

On round functions of permutations

Joan Daemen, Radboud University NL BFA, September 7, 2023 Voss, Norway

ESCADA

Permutation-based cryptography

Keccak (SHA-3) [Bertoni et al. 2007]

Keccak (SHA-3) [Bertoni et al. 2007]

A priori for unkeyed hashing

2/53

Mac computation with sponge

Stream encryption with sponge

Authenticated encryption with sponge/duplex [Bertoni et al., SAC 2011]

Authenticated encryption with sponge/duplex [Bertoni et al., SAC 2011]

Ideal for lightweight!

Authenticated encryption with sponge/duplex [Bertoni et al., SAC 2011]

Ideal for lightweight!

Especially the variant MonkeyDuplex that we proposed in [Bertoni et al., DIAC 2012]

NIST's new standard for lightweight authenticated encryption!

- Farfalle builds a deck function
 - A keyed primitive more versatile than a block cipher

- Farfalle builds a deck function
 - A keyed primitive more versatile than a block cipher
 - For everything keyed, see "Jammin on the deck" [Băcuieți et al., Asiacrypt 2022]

- Farfalle builds a deck function
 - A keyed primitive more versatile than a block cipher
 - For everything keyed, see "Jammin on the deck" [Băcuieți et al., Asiacrypt 2022]
- XOOFFF [Bertoni et al., 2018]
 - Farfalle with XOODOO permutation

- Farfalle builds a deck function
 - A keyed primitive more versatile than a block cipher
 - For everything keyed, see "Jammin on the deck" [Băcuieți et al., Asiacrypt 2022]
- XOOFFF [Bertoni et al., 2018]
 - Farfalle with X00D00 permutation
 - Competitive with AES even on CPUs with AES-NI instruction

• Inverse permutation is not used

- Inverse permutation is not used
 - adversary cannot make *inverse* queries

- Inverse permutation is not used
 - adversary cannot make *inverse* queries
 - more liberty in designing round function

- Inverse permutation is not used
 - adversary cannot make *inverse* queries
 - more liberty in designing round function
- Farfalle is *computationally efficient* thanks to limiting exposure of permutation

- Inverse permutation is not used
 - adversary cannot make *inverse* queries
 - more liberty in designing round function
- Farfalle is *computationally efficient* thanks to limiting exposure of permutation
 - it feeds the output of a keyed compression straight into a stream cipher

- Inverse permutation is not used
 - adversary cannot make *inverse* queries
 - more liberty in designing round function
- Farfalle is *computationally efficient* thanks to limiting exposure of permutation
 - it feeds the output of a keyed compression straight into a stream cipher
 - input and output separated by 3 permutation layers

- Inverse permutation is not used
 - adversary cannot make *inverse* queries
 - more liberty in designing round function
- Farfalle is *computationally efficient* thanks to limiting exposure of permutation
 - it feeds the output of a keyed compression straight into a stream cipher
 - input and output separated by 3 permutation layers
- Duplex-based authenticated encryption is *compact*

- Inverse permutation is not used
 - adversary cannot make *inverse* queries
 - more liberty in designing round function
- Farfalle is *computationally efficient* thanks to limiting exposure of permutation
 - it feeds the output of a keyed compression straight into a stream cipher
 - input and output separated by 3 permutation layers
- Duplex-based authenticated encryption is compact
 - during operation no need for key storage

- Inverse permutation is not used
 - adversary cannot make *inverse* queries
 - more liberty in designing round function
- Farfalle is computationally efficient thanks to limiting exposure of permutation
 - it feeds the output of a keyed compression straight into a stream cipher
 - input and output separated by 3 permutation layers
- Duplex-based authenticated encryption is *compact*
 - during operation no need for key storage
 - in monkeyDuplex presence of nonce allows reducing # rounds after init

