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Permutation-based cryptography



Keccak (SHA—3) [Bertoni et al. 2007]
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Mac computation with sponge
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Stream encryption with sponge
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Authenticated encryption with sponge/duplex [Bertoni et al., SAC 2011]
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Authenticated encryption with sponge/duplex [Bertoni et al., SAC 2011]

Key | IV Padded message MAC
'}
Yy (Y Yy () ¢ Yy ()
S+ 7O O &> >
0 f f fll.. f f
L L L — L
Yy O
Key stream

Ideal for lightweight!

Especially the variant MonkeyDuplex that we proposed in [Bertoni et al., DIAC 2012]
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Ascon [Dobraunig et al. 2016]
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NIST’s new standard for lightweight authenticated encryption!
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Farfalle construction [Bertoni et al., 2017]
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Farfalle construction [Bertoni et al., 2017]

® Farfalle builds a deck function
® A keyed primitive more versatile than a block cipher
® For everything keyed, see “Jammin on the deck” [Bicuieti et al., Asiacrypt 2022]
® XOOFFF [Bertoni et al., 2018]
® Farfalle with XOODOO permutation
® Competitive with AES even on CPUs with AES-NI instruction
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Ingredients that make permutation-based cryptography efficient
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Ingredients that make permutation-based cryptography efficient

® Inverse permutation is not used
® adversary cannot make inverse queries
® more liberty in designing round function
e Farfalle is computationally efficient thanks to limiting exposure of permutation
® it feeds the output of a keyed compression straight into a stream cipher
® input and output separated by 3 permutation layers
® Duplex-based authenticated encryption is compact
® during operation no need for key storage
® in monkeyDuplex presence of nonce allows reducing # rounds after init
® |nteresting hardware benchmarks related to lightweight:
® https://eprint.iacr.org/2020/1207
® https://eprint.iacr.org/2020/1459
® https://eprint.iacr.org/2021/049
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Focus on the permutation
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Implementation properties required from the permutations

® |n dedicated hardware
® main criterion: energy-efficiency
® achievable speed
® lightweight: power-efficiency, area
® |n software

® main criterion: speed
® . .on a wide range of CPUs
® |ightweight: RAM, code size, etc.

® \When side-channel attacks are a threat

® permutation should run in constant time
® suitability for masking: low algebraic degree building blocks

® As opposed to block ciphers: no need for efficient inverse
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Propagation properties required from a permutation (of [FJ)
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Propagation properties required from a permutation (of [FJ)

Differential probability (DP) of a differential (a, b)

#{x € Fy | f(x+ a) + f(x) = b}
2”

DP(a, b) =

Correlation and linear potential (LP) of a linear approximation (a, b)

Tx+bTf(x
> em (—1)7 W

C(a,b) = >

and LP(a, b) = C?(a, b)

LC DC requirements are of the following type:

V(a, b) # (0,0) : DP(a, b) < limit
Y(a, b) # (0,0) : LP(a, b) < limit
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Propagation properties required from a permutation (cont’d)

® There are other propagation properties that play a role in certain attacks
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Propagation properties required from a permutation (cont’d)

® There are other propagation properties that play a role in certain attacks

® The most powerful in many scenario's are summing attacks

AKA higher order differentials, cube attacks, division property, ...
principle: summing the outputs corresponding to inputs in a large set V

Often V is an affine space

used as a distinguisher
or to harvest (linear) equations in unknown state bits

Requirements related to summing attacks are of the following type:

YV C Fj such that Vx € F5 : Y f(x+v) =0,|V| > limit
vev
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Iterated permutations

® Permutation as the repetition of a relatively simple round function

® similar to block ciphers, e.g., DES, Rijndael
® cfficient in hardware but also software

® There are different kinds of round functions

® Feistel: function applied to one half, result added to other half and swap
® generalized Feistel: multiple parts
[ )

