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Permutation-based cryptography
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Mac computation with sponge
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Stream encryption with sponge
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Authenticated encryption with sponge/duplex [Bertoni et al., SAC 2011]
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Authenticated encryption with sponge/duplex [Bertoni et al., SAC 2011]
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Ascon [Dobraunig et al. 2016]

NIST’s new standard for lightweight authenticated encryption!

6/53



Farfalle construction [Bertoni et al., 2017]
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• Farfalle builds a deck function

• A keyed primitive more versatile than a block cipher

• For everything keyed, see “Jammin on the deck” [Băcuiet, i et al., Asiacrypt 2022]

• Xoofff [Bertoni et al., 2018]

• Farfalle with Xoodoo permutation

• Competitive with AES even on CPUs with AES-NI instruction
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Ingredients that make permutation-based cryptography efficient

• Inverse permutation is not used

• adversary cannot make inverse queries

• more liberty in designing round function

• Farfalle is computationally efficient thanks to limiting exposure of permutation

• it feeds the output of a keyed compression straight into a stream cipher

• input and output separated by 3 permutation layers

• Duplex-based authenticated encryption is compact

• during operation no need for key storage

• in monkeyDuplex presence of nonce allows reducing # rounds after init

• Interesting hardware benchmarks related to lightweight:

• https://eprint.iacr.org/2020/1207

• https://eprint.iacr.org/2020/1459

• https://eprint.iacr.org/2021/049
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Taken from https://eprint.iacr.org/2021/049
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Focus on the permutation



Implementation properties required from the permutations

• In dedicated hardware

• main criterion: energy-efficiency

• achievable speed

• lightweight: power-efficiency, area

• In software

• main criterion: speed

• . . . on a wide range of CPUs

• lightweight: RAM, code size, etc.

• When side-channel attacks are a threat

• permutation should run in constant time

• suitability for masking: low algebraic degree building blocks

• As opposed to block ciphers: no need for efficient inverse
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Propagation properties required from a permutation (of Fn
2)

Differential probability (DP) of a differential (a, b)

DP(a, b) =
#{x ∈ Fn

2 | f (x + a) + f (x) = b}
2n

Correlation and linear potential (LP) of a linear approximation (a, b)

C(a, b) =

∑
x∈Fn

2
(−1)a

Tx+bTf (x)

2n
and LP(a, b) = C2(a, b)

LC DC requirements are of the following type:

∀(a, b) ̸= (0, 0) : DP(a, b) < limit

∀(a, b) ̸= (0, 0) : LP(a, b) < limit
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Propagation properties required from a permutation (cont’d)

• There are other propagation properties that play a role in certain attacks

• The most powerful in many scenario’s are summing attacks

• AKA higher order differentials, cube attacks, division property, . . .

• principle: summing the outputs corresponding to inputs in a large set V

• Often V is an affine space

• used as a distinguisher

• or to harvest (linear) equations in unknown state bits

Requirements related to summing attacks are of the following type:

∀V ⊂ Fn
2 such that ∀x ∈ Fn

2 :
∑
v∈V

f (x + v) = 0, |V | > limit
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Iterated permutations

• Permutation as the repetition of a relatively simple round function

• similar to block ciphers, e.g., DES, Rijndael

• efficient in hardware but also software

• There are different kinds of round functions

• Feistel: function applied to one half, result added to other half and swap

• generalized Feistel: multiple parts

• Addition, Rotation, XOR (ARX), . . .

• symmetric, consisting of a non-linear layer and a linear layer

• We assume the latter with R = γ ◦ λ
• non-linear layer γ of identical S-boxes (we’ll assume)

• linear layer λ where y = λ(x) = Mx + c (affine really)
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Propagation over an iterated permutation

• For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard

• But over a single round computing DP(a, b) or LP(a, b) is easy

• Round diff/approx (a0, a1), (a1, a2), . . . chain to trails Q = (a0, a1, a2, . . .)

