit S-box from a power function

We take p=2,n=14

(algebraic degree in Fj is Hamming weight of binary representation of e)

¢(2* — 1) = 8 candidate exponents in two classes: {1,2,4,8} and {7,14,13,11}

® exponents in {1,2,4,8} give linear power functions

Let us take 14

® additional symmetry: involution because 14°> mod 15 = 1 so 14 = —1

® represents the mapping that takes the multiplicative inverse and maps 0 to 0

Multiplicative inverse mapping is often called the Kaisa S-box [Nyberg, EC '93]

27/53

DP-table (aka scaled DDT) of y < x ! in [}

/8|1 2 3 4 5 7 8 a b ¢ e f
1 1 1 1 1 1
2 1 1 1 1 1 1
8 1 1 1 1 1 1
4 1 1 1 1 2 1 1
5 1 1 1 1 2 1 1
6 |1 1 1 1 1 1
711 1 1 2 1 1 1
8 1 1 1 1 1
9 (1 1 1 1 1
a 1 1 1 1 2 1 1
b |1 1 1 1 1 1
[¢ 1 1 1 1 1 1
d| 1 1 1 1 1 1
e |1 2 1 1 1 1 1
f 1 1 1 1 2 1 1

28/53

DP-table of x «+— x~! in [}, reordered

1/8 1 a a2 a3 Oé4 055 aﬁ a? 068 Oég alO all a12 a13 a14
1 1 1 1 1 1 1
a 1 1 1 1 1 1
a? 1 1 1 1 1 1 2
ol 1 1 1 1 1 1
ot 1 1 1 1 1 1
a® |1 1 1 1 1 1 2
ab 1 1 1 1 1 1
o |1 1 1 1 1 2 1
ab 1 1 1 1 2 1 1
o’ 11 1 1 2 1 1
a1 1 1 1 2 1 1
ot |1 1 1 1 1 1
at? 1 1 2 1 1 1 1
a® 1 1 2 1 1 1 1
a1 2 1 1 1 1 1

29/53

<t N
B
=
)

X
<
=
(]
=
<
-
©
9
(]
Q
(7]
vl
o
(y+]
N
X
=
-
(1]
=
=
2
=)
8
()
b
Y
(=]
@]

1/4

30/53

Correlation matrix of x < x~! in F3, reordered

1/4 1 ﬁ /82 53 54 ﬁS 56 67 58 /89 BIO Bll 612 613 514

1 T I N | 11 2 1

gl-1 -1 1 a1 2 1 101 2 1

g2l-1 1 -1 2 1 101 2 1 -1
g2l1 1 2 1 11 1 1 -1
gt 1 2 1 -1 1 1 -1 1
B° 1 | 1 . | 1 =il
Jix 101 2 1 1 -1 1 -1

B8’ 101 2 1 | 1 il

g1 1 2 1 1011 -1 1
g1 2 1 101 1 -1 1 -1
g 1 1 -1 1 -1 -1

L 1 1 1 1 -1 2 -1

L2 ! R -1 1

L 4 4 1 S 2 9 -1 1 1
s 1 -1 1 -1 2 1 11 1

Now let’s try building a 5-bit S-box

32/53

Now let’s try building a 5-bit S-box

® (2% — 1) = 30 candidate exponents in six classes

32/53

Now let’s try building a 5-bit S-box

® (2% — 1) = 30 candidate exponents in six classes

o Classes represented by {1,3,21,5,25,30}

32/53

Now let’s try building a 5-bit S-box

® (2% — 1) = 30 candidate exponents in six classes
o Classes represented by {1,3,21,5,25,30}

® 1 is linear

32/53

Now let’s try building a 5-bit S-box

® (2% — 1) = 30 candidate exponents in six classes
o Classes represented by {1,3,21,5,25,30}

® 1 is linear

® 30 = —1: multiplicative inverse

32/53

Now let’s try building a 5-bit S-box

® (2% — 1) = 30 candidate exponents in six classes
o Classes represented by {1,3,21,5,25,30}

® 1 is linear
® 30 = —1: multiplicative inverse
® 3 and 21 are each other’s inverses

32/53

Now let’s try building a 5-bit S-box

® (2% — 1) = 30 candidate exponents in six classes

o Classes represented by {1,3,21,5,25,30}

® 1 is linear
® 30 = —1: multiplicative inverse
® 3 and 21 are each other’s inverses

5 and 25 are each other’s inverses

e Multiplicative inverse:

32/53

Now let’s try building a 5-bit S-box

® (2% — 1) = 30 candidate exponents in six classes
o Classes represented by {1,3,21,5,25,30}

1 is linear

® 30 = —1: multiplicative inverse
® 3 and 21 are each other’s inverses
® 5 and 25 are each other’s inverses

e Multiplicative inverse:
® DP(a,b) =27*if Tr((ab)™!) =0 or b= a~! and 0 otherwise

32/53

Now let’s try building a 5-bit S-box

® (2% — 1) = 30 candidate exponents in six classes
o Classes represented by {1,3,21,5,25,30}