Addition, Rotation, XOR (ARX), ...
® symmetric, consisting of a non-linear layer and a linear layer

® \We assume the latter with R =y o A

® non-linear layer 7 of identical S-boxes (we'll assume)
® linear layer A\ where y = A(x) = Mx + ¢ (affine really)
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® approximate trail DP(Q) by EDP(Q) = [[; DP(a'%,a’)
bound EDP(Q) (often during the design effort)
® then verify DP(Q) ~ EDP(Q): hypothesis of stochastic equivalence
® and check clustering of trails in differentials as DP(a, b) = DP g¢(4,0)(Q)

® General approach for correlation
® correlation contribution of a trail is C(Q) = [[; C(a'1,a’)
® bound LP(Q) ( = C%(Q)) (during the design effort)
® then check clustering of trails as C(a, b) = Cqe(a,n)(Q)
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We can further split DPV(bO, al) with b® = (bg, by, ... bm_1),a* = (a0, a1, - .- am-1)

DPg(a% a') = DP,(#°,a") = [ [ DPs(br, a))

Switching from DP to weight with: 2-*(2:6) — DP(a, b) makes it additive

wr (2%, ') = > w(bj, a;) with b° = Ma°

i

An S-box with zero input difference contrib/utes 0 to the weight: it is passive.
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Linear approximation over a round function

For a linear approximation (a° a') over R we have

LPg(a°% a') = LP,(b°, a') with a® = M*h°
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Linear approximation over a round function

For a linear approximation (a° a') over R we have

LPg(a°% a') = LP,(b°, a') with a® = M*h°

We can further split LP,(b%, a') with % = (bo, bi,...bm-1),a* = (a0, a1,...am_1)
LPg(a% a') = LP( HLPs(b,,a

Switching from LP to weight with: 2-%(2:6) = L P(a, b) makes it additive

wr(2%,a") = > w(Ap, A,) with a° = MTp

i

An S-box with zero output mask contributes 0 to the weight: it is passive.
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Weight of trails

The weight of a differential trail is the sum of the weights of its active S-boxes

w(Q) = w(b[ ! af) with ¥ =Ma' and DP(Q)~ EDP(Q) =2

i

ir

The weight of a linear trail is the sum of the weights of its active S-boxes

w(Q) =Y w(b L af) with &' = MTH" and  LP(Q) =2"(?

ir
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® Design strategy addressing resistance against LC and DC

® reaction to DC/LC attacks on DES that made use of light trails

® quasi consensus among cryptographers: we need wider S-boxes

® wide trail: no, we need more active S-boxes (or non-linear operations)
® |dea: round composed of three layers

® non-linear layer operating locally

® mixing layer operating locally

® shuffle layer(s): moving nearby bits/cells away from each other
® Two flavours: aligned (or cell-oriented) and non-aligned (or bit-oriented)
® Symmetry plays an important role

® |eads to simple specification

® less corners where weaknesses can hide
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Thanks to superboxes proving any 4-round trail has at least 25 active S-boxes is easy!
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Example of bit-oriented wide trail design: Subterranean [Daemen 1992]
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Example of bit-oriented wide trail design: Subterranean [Daemen 1992]
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Proving trail bounds requires computer-assisted search
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Choice of the S-box
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® For block ciphers n was quasi always a power of 2
® For permutations this is no longer required
o Wish list:
® no differentials with high DP
® no linear approximations with high LP
® low degree (for protection against masking)
® Jow computational complexity
® symmetry: as much as we can get
e Computational complexity
® in hardware: # gate equivalent, circuit depth
® in bit-sliced software: number of bitwise Boolean operations
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Let’s generalize

We can generalize to transformations of F,» with p a prime

DP of differentials (a, b) of a transformation of F .

DP(a7 b) _ #{X | f(X +Z)n— f(X) = b}

i

For correlation we need the trace function that maps Fy» to Fp: Tr(x) = > o, xP
Correlation and LP of linear approximations (a, b) of a transformation of F .