• General approach for differential propagation

• approximate trail DP(Q) by EDP(Q) =
∏

i DP(a
i−1, ai )

• bound EDP(Q) (often during the design effort)

• then verify DP(Q) ≈ EDP(Q): hypothesis of stochastic equivalence

• and check clustering of trails in differentials as DP(a, b) = DPQ∈(a,b)(Q)

• General approach for correlation

• correlation contribution of a trail is C(Q) =
∏

i C(a
i−1, ai )

• bound LP(Q) ( = C2(Q)) (during the design effort)

• then check clustering of trails as C(a, b) = CQ∈(a,b)(Q)
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Differential over a round function

For a differential (a0, a1) over R we have

DPR(a
0, a1) = DPγ(b

0, a1) with b0 = Ma0

We can further split DPγ(b
0, a1) with b0 = (b0, b1, . . . bm−1), a

1 = (a0, a1, . . . am−1)

DPR(a
0, a1) = DPγ(b

0, a1) =
∏
i

DPS(bi , ai )

Switching from DP to weight with: 2−w(a,b) = DP(a, b) makes it additive

wR(a
0, a1) =

∑
i

w(bi , ai ) with b0 = Ma0

An S-box with zero input difference contributes 0 to the weight: it is passive.
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Linear approximation over a round function

For a linear approximation (a0, a1) over R we have

LPR(a
0, a1) = LPγ(b

0, a1) with a0 = MTb0

We can further split LPγ(b
0, a1) with b0 = (b0, b1, . . . bm−1), a

1 = (a0, a1, . . . am−1)

LPR(a
0, a1) = LPγ(b

0, a1) =
∏
i

LPS(bi , ai )

Switching from LP to weight with: 2−w(a,b) = LP(a, b) makes it additive

wR(a
0, a1) =

∑
i

w(∆bi ,∆ai ) with a0 = MTb0

An S-box with zero output mask contributes 0 to the weight: it is passive.
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Weight of trails

The weight of a differential trail is the sum of the weights of its active S-boxes

w(Q) =
∑
i ,r

w(br−1
i , ari ) with bi = Mai and DP(Q) ≈ EDP(Q) = 2−w(Q)

The weight of a linear trail is the sum of the weights of its active S-boxes

w(Q) =
∑
i ,r

w(br−1
i , ari ) with ai = MTbi and LP(Q) = 2−w(Q)
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Wide trail strategy [Daemen, 1991-1993]

• Design strategy addressing resistance against LC and DC

• reaction to DC/LC attacks on DES that made use of light trails

• quasi consensus among cryptographers: we need wider S-boxes

• wide trail: no, we need more active S-boxes (or non-linear operations)

• Idea: round composed of three layers

• non-linear layer operating locally

• mixing layer operating locally

• shuffle layer(s): moving nearby bits/cells away from each other

• Two flavours: aligned (or cell-oriented) and non-aligned (or bit-oriented)

• Symmetry plays an important role

• leads to simple specification

• less corners where weaknesses can hide
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Example of cell-oriented wide trail design: Rijndael-128 [Daemen & Rijmen, 1998]

Thanks to superboxes proving any 4-round trail has at least 25 active S-boxes is easy!
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Example of bit-oriented wide trail design: Subterranean [Daemen 1992]
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Proving trail bounds requires computer-assisted search
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Choice of the S-box



S-box

• Permutation operating on Fn
2 for some small n typically ∈ {3, 4, 5, 6, 8}

• For block ciphers n was quasi always a power of 2

• For permutations this is no longer required

• Wish list:

• no differentials with high DP

• no linear approximations with high LP

• low degree (for protection against masking)

• low computational complexity

• symmetry: as much as we can get

• Computational complexity

• in hardware: # gate equivalent, circuit depth

• in bit-sliced software: number of bitwise Boolean operations
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Let’s generalize

We can generalize to transformations of Fpn with p a prime

DP of differentials (a, b) of a transformation of Fpn

DP(a, b) =
#{x | f (x + a)− f (x) = b}

pn

For correlation we need the trace function that maps Fpn to Fp: Tr(x) =
∑

0≤i<n x
pi

Correlation and LP of linear approximations (a, b) of a transformation of Fpn

C(a, b) =

∑
x ω

Tr(ax−bf (x))

pn
with ω = e

2πi
p

LP(a, b) = C(a, b)C(a, b)
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Transformations in Fpn with much symmetry:

power functions

• Functions of the form y ← xe

• Invertible if e is coprime to pn − 1

• Invertible power functions form a group

• isomorphic to (Z/(pn − 1)Z)∗
• order is φ(pn − 1)