1 is linear

® 30 = —1: multiplicative inverse
® 3 and 21 are each other's inverses
® 5 and 25 are each other’s inverses
e Multiplicative inverse:
® DP(a,b) =27*if Tr((ab)™!) =0 or b= a~! and 0 otherwise
® correlation matrix: C(a, b) =27 3x with x € {-2,-1,0,1,2,3} (as found in
[Carlet et al., 2010])

32/53

Now let’s try building a 5-bit S-box

® (2% — 1) = 30 candidate exponents in six classes
o Classes represented by {1,3,21,5,25,30}

1 is linear

® 30 = —1: multiplicative inverse
® 3 and 21 are each other’s inverses
® 5 and 25 are each other’s inverses

® Multiplicative inverse:
® DP(a,b) =27*if Tr((ab)™!) =0 or b= a~! and 0 otherwise
® correlation matrix: C(a, b) =27 3x with x € {-2,-1,0,1,2,3} (as found in
[Carlet et al., 2010])
® DP table has 16 non-zero entries per row, correlation matrix 26

32/53

Gold functions

® Exponents e = 3 and e =5 give S-boxes with algebraic degree 2 in 5

33/53

Gold functions

® Exponents e = 3 and e =5 give S-boxes with algebraic degree 2 in 5
® Power functions with exponents e = 2/ + 1 are called Gold functions [Gold 6]

33/53

Gold functions

® Exponents e = 3 and e =5 give S-boxes with algebraic degree 2 in 5
® Power functions with exponents e = 2/ + 1 are called Gold functions [Gold 6]
® For odd n they have (as found in [Carlet et al., 2010])

33/53

Gold functions

® Exponents e = 3 and e =5 give S-boxes with algebraic degree 2 in 5
® Power functions with exponents e = 2/ + 1 are called Gold functions [Gold 6]
® For odd n they have (as found in [Carlet et al., 2010])

® DP(a, b) =217 if Tr(ba—¢) = 1 and DP(a, b) = 0 otherwise

33/53

Gold functions

® Exponents e = 3 and e =5 give S-boxes with algebraic degree 2 in 5
® Power functions with exponents e = 2/ + 1 are called Gold functions [Gold 6]
® For odd n they have (as found in [Carlet et al., 2010])

® DP(a, b) =217 if Tr(ba—¢) = 1 and DP(a, b) = 0 otherwise

® |P(a,b) =2'""if Tr(ab=9) =1 and LP(a, b) = 0 otherwise

33/53

Gold functions

Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in Fj

Power functions with exponents e = 2/ + 1 are called Gold functions [Gold '68]
For odd n they have (as found in [Carlet et al., 2010])

® DP(a, b) =217 if Tr(ba—¢) = 1 and DP(a, b) = 0 otherwise

® |P(a,b) =2'""if Tr(ab=9) =1 and LP(a, b) = 0 otherwise
Due to the linearity of the trace function:

® Qutput diff b compatible with input diff a form an affine space
® |nput masks a compatible with output mask b form an affine space

33/53

Gold functions

® Exponents e = 3 and e =5 give S-boxes with algebraic degree 2 in 5
® Power functions with exponents e = 2/ + 1 are called Gold functions [Gold 6]
® For odd n they have (as found in [Carlet et al., 2010])
® DP(a, b) =217 if Tr(ba—¢) = 1 and DP(a, b) = 0 otherwise
® |P(a,b) =2'""if Tr(ab=9) =1 and LP(a, b) = 0 otherwise
® Due to the linearity of the trace function:
® Qutput diff b compatible with input diff a form an affine space
® |nput masks a compatible with output mask b form an affine space
® All valid differentials and approximations (a, b) have weight n — 1

33/53

Gold functions

® Exponents e = 3 and e =5 give S-boxes with algebraic degree 2 in 5
® Power functions with exponents e = 2/ + 1 are called Gold functions [Gold 6]
For odd n they have (as found in [Carlet et al., 2010])
® DP(a, b) =217 if Tr(ba—¢) = 1 and DP(a, b) = 0 otherwise
® |P(a,b) =2'""if Tr(ab=9) =1 and LP(a, b) = 0 otherwise
Due to the linearity of the trace function:

® Qutput diff b compatible with input diff a form an affine space
® |nput masks a compatible with output mask b form an affine space
® All valid differentials and approximations (a, b) have weight n — 1

Still, in general
® Input diff a compatible with output diff b form no affine space
® Qutput masks b compatible with input mask a form no affine space

33/53

Gold functions

® Exponents e = 3 and e =5 give S-boxes with algebraic degree 2 in 5
® Power functions with exponents e = 2/ + 1 are called Gold functions [Gold 6]
For odd n they have (as found in [Carlet et al., 2010])
® DP(a, b) =217 if Tr(ba—¢) = 1 and DP(a, b) = 0 otherwise
® |P(a,b) =2'""if Tr(ab=9) =1 and LP(a, b) = 0 otherwise
Due to the linearity of the trace function:

® Qutput diff b compatible with input diff a form an affine space
® |nput masks a compatible with output mask b form an affine space
® All valid differentials and approximations (a, b) have weight n — 1

Still, in general
® Input diff a compatible with output diff b form no affine space
® Qutput masks b compatible with input mask a form no affine space
® Propagation of masks follows a different rule than propagation of differences
33/53

Can we do better than Gold?