Tr(ax—bf(x)) -
2w T ~ with w = e’
p

LP(a, b) = C(a, b)C(a, b)

C(a, b) =
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Transformations in [F,» with much symmetry: power functions

® Functions of the form y < x©

® Invertible if e is coprime to p” — 1
® |nvertible power functions form a group
® isomorphic to (Z/(p" — 1)Z)*
® order is p(p" — 1)
® Inverse of y < x® is y < x? with d = e~ mod (p" — 1)
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Symmetry in power functions

e Differentials and correlation:
© DP(a,b) = p~"#{x | (x + )¢ — x° = b}
° C(a, b) —p " Zx wTr(ax—bx€)
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Symmetry in power functions

® Differentials and correlation:
© DP(a,b) = p~"#{x | (x + )¢ — x° = b}
o Ca,b) = p "y, Wiax—bx)
® Symmetry in propagation
® DP(a, b) = DP(1, ba—¢) = DP(ab ¢, 1)
® C(a,b) = C(1,ba¢) = C(ab9,1)
® Power functions with e = p’ are linear, giving additional symmetry
® Vi < n:DP(1,p'b) = DP(1, b)
® Vi< n:C(1,p'b)=C(1,b)
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Converting power functions in . to S-boxes in [}

e Converting from Fp» to Fj; requires choice of a basis

e Normal basis: {oz,ap,...,ap"_l}
® Raising to a power p' in [Fpn corresponds to a cyclic coordinate shift in Fy
® (x°)P = xP¢ = (xP)¢: power function gives a shift-invariant S-box

® |t also implies a partitioning of exponents in classes

® 50 x <+ xP€is just x < x€ followed by a cyclic shift
® cyclic shift can be absorbed in linear layer
® exponents e, pe, p’e. .. are equivalent with respect to our analysis
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Let’s try building an invertible 4-bit S-box from a power function

We take p=2,n=14

(algebraic degree in Fj is Hamming weight of binary representation of e)

¢(2* — 1) = 8 candidate exponents in two classes: {1,2,4,8} and {7,14,13,11}

® exponents in {1,2,4,8} give linear power functions

Let us take 14

® additional symmetry: involution because 14°> mod 15 = 1 so 14 = —1

® represents the mapping that takes the multiplicative inverse and maps 0 to 0

Multiplicative inverse mapping is often called the Kaisa S-box [Nyberg, EC '93]
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DP-table (aka scaled DDT) of y < x ! in [}

/8|1 2 3 4 5 7 8 a b ¢ e f
1 1 1 1 1 1
2 1 1 1 1 1 1
8 1 1 1 1 1 1
4 1 1 1 1 2 1 1
5 1 1 1 1 2 1 1
6 |1 1 1 1 1 1
711 1 1 2 1 1 1
8 1 1 1 1 1
9 (1 1 1 1 1
a 1 1 1 1 2 1 1
b |1 1 1 1 1 1
[¢ 1 1 1 1 1 1
d| 1 1 1 1 1 1
e |1 2 1 1 1 1 1
f 1 1 1 1 2 1 1
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DP-table of x «+— x~! in [}, reordered

1/8 1 a a2 a3 Oé4 055 aﬁ a? 068 Oég alO all a12 a13 a14
1 1 1 1 1 1 1
a 1 1 1 1 1 1
a? 1 1 1 1 1 1 2
ol 1 1 1 1 1 1
ot 1 1 1 1 1 1
a® |1 1 1 1 1 1 2
ab 1 1 1 1 1 1
o |1 1 1 1 1 2 1
ab 1 1 1 1 2 1 1
o’ 11 1 1 2 1 1
a1 1 1 1 2 1 1
ot |1 1 1 1 1 1
at? 1 1 2 1 1 1 1
a® 1 1 2 1 1 1 1
a1 2 1 1 1 1 1
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Correlation matrix of x < x~! in F3, reordered