• Inverse of y ← xe is y ← xd with d = e−1 mod (pn − 1)
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Symmetry in power functions

• Differentials and correlation:

• DP(a, b) = p−n#{x | (x + a)e − xe = b}
• C(a, b) = p−n

∑
x ω

Tr(ax−bxe)

• Symmetry in propagation

• DP(a, b) = DP(1, ba−e) = DP(ab−d , 1)

• C(a, b) = C(1, ba−e) = C(ab−d , 1)

• Power functions with e = pi are linear, giving additional symmetry

• ∀i < n : DP(1, pib) = DP(1, b)

• ∀i < n : C(1, pib) = C(1, b)
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Converting power functions in Fpn to S-boxes in Fn
p

• Converting from Fpn to Fn
p requires choice of a basis

• Normal basis: {α, αp, . . . , αpn−1}
• Raising to a power pi in Fpn corresponds to a cyclic coordinate shift in Fn

p

• (xe)p = xpe = (xp)e : power function gives a shift-invariant S-box

• It also implies a partitioning of exponents in classes

• so x ← xpe is just x ← xe followed by a cyclic shift

• cyclic shift can be absorbed in linear layer

• exponents e, pe, p2e . . . are equivalent with respect to our analysis
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Let’s try building an invertible 4-bit S-box from a power function

• We take p = 2, n = 4

• (algebraic degree in Fn
2 is Hamming weight of binary representation of e)

• φ(24 − 1) = 8 candidate exponents in two classes: {1, 2, 4, 8} and {7, 14, 13, 11}
• exponents in {1, 2, 4, 8} give linear power functions

• Let us take 14

• additional symmetry: involution because 142 mod 15 = 1 so 14 = −1
• represents the mapping that takes the multiplicative inverse and maps 0 to 0

• Multiplicative inverse mapping is often called the Kaisa S-box [Nyberg, EC ’93]
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DP-table (aka scaled DDT) of y ← x−1 in F4
2

1/8 1 2 3 4 5 6 7 8 9 a b c d e f

1 2 1 1 1 1 1 1

2 1 1 2 1 1 1 1

3 1 1 1 1 1 1 2

4 1 1 1 1 2 1 1

5 1 1 1 1 2 1 1

6 1 1 1 1 2 1 1

7 1 1 1 2 1 1 1

8 1 1 1 1 1 1 2

9 1 2 1 1 1 1 1

a 1 1 1 1 2 1 1

b 1 1 2 1 1 1 1

c 1 1 1 1 1 2 1

d 1 1 2 1 1 1 1

e 1 2 1 1 1 1 1

f 1 1 1 1 2 1 1
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DP-table of x ← x−1 in F4
2, reordered

1/8 1 α α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

1 2 1 1 1 1 1 1

α 1 1 1 1 1 1 2

α2 1 1 1 1 1 1 2

α3 1 1 1 1 1 1 2

α4 1 1 1 1 1 1 2

α5 1 1 1 1 1 1 2

α6 1 1 1 1 1 2 1

α7 1 1 1 1 1 2 1

α8 1 1 1 1 2 1 1

α9 1 1 1 1 2 1 1

α10 1 1 1 1 2 1 1

α11 1 1 1 2 1 1 1

α12 1 1 2 1 1 1 1

α13 1 1 2 1 1 1 1

α14 1 2 1 1 1 1 1
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Correlation matrix (aka scaled LAT) of x ← x−1 in F4
2

1/4 1 2 3 4 5 6 7 8 9 a b c d e f

1 -1 1 1 -1 -1 -1 2 1 1 2

2 1 1 -1 -1 2 2 1 -1 1 -1

3 1 -1 -1 2 1 2 -1 1 -1 1

4 1 -1 1 -1 1 -1 2 2 -1 1

5 1 1 2 -1 1 -1 2 -1 -1 1

6 -1 1 1 1 2 2 -1 -1 1 -1

7 -1 -1 2 -1 1 1 2 1 1 -1

8 -1 -1 -1 2 1 1 1 1 2 -1

9 2 2 1 1 -1 1 -1 1 -1 -1

a -1 2 1 1 -1 2 -1 -1 1 1

b 2 -1 -1 -1 1 1 1 -1 1 2

c 1 1 2 -1 1 -1 1 2 -1 -1

d -1 -1 2 -1 1 1 1 -1 1 2

e 1 1 -1 -1 2 -1 1 -1 2 1

f 2 -1 1 1 1 -1 -1 2 1 -1
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Correlation matrix of x ← x−1 in F4
2, reordered