® |t would be great if

® propagation of masks follows the same rule than propagation of differences
® forward and backward propagation would be the same or at least similar

34/53

Can we do better than Gold?

® |t would be great if
® propagation of masks follows the same rule than propagation of differences
® forward and backward propagation would be the same or at least similar
® Taking n=3 and d = e = 6 = —1 results in a Golden Kaisa function
® DP(a, b) =272 if Tr(ab) = 1 and DP(a, b) = 0 otherwise
® |P(a,b) =272 if Tr(ab) = 1 and LP(a, b) = 0 otherwise

34/53

Can we do better than Gold?

® |t would be great if
® propagation of masks follows the same rule than propagation of differences
® forward and backward propagation would be the same or at least similar
® Taking n=3 and d = e = 6 = —1 results in a Golden Kaisa function
® DP(a, b) =272 if Tr(ab) = 1 and DP(a, b) = 0 otherwise
® |P(a,b) =272 if Tr(ab) = 1 and LP(a, b) = 0 otherwise
® y < x%in Fys has following properties

® forward, backward, differential and linear propagation are all the same
® compatible masks/differences form affine spaces

34/53

Can we do better than Gold?

® |t would be great if
® propagation of masks follows the same rule than propagation of differences
® forward and backward propagation would be the same or at least similar
® Taking n=3 and d = e = 6 = —1 results in a Golden Kaisa function
® DP(a, b) =272 if Tr(ab) = 1 and DP(a, b) = 0 otherwise
® |P(a,b) =272 if Tr(ab) = 1 and LP(a, b) = 0 otherwise
® y < x%in Fys has following properties
® forward, backward, differential and linear propagation are all the same

® compatible masks/differences form affine spaces

® This works for no other size n or exponent e!

34/53

Can we do better than Gold?

® |t would be great if

® propagation of masks follows the same rule than propagation of differences
® forward and backward propagation would be the same or at least similar

Taking n =3 and d = e = 6 = —1 results in a Golden Kaisa function
® DP(a, b) =272 if Tr(ab) = 1 and DP(a, b) = 0 otherwise
® |P(a,b) =272 if Tr(ab) = 1 and LP(a, b) = 0 otherwise

y + x% in Fys has following properties

® forward, backward, differential and linear propagation are all the same
® compatible masks/differences form affine spaces

This works for no other size n or exponent e!

When choosing the normal basis, Tr(ab) = 1 translates to agbg + a1by + axbp, =1

34/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3

35/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3

® due to small size its diff /approx have weight of only w = 2

35/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3
® due to small size its diff /approx have weight of only w = 2
® implies permutation width has to be a multiple of 3

35/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3
® due to small size its diff /approx have weight of only w = 2
® implies permutation width has to be a multiple of 3

® What if we want to use larger S-boxes?

35/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3
® due to small size its diff /approx have weight of only w = 2
® implies permutation width has to be a multiple of 3

® What if we want to use larger S-boxes?

® for odd size there is more choice than for even

35/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3
® due to small size its diff /approx have weight of only w = 2
® implies permutation width has to be a multiple of 3
® What if we want to use larger S-boxes?
® for odd size there is more choice than for even
® computational cost of power functions increases sharply with width

35/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3
® due to small size its diff /approx have weight of only w = 2
® implies permutation width has to be a multiple of 3
® What if we want to use larger S-boxes?
® for odd size there is more choice than for even
® computational cost of power functions increases sharply with width

® Rijndael S-box

35/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3
® due to small size its diff /approx have weight of only w = 2
® implies permutation width has to be a multiple of 3
® What if we want to use larger S-boxes?
® for odd size there is more choice than for even
® computational cost of power functions increases sharply with width

® Rijndael S-box
°* w>06

35/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3
® due to small size its diff /approx have weight of only w = 2
® implies permutation width has to be a multiple of 3
® What if we want to use larger S-boxes?
® for odd size there is more choice than for even
® computational cost of power functions increases sharply with width
® Rijndael S-box
°* w>06
® 10 xor and 4 and/or per bit [Boyar & Peralta 2010][Stoffelen & Schwabe 2016]

35/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3
® due to small size its diff /approx have weight of only w = 2
® implies permutation width has to be a multiple of 3
® What if we want to use larger S-boxes?
® for odd size there is more choice than for even
® computational cost of power functions increases sharply with width
® Rijndael S-box
°* w>06
® 10 xor and 4 and/or per bit [Boyar & Peralta 2010][Stoffelen & Schwabe 2016]
® Golden Kaisa S-box

°* w=2

35/53

On the Golden Kaisa S-box

® Limitation is mostly its width of 3
® due to small size its diff /approx have weight of only w = 2
® implies permutation width has to be a multiple of 3
® What if we want to use larger S-boxes?
® for odd size there is more choice than for even
® computational cost of power functions increases sharply with width
® Rijndael S-box
°* w>06
® 10 xor and 4 and/or per bit [Boyar & Peralta 2010][Stoffelen & Schwabe 2016]
® Golden Kaisa S-box

°* w=2

35/53

A family of S-boxes Y, [Daemen, WIC 1990]