1/4 1 ﬁ /82 53 54 ﬁS 56 67 58 /89 BIO Bll 612 613 514

1 T I N | 11 2 1

gl-1 -1 1 a1 2 1 101 2 1

g2l-1 1 -1 2 1 101 2 1 -1
g2l1 1 2 1 11 1 1 -1
gt 1 2 1 -1 1 1 -1 1
B° 1 | 1 . | 1 =il
Jix 101 2 1 1 -1 1 -1

B8’ 101 2 1 | 1 il

g1 1 2 1 1011 -1 1
g1 2 1 101 1 -1 1 -1
g 1 1 -1 1 -1 -1

L 1 1 1 1 -1 2 -1

L2 ! R -1 1

L 4 4 1 S 2 9 -1 1 1
s 1 -1 1 -1 2 1 11 1
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Now let’s try building a 5-bit S-box

® (2% — 1) = 30 candidate exponents in six classes
o Classes represented by {1,3,21,5,25,30}

1 is linear

® 30 = —1: multiplicative inverse
® 3 and 21 are each other’s inverses
® 5 and 25 are each other’s inverses

® Multiplicative inverse:
® DP(a,b) =27*if Tr((ab)™!) =0 or b= a~! and 0 otherwise
® correlation matrix: C(a, b) =27 3x with x € {-2,-1,0,1,2,3} (as found in
[Carlet et al., 2010])
® DP table has 16 non-zero entries per row, correlation matrix 26
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Gold functions

Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in Fj

Power functions with exponents e = 2/ + 1 are called Gold functions [Gold '68]
For odd n they have (as found in [Carlet et al., 2010])

® DP(a, b) =217 if Tr(ba—¢) = 1 and DP(a, b) = 0 otherwise

® |P(a,b) =2'""if Tr(ab=9) =1 and LP(a, b) = 0 otherwise
Due to the linearity of the trace function:

® Qutput diff b compatible with input diff a form an affine space
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Gold functions

® Exponents e = 3 and e =5 give S-boxes with algebraic degree 2 in 5
® Power functions with exponents e = 2/ + 1 are called Gold functions [Gold 6]
For odd n they have (as found in [Carlet et al., 2010])
® DP(a, b) =217 if Tr(ba—¢) = 1 and DP(a, b) = 0 otherwise
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® |t would be great if

® propagation of masks follows the same rule than propagation of differences
® forward and backward propagation would be the same or at least similar

Taking n =3 and d = e = 6 = —1 results in a Golden Kaisa function
® DP(a, b) =272 if Tr(ab) = 1 and DP(a, b) = 0 otherwise
® |P(a,b) =272 if Tr(ab) = 1 and LP(a, b) = 0 otherwise

y + x% in Fys has following properties

® forward, backward, differential and linear propagation are all the same
® compatible masks/differences form affine spaces

This works for no other size n or exponent e!

When choosing the normal basis, Tr(ab) = 1 translates to agbg + a1by + axbp, =1
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A family of S-boxes Y, [Daemen, WIC 1990]

® The Golden Kaisa S-box can be generalized to any width n and is called x,

Vi:bi=a+ (ai-i-l mod n T 1)3i+2 mod n

Invertible if n is odd

For n > 3 a lot of symmetry is lost

® inverse is more complex and has higher degree: (n+1)/2
® backwards propagation does not give affine spaces
® weight increases with Hamming weight of differences/masks
® correlation matrix has fewer zeroes than DP table
Popular choice is n = 5: Keccak and Ascon

Extreme: in Subterranean n = 257

Excellent trade-off between implementation cost and non-linearity
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® linear layer split in mixing layer and shuffle
® Cell-oriented (aligned)

® state is an array of cells, defined by the S-box layer: typically bytes or nibbles
® mixlayer operates on super-cells: sub-arrays of cells

shuffle moves cells to different super-cells
® analysis and specification is natural at the cell level