1/4 1 β β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 β14

1 -1 -1 1 -1 2 1 -1 1 2 1

β -1 -1 1 -1 2 1 -1 1 2 1

β2 -1 1 -1 2 1 -1 1 2 1 -1

β3 1 -1 2 1 -1 1 2 1 -1 -1

β4 -1 2 1 -1 1 2 1 -1 -1 1

β5 2 1 -1 1 2 1 -1 -1 1 -1

β6 1 -1 1 2 1 -1 -1 1 -1 2

β7 -1 1 2 1 -1 -1 1 -1 2 1

β8 -1 1 2 1 -1 -1 1 -1 2 1

β9 1 2 1 -1 -1 1 -1 2 1 -1

β10 2 1 -1 -1 1 -1 2 1 -1 1

β11 1 -1 -1 1 -1 2 1 -1 1 2

β12 1 -1 -1 1 -1 2 1 -1 1 2

β13 -1 -1 1 -1 2 1 -1 1 2 1

β14 -1 -1 1 -1 2 1 -1 1 2 1
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Now let’s try building a 5-bit S-box

• φ(25 − 1) = 30 candidate exponents in six classes

• Classes represented by {1, 3, 21, 5, 25, 30}
• 1 is linear

• 30 = −1: multiplicative inverse

• 3 and 21 are each other’s inverses

• 5 and 25 are each other’s inverses

• Multiplicative inverse:

• DP(a, b) = 2−4 if Tr((ab)−1) = 0 or b = a−1 and 0 otherwise

• correlation matrix: C(a, b) = 2−3x with x ∈ {−2,−1, 0, 1, 2, 3} (as found in

[Carlet et al., 2010])

• DP table has 16 non-zero entries per row, correlation matrix 26
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Gold functions

• Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in Fn
2

• Power functions with exponents e = 2i + 1 are called Gold functions [Gold ’68]

• For odd n they have (as found in [Carlet et al., 2010])

• DP(a, b) = 21−n if Tr(ba−e) = 1 and DP(a, b) = 0 otherwise

• LP(a, b) = 21−n if Tr(ab−d) = 1 and LP(a, b) = 0 otherwise

• Due to the linearity of the trace function:

• Output diff b compatible with input diff a form an affine space

• Input masks a compatible with output mask b form an affine space

• All valid differentials and approximations (a, b) have weight n − 1

• Still, in general

• Input diff a compatible with output diff b form no affine space

• Output masks b compatible with input mask a form no affine space

• Propagation of masks follows a different rule than propagation of differences
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Can we do better than Gold?

• It would be great if

• propagation of masks follows the same rule than propagation of differences

• forward and backward propagation would be the same or at least similar

• Taking n = 3 and d = e = 6 = −1 results in a Golden Kaisa function

• DP(a, b) = 2−2 if Tr(ab) = 1 and DP(a, b) = 0 otherwise

• LP(a, b) = 2−2 if Tr(ab) = 1 and LP(a, b) = 0 otherwise

• y ← x6 in F23 has following properties

• forward, backward, differential and linear propagation are all the same

• compatible masks/differences form affine spaces

• This works for no other size n or exponent e!

• When choosing the normal basis, Tr(ab) = 1 translates to a0b0 + a1b1 + a2b2 = 1
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On the Golden Kaisa S-box

• Limitation is mostly its width of 3

• due to small size its diff/approx have weight of only w = 2

• implies permutation width has to be a multiple of 3

• What if we want to use larger S-boxes?