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (3i+1 mod n T 1)3i+2 mod n

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (3i+1 mod n T 1)3i+2 mod n

® |nvertible if n is odd

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (3i+1 mod n T 1)3i+2 mod n

® |nvertible if n is odd

® For n > 3 a lot of symmetry is lost

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (3i+1 mod n T 1)3i+2 mod n

® Invertible if n is odd
® For n > 3 a lot of symmetry is lost

® inverse is more complex and has higher degree: (n+1)/2

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (3i+1 mod n T 1)3i+2 mod n

® Invertible if nis odd

® For n > 3 a lot of symmetry is lost
® inverse is more complex and has higher degree: (n+1)/2
® backwards propagation does not give affine spaces

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (ai-i-l mod n T 1)3i+2 mod n

® Invertible if n is odd
® For n > 3 a lot of symmetry is lost

® inverse is more complex and has higher degree: (n+1)/2
® backwards propagation does not give affine spaces

® weight increases with Hamming weight of differences/masks

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (ai-i-l mod n T 1)3i+2 mod n

® Invertible if nis odd
® For n > 3 a lot of symmetry is lost

® inverse is more complex and has higher degree: (n+1)/2
backwards propagation does not give affine spaces

weight increases with Hamming weight of differences/masks
correlation matrix has fewer zeroes than DP table

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (ai-i-l mod n T 1)3i+2 mod n

® |nvertible if n is odd
® For n > 3 a lot of symmetry is lost
® inverse is more complex and has higher degree: (n+1)/2

backwards propagation does not give affine spaces

® weight increases with Hamming weight of differences/masks
® correlation matrix has fewer zeroes than DP table

® Popular choice is n = 5: Keccak and Ascon

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (ai-i-l mod n T 1)3i+2 mod n

Invertible if n is odd

® For n > 3 a lot of symmetry is lost

® inverse is more complex and has higher degree: (n+1)/2

® backwards propagation does not give affine spaces

® weight increases with Hamming weight of differences/masks
® correlation matrix has fewer zeroes than DP table

Popular choice is n = 5: Keccak and Ascon

® Extreme: in Subterranean n = 257

36/53

A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (ai-i-l mod n T 1)3i+2 mod n

Invertible if n is odd

For n > 3 a lot of symmetry is lost

® inverse is more complex and has higher degree: (n+1)/2
® backwards propagation does not give affine spaces
® weight increases with Hamming weight of differences/masks
® correlation matrix has fewer zeroes than DP table
Popular choice is n = 5: Keccak and Ascon

Extreme: in Subterranean n = 257

Excellent trade-off between implementation cost and non-linearity

36/53

The linear layer

Wide trail strategy

® linear layer split in mixing layer and shuffle

37/53

Wide trail strategy

® linear layer split in mixing layer and shuffle

® Cell-oriented (aligned)

37/53

Wide trail strategy

® linear layer split in mixing layer and shuffle
® Cell-oriented (aligned)
® state is an array of cells, defined by the S-box layer: typically bytes or nibbles

37/53

Wide trail strategy

® linear layer split in mixing layer and shuffle
® Cell-oriented (aligned)

® state is an array of cells, defined by the S-box layer: typically bytes or nibbles
® mixlayer operates on super-cells: sub-arrays of cells

37/53

Wide trail strategy

® linear layer split in mixing layer and shuffle
® Cell-oriented (aligned)

® state is an array of cells, defined by the S-box layer: typically bytes or nibbles
® mixlayer operates on super-cells: sub-arrays of cells
® shuffle moves cells to different super-cells

37/53

Wide trail strategy

® linear layer split in mixing layer and shuffle
® Cell-oriented (aligned)

® state is an array of cells, defined by the S-box layer: typically bytes or nibbles
® mixlayer operates on super-cells: sub-arrays of cells

® shuffle moves cells to different super-cells

® analysis and specification is natural at the cell level

37/53

Wide trail strategy

® linear layer split in mixing layer and shuffle
® Cell-oriented (aligned)

® state is an array of cells, defined by the S-box layer: typically bytes or nibbles
® mixlayer operates on super-cells: sub-arrays of cells

® shuffle moves cells to different super-cells

® analysis and specification is natural at the cell level

® Bit-oriented (non-aligned)

37/53

Wide trail strategy

® linear layer split in mixing layer and shuffle

® Cell-oriented (aligned)
® state is an array of cells, defined by the S-box layer: typically bytes or nibbles
® mixlayer operates on super-cells: sub-arrays of cells
® shuffle moves cells to different super-cells
® analysis and specification is natural at the cell level
® Bit-oriented (non-aligned)

® three layers partition the statebits in different ways

37/53

Wide trail strategy

® linear layer split in mixing layer and shuffle
® Cell-oriented (aligned)

® state is an array of cells, defined by the S-box layer: typically bytes or nibbles
® mixlayer operates on super-cells: sub-arrays of cells

shuffle moves cells to different super-cells
® analysis and specification is natural at the cell level

® Bit-oriented (non-aligned)
® three layers partition the statebits in different ways
® analysis and specification is natural at the bit level

37/53

Square approach [Daemen & Rijmen 1997]

38/53

Square approach [Daemen & Rijmen 1997]