® Bit-oriented (non-aligned)
® three layers partition the statebits in different ways
® analysis and specification is natural at the bit level
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Square approach [Daemen & Rijmen 1997]

® State as a 4 by 4 array of bytes
® Powerful S-box operating on individual bytes
® Mixing layer operating in parallel on each 4-byte column
® Multiplication in Fys with a 4 x 4 matrix
® Matrix is MDS, has branch number 5: at least 5 active bytes before and after
® Matrix symmetry: it is circulant
® Transformation symmetry: multi-permutation where any 4 entries out of 8
can be chosen
® Shuffle moving bytes of a column to different columns: here transposing the array
® Easy to prove that any 4-round trail has at least 25 active S-boxes
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Groest| [Rechberger et al., 2008] 82 bytes 512 perm
ECHO [Benadijila et al., 2008] 44 bytes 2048 perm
JH [Wu, 2008] pe nibbles 1024 perm
Primates [Andreeva et al., 2014] (50r7)x8 5-bit 200 or 280 perm
Saturnin [Canteaut et al., 2019] 43 nibbles 256 block

Advances in building efficient MDS matrices: +60 publications at crypto venues

® mostly focusing on 4 x 4 matrices operating on bytes or nibbles
® goal: reduce the total xor count or xor depth

® insight: cost increases sharply with MDS matrix dimension
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® S-box

® A-bit S-box instead of 8-bit one

® no power function but w > 2

® cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
® MDS matrix in mixlayer

® 4 x 4 operating on elements of Fy4

® Cost 2,25 xor per bit instead of 3 xor per bit for AES
® Global structure

® Cube with side 4 of elements of [Fys
® Two different shuffles in rounds with index 1 mod 4 and 3 mod 4
® Any 8-round trail has at least 53 = 125 active S-boxes
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Showdown Saturnin vs AES (not counting round key addition)

AES
# cost min. trail
rounds | xor | and/or weight
1] 14 4 6
2|28 8 30
3] 42 12 56
4 | 56 16 150

41/53

Saturnin
# cost min. trail
rounds | xor | and/or weight
1] 3,75 1,5 2
2|1 75 3 10
311,25 4,5 18
4| 15 6 50
5| 18,75 7,5 82
6| 22,5 9 90
712625 | 105 122
8| 30 12 250
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Limitations of the Square approach

Hourglass trail profile effect:

® You can have light S-boxes or light MDS matrices or few rounds
® . .but not all at the same time
® This is because sparse states propagate to sparse in both directions

® Example: 16 —4 — 1 — 4 — 16 profile
Clustering and clipping in the AES superbox:

® massive clustering of trails in differentials [Daemen & Rijmen, SCN 2006]

¢ clipping: DP(Q) strongly deviates from EDP(Q) for most trails [Daemen & Rijmen,
IET 2007]
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Clustering and clipping in the Saturnin superbox, illustrated

Much less clustering and clipping than in AES thanks to smaller S-box, still significant
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Bit-oriented mixing

® |n general it is just a binary matrix M
® operating on the full state, or
® operating in parallel on parts of the state

Symmetry: make M circulant

Polynomial representation of input, output and matrix

b(X) + 6(X)a(X) mod 1+ X

Invertible if 6(X) is coprime to 1 + X™
Often one takes a multiplication polynomial that is a trinomial

Unless carefully chosen, inverse of 6(X) is dense
® no problem if the inverse of the permutation is not needed
® has an advantage for trail bounds
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Some primitives using bit-oriented circulant mixing