• for odd size there is more choice than for even

• computational cost of power functions increases sharply with width

• Rijndael S-box

• w ≥ 6

• 10 xor and 4 and/or per bit [Boyar & Peralta 2010][Stoffelen & Schwabe 2016]

• Golden Kaisa S-box

• w = 2

• yi ← xi + (xi+1 mod 3 + 1)xi+2 mod 3: costs 1 xor and 1 and per bit
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A family of S-boxes χn [Daemen, WIC 1990]

• The Golden Kaisa S-box can be generalized to any width n and is called χn

∀i : bi = ai + (ai+1 mod n + 1)ai+2 mod n

• Invertible if n is odd

• For n > 3 a lot of symmetry is lost

• inverse is more complex and has higher degree: (n + 1)/2

• backwards propagation does not give affine spaces

• weight increases with Hamming weight of differences/masks

• correlation matrix has fewer zeroes than DP table

• Popular choice is n = 5: Keccak and Ascon

• Extreme: in Subterranean n = 257

• Excellent trade-off between implementation cost and non-linearity
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The linear layer



Wide trail strategy

• linear layer split in mixing layer and shuffle

• Cell-oriented (aligned)

• state is an array of cells, defined by the S-box layer: typically bytes or nibbles

• mixlayer operates on super-cells: sub-arrays of cells

• shuffle moves cells to different super-cells

• analysis and specification is natural at the cell level

• Bit-oriented (non-aligned)

• three layers partition the statebits in different ways

• analysis and specification is natural at the bit level
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Square approach [Daemen & Rijmen 1997]

• State as a 4 by 4 array of bytes

• Powerful S-box operating on individual bytes

• Mixing layer operating in parallel on each 4-byte column

• Multiplication in F28 with a 4× 4 matrix

• Matrix is MDS, has branch number 5: at least 5 active bytes before and after

• Matrix symmetry: it is circulant

• Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

• Shuffle moving bytes of a column to different columns: here transposing the array

• Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53



Square approach [Daemen & Rijmen 1997]

• State as a 4 by 4 array of bytes

• Powerful S-box operating on individual bytes

• Mixing layer operating in parallel on each 4-byte column

• Multiplication in F28 with a 4× 4 matrix

• Matrix is MDS, has branch number 5: at least 5 active bytes before and after

• Matrix symmetry: it is circulant

• Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

• Shuffle moving bytes of a column to different columns: here transposing the array

• Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53



Square approach [Daemen & Rijmen 1997]

• State as a 4 by 4 array of bytes

• Powerful S-box operating on individual bytes

• Mixing layer operating in parallel on each 4-byte column

• Multiplication in F28 with a 4× 4 matrix

• Matrix is MDS, has branch number 5: at least 5 active bytes before and after

• Matrix symmetry: it is circulant

• Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

• Shuffle moving bytes of a column to different columns: here transposing the array

• Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53



Square approach [Daemen & Rijmen 1997]

• State as a 4 by 4 array of bytes

• Powerful S-box operating on individual bytes

• Mixing layer operating in parallel on each 4-byte column

• Multiplication in F28 with a 4× 4 matrix

• Matrix is MDS, has branch number 5: at least 5 active bytes before and after

• Matrix symmetry: it is circulant

• Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

• Shuffle moving bytes of a column to different columns: here transposing the array

• Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53



Square approach [Daemen & Rijmen 1997]

• State as a 4 by 4 array of bytes

• Powerful S-box operating on individual bytes

• Mixing layer operating in parallel on each 4-byte column

• Multiplication in F28 with a 4× 4 matrix

• Matrix is MDS, has branch number 5: at least 5 active bytes before and after

• Matrix symmetry: it is circulant

• Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

• Shuffle moving bytes of a column to different columns: here transposing the array

• Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53



Square approach [Daemen & Rijmen 1997]

• State as a 4 by 4 array of bytes

• Powerful S-box operating on individual bytes

• Mixing layer operating in parallel on each 4-byte column

• Multiplication in F28 with a 4× 4 matrix

• Matrix is MDS, has branch number 5: at least 5 active bytes before and after

• Matrix symmetry: it is circulant

• Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

• Shuffle moving bytes of a column to different columns: here transposing the array

• Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53



Square approach [Daemen & Rijmen 1997]

• State as a 4 by 4 array of bytes

• Powerful S-box operating on individual bytes

• Mixing layer operating in parallel on each 4-byte column

• Multiplication in F28 with a 4× 4 matrix

• Matrix is MDS, has branch number 5: at least 5 active bytes before and after

• Matrix symmetry: it is circulant

• Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

• Shuffle moving bytes of a column to different columns: here transposing the array

• Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53



Square approach [Daemen & Rijmen 1997]