® State as a 4 by 4 array of bytes

38/53

Square approach [Daemen & Rijmen 1997]

® State as a 4 by 4 array of bytes

® Powerful S-box operating on individual bytes

38/53

Square approach [Daemen & Rijmen 1997]

® State as a 4 by 4 array of bytes
® Powerful S-box operating on individual bytes

® Mixing layer operating in parallel on each 4-byte column

38/53

Square approach [Daemen & Rijmen 1997]

® State as a 4 by 4 array of bytes
® Powerful S-box operating on individual bytes
® Mixing layer operating in parallel on each 4-byte column

® Multiplication in Fys with a 4 x 4 matrix

38/53

Square approach [Daemen & Rijmen 1997]

® State as a 4 by 4 array of bytes
® Powerful S-box operating on individual bytes
® Mixing layer operating in parallel on each 4-byte column

® Multiplication in Fys with a 4 x 4 matrix
® Matrix is MDS, has branch number 5: at least 5 active bytes before and after

38/53

Square approach [Daemen & Rijmen 1997]

® State as a 4 by 4 array of bytes
® Powerful S-box operating on individual bytes
® Mixing layer operating in parallel on each 4-byte column

® Multiplication in Fys with a 4 x 4 matrix
® Matrix is MDS, has branch number 5: at least 5 active bytes before and after

® Matrix symmetry: it is circulant

38/53

Square approach [Daemen & Rijmen 1997]

® State as a 4 by 4 array of bytes
® Powerful S-box operating on individual bytes
® Mixing layer operating in parallel on each 4-byte column

® Multiplication in Fys with a 4 x 4 matrix
® Matrix is MDS, has branch number 5: at least 5 active bytes before and after

® Matrix symmetry: it is circulant
® Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

38/53

Square approach [Daemen & Rijmen 1997]

State as a 4 by 4 array of bytes

Powerful S-box operating on individual bytes

Mixing layer operating in parallel on each 4-byte column
® Multiplication in Fys with a 4 x 4 matrix
® Matrix is MDS, has branch number 5: at least 5 active bytes before and after
® Matrix symmetry: it is circulant
® Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

Shuffle moving bytes of a column to different columns: here transposing the array

38/53

Square approach [Daemen & Rijmen 1997]

® State as a 4 by 4 array of bytes
® Powerful S-box operating on individual bytes
® Mixing layer operating in parallel on each 4-byte column
® Multiplication in Fys with a 4 x 4 matrix
® Matrix is MDS, has branch number 5: at least 5 active bytes before and after
® Matrix symmetry: it is circulant
® Transformation symmetry: multi-permutation where any 4 entries out of 8
can be chosen
® Shuffle moving bytes of a column to different columns: here transposing the array
® Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53

Generalizations of and advances in the square approach

39/53

Generalizations of and advances in the square approach

Function shape cells width type
Rijndael [Daemen & Rijmen, 1998] 4 x (4 to 8) bytes 128 to 256 block
Whirlpool [Rijmen & Barreto, 2000] 82 bytes 512 block
Groest| [Rechberger et al., 2008] 82 bytes 512 perm
ECHO [Benadijila et al., 2008] 44 bytes 2048 perm
JH [Wu, 2008] pe nibbles 1024 perm
Primates [Andreeva et al., 2014] (50r7)x8 5-bit 200 or 280 perm
Saturnin [Canteaut et al., 2019] 43 nibbles 256 block

39/53

Generalizations of and advances in the square approach

Function shape cells width type
Rijndael [Daemen & Rijmen, 1998] 4 x (4 to 8) bytes 128 to 256 block
Whirlpool [Rijmen & Barreto, 2000] 82 bytes 512 block
Groest| [Rechberger et al., 2008] 82 bytes 512 perm
ECHO [Benadijila et al., 2008] 44 bytes 2048 perm
JH [Wu, 2008] pe nibbles 1024 perm
Primates [Andreeva et al., 2014] (50r7)x8 5-bit 200 or 280 perm
Saturnin [Canteaut et al., 2019] 43 nibbles 256 block

Advances in building efficient MDS matrices: +60 publications at crypto venues

39/53

Generalizations of and advances in the square approach

Function shape cells width type
Rijndael [Daemen & Rijmen, 1998] 4 x (4 to 8) bytes 128 to 256 block
Whirlpool [Rijmen & Barreto, 2000] 82 bytes 512 block
Groest| [Rechberger et al., 2008] 82 bytes 512 perm
ECHO [Benadijila et al., 2008] 44 bytes 2048 perm
JH [Wu, 2008] pe nibbles 1024 perm
Primates [Andreeva et al., 2014] (50r7)x8 5-bit 200 or 280 perm
Saturnin [Canteaut et al., 2019] 43 nibbles 256 block

Advances in building efficient MDS matrices: +60 publications at crypto venues

® mostly focusing on 4 x 4 matrices operating on bytes or nibbles

39/53

Generalizations of and advances in the square approach

Function shape cells width type
Rijndael [Daemen & Rijmen, 1998] 4 x (4 to 8) bytes 128 to 256 block
Whirlpool [Rijmen & Barreto, 2000] 82 bytes 512 block
Groest| [Rechberger et al., 2008] 82 bytes 512 perm
ECHO [Benadijila et al., 2008] 44 bytes 2048 perm
JH [Wu, 2008] pe nibbles 1024 perm
Primates [Andreeva et al., 2014] (50r7)x8 5-bit 200 or 280 perm
Saturnin [Canteaut et al., 2019] 43 nibbles 256 block