Function length # t non-lin. b shuffle
Cellhash [Daemen, AC 1991] 257 3 X257 257 multiplicative
3Way [Daemen, 1993] 12 7 x3 96 2 row shift steps
BaseKing [Daemen, 1994] 12 7 x3 192 2 row shift steps
Panama [Daemen & Clapp, 1997] 17 3 x17 544 1 row shift step
SHA-256 [NIST, 2001] 32 3 ARX 256 -
SHA-512 [NIST. 2001] 64 3 ARX 512 -
RadioGatun [Bertoni et al., 2006] 19 3 X19 608 1 row shift step
Ascon [Dobraunig et al., 2019] 64 3 x5+ 320 different m(x)
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Ascon-p Round function

® 320-bit state: 5 rows Xxp, ..., x4 and 64 columns

® Round function R = p; o ps o pc

(a) Round constant addition pc

(b) Substitution layer ps with 5-bit S-box S(x)

(c) Linear layer with 64-bit diffusion functions ¥;(x;)

figure by Ascon team
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Operations dedicated to mixing in Ascon-p

Xo (‘) D CP Xo
e ’é*% /\‘u CS - X1 X < X0 D (x0 =>> 19) @ (xp >> 28)
ol bl 1’4}’<ﬁ/j oex, 1@ (3> 61) @ (> 39)
N 1 /‘f ! L)@ e x0® e 1)@ (o> 6)
I /Y x3 < x3 D (x3>>10) @ (x3 > 17)
X4 T > X4 X = Xa D (x4>> T7)D (xa > 41)
6 bitwise XOR 10 bitwise XOR + 10 cyclic shifts
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Showdown Ascon-p vs Saturnin (not counting round key/constant addition)
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Showdown Ascon-p vs Saturnin (not counting round key/constant addition)

Saturnin Ascon

+# cost min. trail +# cost min. trail weight
rounds | xor | and/or weight rounds | xor | and/or diff lin

1] 3,75 1,5 2 1] 42 1 2 2

21 75 3 10 2| 84 2 8 8

3] 11,25 4.5 18 31126 3 40 28

4| 15 6 50 4| 16,8 4 > 86 > 88

5| 18,75 7,5 82 5| 21 5 > 100 > 96

6| 22,5 9 90 6 | 25,2 6 >129 | >132

712625 | 105 122

8| 30 12 250
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Another type of mixing layer: column parity mixers (Keccak-f and Xoodoo)

l column parity T O-effect
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Another type of mixing layer: column parity mixers (Keccak-f and Xoodoo)

T O-effect column parity

T %

® Good average diffusion, identity for states in kernel

e Cost: 2 xor per bit
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Showdown Xoodoo vs Ascon-p
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Showdown Xoodoo vs Ascon-p

Ascon Xoodoo
A cost min. trail weight A cost min. trail
rounds | xor | and/or diff lin rounds | xor | and/or weight
1] 42 1 2 2 1] 3 1 2
2| 84 2 8 8 2| 6 2 8
31126 3 40 28 319 3 36
4116,8 4 > 86 > 88 41 12 4 80
5| 21 5 > 100 > 96 5115 5 > 08
6 | 25,2 6 >129 | >132 6| 18 6 > 132
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® We investigated clipping and clustering in Xoodoo
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Trail clustering and independence of round differentials in Xoodoo

® We investigated clipping and clustering in Xoodoo
® 3-round trails [Bordes et al., CRYPTO 2021]

® we have checked all differential and linear trails with weight up to 50
® cach of them is alone in its differential /linear approximation
® for each differential trails we have: DP(Q) = EDP(Q)
® 4-round trails: work in progress
® 4 trails of weight 80
® 2 of these cluster into differential with EDP(a, b) = 2~ 7°
® dependence of round differentials: we're starting
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® Develop a family of permutations with varying widths

® Goals:

no trails with weight below 128 at cost 12 xor plus 4 and per bit
no noticeable clustering

no noticeable dependencies between round differentials

attention for resistance against summation attacks

® Using:

X3 or X5
mixing layer with cost 2 xor per bit
shuffle with as few shifts as we can afford
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Thanks for your attention!
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