• State as a 4 by 4 array of bytes

• Powerful S-box operating on individual bytes

• Mixing layer operating in parallel on each 4-byte column

• Multiplication in F28 with a 4× 4 matrix

• Matrix is MDS, has branch number 5: at least 5 active bytes before and after

• Matrix symmetry: it is circulant

• Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

• Shuffle moving bytes of a column to different columns: here transposing the array

• Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53



Square approach [Daemen & Rijmen 1997]

• State as a 4 by 4 array of bytes

• Powerful S-box operating on individual bytes

• Mixing layer operating in parallel on each 4-byte column

• Multiplication in F28 with a 4× 4 matrix

• Matrix is MDS, has branch number 5: at least 5 active bytes before and after

• Matrix symmetry: it is circulant

• Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

• Shuffle moving bytes of a column to different columns: here transposing the array

• Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53



Square approach [Daemen & Rijmen 1997]

• State as a 4 by 4 array of bytes

• Powerful S-box operating on individual bytes

• Mixing layer operating in parallel on each 4-byte column

• Multiplication in F28 with a 4× 4 matrix

• Matrix is MDS, has branch number 5: at least 5 active bytes before and after

• Matrix symmetry: it is circulant

• Transformation symmetry: multi-permutation where any 4 entries out of 8

can be chosen

• Shuffle moving bytes of a column to different columns: here transposing the array

• Easy to prove that any 4-round trail has at least 25 active S-boxes

38/53



Generalizations of and advances in the square approach

Function shape cells width type

Rijndael [Daemen & Rijmen, 1998] 4× (4 to 8) bytes 128 to 256 block

Whirlpool [Rijmen & Barreto, 2000] 82 bytes 512 block

Groestl [Rechberger et al., 2008] 82 bytes 512 perm

ECHO [Benadjila et al., 2008] 44 bytes 2048 perm

JH [Wu, 2008] 28 nibbles 1024 perm

Primates [Andreeva et al., 2014] (5 or 7)× 8 5-bit 200 or 280 perm

Saturnin [Canteaut et al., 2019] 43 nibbles 256 block

Advances in building efficient MDS matrices: +60 publications at crypto venues

• mostly focusing on 4× 4 matrices operating on bytes or nibbles

• goal: reduce the total xor count or xor depth

• insight: cost increases sharply with MDS matrix dimension
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The best square-approach design: the block cipher Saturnin [Canteaut et al., 2019]

• S-box

• 4-bit S-box instead of 8-bit one

• no power function but w ≥ 2

• cost 1, 5 xor plus 1, 5 and/or per bit instead of 11 xor plus 4 and/or for AES

• MDS matrix in mixlayer

• 4× 4 operating on elements of F24

• Cost 2, 25 xor per bit instead of 3 xor per bit for AES

• Global structure

• Cube with side 4 of elements of F24

• Two different shuffles in rounds with index 1 mod 4 and 3 mod 4

• Any 8-round trail has at least 53 = 125 active S-boxes
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Showdown Saturnin vs AES (not counting round key addition)

AES

# cost min. trail

rounds xor and/or weight

1 14 4 6

2 28 8 30

3 42 12 56

4 56 16 150

Saturnin

# cost min. trail

rounds xor and/or weight

1 3,75 1,5 2

2 7,5 3 10

3 11,25 4,5 18

4 15 6 50

5 18,75 7,5 82

6 22,5 9 90

7 26,25 10,5 122

8 30 12 250
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Limitations of the Square approach

Hourglass trail profile effect:

• You can have light S-boxes or light MDS matrices or few rounds

• . . . but not all at the same time

• This is because sparse states propagate to sparse in both directions

• Example: 16− 4− 1− 4− 16 profile

Clustering and clipping in the AES superbox:

• massive clustering of trails in differentials [Daemen & Rijmen, SCN 2006]

• clipping: DP(Q) strongly deviates from EDP(Q) for most trails [Daemen & Rijmen,

IET 2007]
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Clustering and clipping in the Saturnin superbox, illustrated

Much less clustering and clipping than in AES thanks to smaller S-box, still significant

graph courtesy of Giovanni Uchua de Assis
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Bit-oriented mixing

• In general it is just a binary matrix M

• operating on the full state, or

• operating in parallel on parts of the state

• Symmetry: make M circulant

• Polynomial representation of input, output and matrix

b(X )← θ(X )a(X ) mod 1 + Xm

• Invertible if θ(X ) is coprime to 1 + Xm

• Often one takes a multiplication polynomial that is a trinomial

• Unless carefully chosen, inverse of θ(X ) is dense

• no problem if the inverse of the permutation is not needed

• has an advantage for trail bounds
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Some primitives using bit-oriented circulant mixing