Advances in building efficient MDS matrices: +60 publications at crypto venues

® mostly focusing on 4 x 4 matrices operating on bytes or nibbles
® goal: reduce the total xor count or xor depth

39/53

Generalizations of and advances in the square approach

Function shape cells width type
Rijndael [Daemen & Rijmen, 1998] 4 x (4 to 8) bytes 128 to 256 block
Whirlpool [Rijmen & Barreto, 2000] 82 bytes 512 block
Groest| [Rechberger et al., 2008] 82 bytes 512 perm
ECHO [Benadijila et al., 2008] 44 bytes 2048 perm
JH [Wu, 2008] pe nibbles 1024 perm
Primates [Andreeva et al., 2014] (50r7)x8 5-bit 200 or 280 perm
Saturnin [Canteaut et al., 2019] 43 nibbles 256 block

Advances in building efficient MDS matrices: +60 publications at crypto venues

® mostly focusing on 4 x 4 matrices operating on bytes or nibbles
® goal: reduce the total xor count or xor depth

® insight: cost increases sharply with MDS matrix dimension
39/53

The best square-approach design: the block cipher Saturnin

40/53

The best square-approach design: the block cipher Saturnin

® S_box

40/53

The best square-approach design: the block cipher Saturnin

® S_box
® A-bit S-box instead of 8-bit one

40/53

The best square-approach design: the block cipher Saturnin

® S_box
® /4 bit S-box instead of 8-bit one
® no power function but w > 2

40/53

The best square-approach design: the block cipher Saturnin

® S-box
® A-bit S-box instead of 8-bit one
® no power function but w > 2
® cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES

40/53

The best square-approach design: the block cipher Saturnin

® S-box
® A-bit S-box instead of 8-bit one
® no power function but w > 2
® cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES

® MDS matrix in mixlayer

40/53

The best square-approach design: the block cipher Saturnin

® S-box
® A-bit S-box instead of 8-bit one
® no power function but w > 2
® cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES

® MDS matrix in mixlayer

® 4 x 4 operating on elements of Fy4

40/53

The best square-approach design: the block cipher Saturnin

® S-box

® A-bit S-box instead of 8-bit one

® no power function but w > 2

® cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
® MDS matrix in mixlayer

® 4 x 4 operating on elements of Fy4
® Cost 2,25 xor per bit instead of 3 xor per bit for AES

40/53

The best square-approach design: the block cipher Saturnin

® S-box
® A-bit S-box instead of 8-bit one
® no power function but w > 2
® cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES

® MDS matrix in mixlayer

® 4 x 4 operating on elements of Fy4
® Cost 2,25 xor per bit instead of 3 xor per bit for AES

® Global structure

40/53

The best square-approach design: the block cipher Saturnin

® S-box

® A-bit S-box instead of 8-bit one

® no power function but w > 2

® cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
® MDS matrix in mixlayer

® 4 x 4 operating on elements of Fy4
® Cost 2,25 xor per bit instead of 3 xor per bit for AES

® Global structure

® Cube with side 4 of elements of [Fys

40/53

The best square-approach design: the block cipher Saturnin

® S-box

® A-bit S-box instead of 8-bit one

® no power function but w > 2

® cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
® MDS matrix in mixlayer

® 4 x 4 operating on elements of Fy4
® Cost 2,25 xor per bit instead of 3 xor per bit for AES

® Global structure

® Cube with side 4 of elements of [Fys
® Two different shuffles in rounds with index 1 mod 4 and 3 mod 4

40/53

The best square-approach design: the block cipher Saturnin

® S-box

® A-bit S-box instead of 8-bit one

® no power function but w > 2

® cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
® MDS matrix in mixlayer

® 4 x 4 operating on elements of Fy4

® Cost 2,25 xor per bit instead of 3 xor per bit for AES
® Global structure

® Cube with side 4 of elements of [Fys
® Two different shuffles in rounds with index 1 mod 4 and 3 mod 4
® Any 8-round trail has at least 53 = 125 active S-boxes

40/53

Showdown Saturnin vs AES (not counting round key addition)

41/53

Showdown Saturnin vs AES (not counting round key addition)

AES
cost min. trail
rounds | xor | and/or weight
1] 14 4 6
2|28 8 30
3] 42 12 56
4 | 56 16 150

41/53

Saturnin
cost min. trail
rounds | xor | and/or weight
1] 3,75 1,5 2
2|1 75 3 10
311,25 4,5 18
4| 15 6 50
5| 18,75 7,5 82
6| 22,5 9 90
712625 | 105 122
8| 30 12 250

Limitations of the Square approach

42/53

Limitations of the Square approach

Hourglass trail profile effect:

42/53

Limitations of the Square approach

Hourglass trail profile effect:

® You can have light S-boxes or light MDS matrices or few rounds

42/53

Limitations of the Square approach

Hourglass trail profile effect:

® You can have light S-boxes or light MDS matrices or few rounds

® . but not all at the same time

42/53

Limitations of the Square approach

Hourglass trail profile effect:

® You can have light S-boxes or light MDS matrices or few rounds
® . .but not all at the same time

® This is because sparse states propagate to sparse in both directions

42/53

Limitations of the Square approach

Hourglass trail profile effect:

® You can have light S-boxes or light MDS matrices or few rounds
® . .but not all at the same time
® This is because sparse states propagate to sparse in both directions

® Example: 16 —4 — 1 — 4 — 16 profile

42/53

Limitations of the Square approach

Hourglass trail profile effect:

® You can have light S-boxes or light MDS matrices or few rounds
® . .but not all at the same time
® This is because sparse states propagate to sparse in both directions

® Example: 16 —4 — 1 — 4 — 16 profile
Clustering and clipping in the AES superbox:

® massive clustering of trails in differentials [Daemen & Rijmen, SCN 2006]

¢ clipping: DP(Q) strongly deviates from EDP(Q) for most trails [Daemen & Rijmen,
IET 2007]

42/53

Clustering and clipping in the Saturnin superbox, illustrated

Much less clustering and clipping than in AES thanks to smaller S-box, still significant

SATURNIN

Log2(%pairs)
LoLoL o

I
-
o

—— Differentials with DP =2~"
—— Trails with EDP=27"

Trails with DP = 2%
—— Differentials with EDP = 2%

I | I
NN e
N © ®

4 6 8 10 12 14 16 18 20 22 24

Weight

graph courtesy of Giovanni Uchua de Assis

43/53

Bit-oriented mixing

® |n general it is just a binary matrix M
® operating on the full state, or
® operating in parallel on parts of the state

44/53

Bit-oriented mixing

® |n general it is just a binary matrix M

® operating on the full state, or

® operating in parallel on parts of the state
® Symmetry: make M

44/53

Bit-oriented mixing

® |n general it is just a binary matrix M

® operating on the full state, or

® operating in parallel on parts of the state
® Symmetry: make M circulant

44/53

Bit-oriented mixing

® |n general it is just a binary matrix M

® operating on the full state, or

® operating in parallel on parts of the state
® Symmetry: make M circulant

® Polynomial representation of input, output and matrix

b(X) « 6(X)a(X) mod 1 + X™

44/53

Bit-oriented mixing

® |n general it is just a binary matrix M

® operating on the full state, or

® operating in parallel on parts of the state
® Symmetry: make M circulant

® Polynomial representation of input, output and matrix

b(X) « 6(X)a(X) mod 1 + X™

e Invertible if 8(X) is coprime to 1 + X

44/53

Bit-oriented mixing

® |n general it is just a binary matrix M
® operating on the full state, or
® operating in parallel on parts of the state

Symmetry: make M circulant

Polynomial representation of input, output and matrix

b(X) « 6(X)a(X) mod 1 + X™

Invertible if 6(X) is coprime to 1 + X™
Often one takes a multiplication polynomial that is a trinomial

44/53

Bit-oriented mixing

® |n general it is just a binary matrix M
® operating on the full state, or
® operating in parallel on parts of the state

Symmetry: make M circulant

Polynomial representation of input, output and matrix

b(X) + 6(X)a(X) mod 1+ X

Invertible if 6(X) is coprime to 1 + X™
Often one takes a multiplication polynomial that is a trinomial

Unless carefully chosen, inverse of 6(X) is dense
® no problem if the inverse of the permutation is not needed
® has an advantage for trail bounds
44/53

Some primitives using bit-oriented circulant mixing

Function length # t non-lin. b shuffle
Cellhash [Daemen, AC 1991] 257 3 X257 257 multiplicative
3Way [Daemen, 1993] 12 7 x3 96 2 row shift steps
BaseKing [Daemen, 1994] 12 7 x3 192 2 row shift steps
Panama [Daemen & Clapp, 1997] 17 3 x17 544 1 row shift step
SHA-256 [NIST, 2001] 32 3 ARX 256 -
SHA-512 [NIST. 2001] 64 3 ARX 512 -
RadioGatun [Bertoni et al., 2006] 19 3 X19 608 1 row shift step
Ascon [Dobraunig et al., 2019] 64 3 x5+ 320 different m(x)

45/53

Ascon-p Round function

46/53

Ascon-p Round function

® 320-bit state: 5 rows Xxp, ..., x4 and 64 columns

® Round function R = p; o ps o pc

(a) Round constant addition pc

(b) Substitution layer ps with 5-bit S-box S(x)

(c) Linear layer with 64-bit diffusion functions ¥;(x;)

figure by Ascon team

46/53

Operations dedicated to mixing in Ascon-p

Xo (‘) D CP Xo
e ’é*% /\‘u CS - X1 X < X0 D (x0 =>> 19) @ (xp >> 28)
ol bl 1’4}’<ﬁ/j oex, 1@ (3> 61) @ (> 39)
N 1 /‘f ! L)@ e x0® e 1)@ (o> 6)
I /Y x3 < x3 D (x3>>10) @ (x3 > 17)
X4 T > X4 X = Xa D (x4>> T7)D (xa > 41)
6 bitwise XOR 10 bitwise XOR + 10 cyclic shifts