Function length # t non-lin. b shuffle

Cellhash [Daemen, AC 1991] 257 3 χ257 257 multiplicative

3Way [Daemen, 1993] 12 7 χ3 96 2 row shift steps

BaseKing [Daemen, 1994] 12 7 χ3 192 2 row shift steps

Panama [Daemen & Clapp, 1997] 17 3 χ17 544 1 row shift step

SHA-256 [NIST, 2001] 32 3 ARX 256 -

SHA-512 [NIST. 2001] 64 3 ARX 512 -

RadioGatun [Bertoni et al., 2006] 19 3 χ19 608 1 row shift step

Ascon [Dobraunig et al., 2019] 64 3 χ5+ 320 different m(x)
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Ascon-p Round function

• 320-bit state: 5 rows x0, . . . , x4 and 64 columns

• Round function R = pL ◦ pS ◦ pC

figure by Ascon team
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Operations dedicated to mixing in Ascon-p

x0 ← x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

x1 ← x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ← x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

x3 ← x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ← x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

6 bitwise XOR 10 bitwise XOR + 10 cyclic shifts
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Showdown Ascon-p vs Saturnin (not counting round key/constant addition)

Saturnin

# cost min. trail

rounds xor and/or weight

1 3,75 1,5 2

2 7,5 3 10

3 11,25 4,5 18

4 15 6 50

5 18,75 7,5 82

6 22,5 9 90

7 26,25 10,5 122

8 30 12 250

Ascon

# cost min. trail weight

rounds xor and/or diff lin

1 4,2 1 2 2

2 8,4 2 8 8

3 12,6 3 40 28

4 16,8 4 ≥ 86 ≥ 88

5 21 5 ≥ 100 ≥ 96

6 25,2 6 ≥ 129 ≥ 132
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Another type of mixing layer: column parity mixers (Keccak-f and Xoodoo)

+ =

column parity θ-effect

fold

• Good average diffusion, identity for states in kernel

• Cost: 2 xor per bit

49/53



Another type of mixing layer: column parity mixers (Keccak-f and Xoodoo)

+ =

column parity θ-effect

fold

• Good average diffusion, identity for states in kernel

• Cost: 2 xor per bit

49/53



Another type of mixing layer: column parity mixers (Keccak-f and Xoodoo)

+ =

column parity θ-effect

fold

• Good average diffusion, identity for states in kernel

• Cost: 2 xor per bit

49/53



Another type of mixing layer: column parity mixers (Keccak-f and Xoodoo)

+=

column parity

unfold
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Showdown Xoodoo vs Ascon-p

Ascon

# cost min. trail weight

rounds xor and/or diff lin

1 4,2 1 2 2

2 8,4 2 8 8

3 12,6 3 40 28

4 16,8 4 ≥ 86 ≥ 88

5 21 5 ≥ 100 ≥ 96

6 25,2 6 ≥ 129 ≥ 132

Xoodoo

# cost min. trail

rounds xor and/or weight

1 3 1 2

2 6 2 8

3 9 3 36

4 12 4 80

5 15 5 ≥ 98

6 18 6 ≥ 132
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Trail clustering and independence of round differentials in Xoodoo

• We investigated clipping and clustering in Xoodoo

• 3-round trails [Bordes et al., CRYPTO 2021]

• we have checked all differential and linear trails with weight up to 50

• each of them is alone in its differential/linear approximation

• for each differential trails we have: DP(Q) = EDP(Q)

• 4-round trails: work in progress

• 4 trails of weight 80

• 2 of these cluster into differential with EDP(a, b) = 2−79

• dependence of round differentials: we’re starting
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Ambition

• Develop a family of permutations with varying widths

• Goals:

• no trails with weight below 128 at cost 12 xor plus 4 and per bit

• no noticeable clustering

• no noticeable dependencies between round differentials

• attention for resistance against summation attacks

• Using:

• χ3 or χ5

• mixing layer with cost 2 xor per bit

• shuffle with as few shifts as we can afford
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Thanks for your attention!
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