47/53

Showdown Ascon-p vs Saturnin (not counting round key/constant addition)

48/53

Showdown Ascon-p vs Saturnin (not counting round key/constant addition)

Saturnin Ascon

+# cost min. trail +# cost min. trail weight
rounds | xor | and/or weight rounds | xor | and/or diff lin

1] 3,75 1,5 2 1] 42 1 2 2

21 75 3 10 2| 84 2 8 8

3] 11,25 4.5 18 31126 3 40 28

4| 15 6 50 4| 16,8 4 > 86 > 88

5| 18,75 7,5 82 5| 21 5 > 100 > 96

6| 22,5 9 90 6 | 25,2 6 >129 | >132

712625 | 105 122

8| 30 12 250

48/53

Another type of mixing layer: column parity mixers (Keccak-f and Xoodoo)

l column parity T O-effect

%5

49/53

Another type of mixing layer: column parity mixers (Keccak-f and Xoodoo)

column parity T O-effect

%

49/53

Another type of mixing layer: column parity mixers (Keccak-f and Xoodoo)

l column parity T O-effect

f B

49/53

Another type of mixing layer: column parity mixers (Keccak-f and Xoodoo)

T O-effect column parity

T %

® Good average diffusion, identity for states in kernel

e Cost: 2 xor per bit

49/53

Showdown Xoodoo vs Ascon-p

50/53

Showdown Xoodoo vs Ascon-p

Ascon Xoodoo
A cost min. trail weight A cost min. trail
rounds | xor | and/or diff lin rounds | xor | and/or weight
1] 42 1 2 2 1] 3 1 2
2| 84 2 8 8 2| 6 2 8
31126 3 40 28 319 3 36
4116,8 4 > 86 > 88 41 12 4 80
5| 21 5 > 100 > 96 5115 5 > 08
6 | 25,2 6 >129 | >132 6| 18 6 > 132

50/53

Trail clustering and independence of round differentials in Xoodoo

® We investigated clipping and clustering in Xoodoo

51/53

Trail clustering and independence of round differentials in Xoodoo

® We investigated clipping and clustering in Xoodoo

® 3-round trails [Bordes et al., CRYPTO 2021]

51/53

Trail clustering and independence of round differentials in Xoodoo

® We investigated clipping and clustering in Xoodoo
® 3-round trails [Bordes et al., CRYPTO 2021]

® we have checked all differential and linear trails with weight up to 50

51/53

Trail clustering and independence of round differentials in Xoodoo

® We investigated clipping and clustering in Xoodoo
® 3-round trails [Bordes et al., CRYPTO 2021]

® we have checked all differential and linear trails with weight up to 50
® cach of them is alone in its differential /linear approximation

51/53

Trail clustering and independence of round differentials in Xoodoo

® We investigated clipping and clustering in Xoodoo

® 3-round trails [Bordes et al., CRYPTO 2021]

® we have checked all differential and linear trails with weight up to 50
® cach of them is alone in its differential /linear approximation
® for each differential trails we have: DP(Q) = EDP(Q)

51/53

Trail clustering and independence of round differentials in Xoodoo

® We investigated clipping and clustering in Xoodoo
® 3-round trails [Bordes et al., CRYPTO 2021]

® we have checked all differential and linear trails with weight up to 50
® cach of them is alone in its differential /linear approximation
® for each differential trails we have: DP(Q) = EDP(Q)
® 4-round trails: work in progress
® 4 trails of weight 80
® 2 of these cluster into differential with EDP(a, b) = 2~ 7°
® dependence of round differentials: we're starting

51/53

® Develop a family of permutations with varying widths

52/53

® Develop a family of permutations with varying widths

® Goals:

52/53

® Develop a family of permutations with varying widths
® Goals:

® no trails with weight below 128 at cost 12 xor plus 4 and per bit

52/53

® Develop a family of permutations with varying widths

® Goals:

no trails with weight below 128 at cost 12 xor plus 4 and per bit
no noticeable clustering

no noticeable dependencies between round differentials

attention for resistance against summation attacks

52/53

® Develop a family of permutations with varying widths

® Goals:

no trails with weight below 128 at cost 12 xor plus 4 and per bit
no noticeable clustering

no noticeable dependencies between round differentials

attention for resistance against summation attacks

® Using:

X3 Or X5

52/53

® Develop a family of permutations with varying widths

® Goals:

no trails with weight below 128 at cost 12 xor plus 4 and per bit
no noticeable clustering

no noticeable dependencies between round differentials

attention for resistance against summation attacks

® Using:

X3 Or X5
mixing layer with cost 2 xor per bit

52/53

® Develop a family of permutations with varying widths

® Goals:

no trails with weight below 128 at cost 12 xor plus 4 and per bit
no noticeable clustering

no noticeable dependencies between round differentials

attention for resistance against summation attacks

® Using:

X3 or X5
mixing layer with cost 2 xor per bit
shuffle with as few shifts as we can afford

52/53

Thanks for your attention!

53/53

	Permutation-based cryptography
	Focus on the permutation
	Choice of the S-box
	The linear layer