- Inverse permutation is not used
 - adversary cannot make *inverse* queries
 - more liberty in designing round function
- Farfalle is computationally efficient thanks to limiting exposure of permutation
 - it feeds the output of a keyed compression straight into a stream cipher
 - input and output separated by 3 permutation layers
- Duplex-based authenticated encryption is *compact*
 - during operation no need for key storage
 - in monkeyDuplex presence of nonce allows reducing # rounds after init
- Interesting hardware benchmarks related to lightweight:
 - https://eprint.iacr.org/2020/1207
 - https://eprint.iacr.org/2020/1459
 - https://eprint.iacr.org/2021/049

Taken from https://eprint.iacr.org/2021/049

^{10/53}

Focus on the permutation

- In dedicated hardware
 - main criterion: energy-efficiency
 - achievable speed
 - lightweight: power-efficiency, area

- In dedicated hardware
 - main criterion: energy-efficiency
 - achievable speed
 - lightweight: power-efficiency, area
- In software
 - main criterion: speed
 - ... on a wide range of CPUs
 - lightweight: RAM, code size, etc.

- In dedicated hardware
 - main criterion: energy-efficiency
 - achievable speed
 - lightweight: power-efficiency, area
- In software
 - main criterion: speed
 - ... on a wide range of CPUs
 - lightweight: RAM, code size, etc.
- When side-channel attacks are a threat

- In dedicated hardware
 - main criterion: energy-efficiency
 - achievable speed
 - lightweight: power-efficiency, area
- In software
 - main criterion: speed
 - ... on a wide range of CPUs
 - lightweight: RAM, code size, etc.
- When side-channel attacks are a threat
 - permutation should run in constant time

- In dedicated hardware
 - main criterion: energy-efficiency
 - achievable speed
 - lightweight: power-efficiency, area
- In software
 - main criterion: speed
 - ... on a wide range of CPUs
 - lightweight: RAM, code size, etc.
- When side-channel attacks are a threat
 - permutation should run in constant time
 - suitability for masking: low algebraic degree building blocks

- In dedicated hardware
 - main criterion: energy-efficiency
 - achievable speed
 - lightweight: power-efficiency, area
- In software
 - main criterion: speed
 - ... on a wide range of CPUs
 - lightweight: RAM, code size, etc.
- When side-channel attacks are a threat
 - permutation should run in constant time
 - suitability for masking: low algebraic degree building blocks
- As opposed to block ciphers: no need for efficient inverse
Propagation properties required from a permutation (of \mathbb{F}_2^n)

Differential probability (DP) of a differential (a, b)

$$\mathsf{DP}(a,b) = \frac{\#\{x \in \mathbb{F}_2^n \mid f(x+a) + f(x) = b\}}{2^n}$$

Propagation properties required from a permutation (of \mathbb{F}_2^n)

Differential probability (DP) of a differential (a, b)

$$\mathsf{DP}(a, b) = \frac{\#\{x \in \mathbb{F}_2^n \mid f(x + a) + f(x) = b\}}{2^n}$$

Correlation and linear potential (LP) of a linear approximation (a, b)

$$\mathrm{C}(a,b) = \frac{\sum_{x \in \mathbb{F}_2^n} (-1)^{a^{\mathrm{T}}x + b^{\mathrm{T}}f(x)}}{2^n} \text{ and } \mathrm{LP}(a,b) = \mathrm{C}^2(a,b)$$

Propagation properties required from a permutation (of \mathbb{F}_2^n)

Differential probability (DP) of a differential (a, b)

$$\mathsf{DP}(a, b) = \frac{\#\{x \in \mathbb{F}_2^n \mid f(x + a) + f(x) = b\}}{2^n}$$

Correlation and linear potential (LP) of a linear approximation (a, b)

$$\mathrm{C}(a,b) = \frac{\sum_{x \in \mathbb{F}_2^n} (-1)^{a^{\mathrm{T}}x + b^{\mathrm{T}}f(x)}}{2^n} \text{ and } \mathrm{LP}(a,b) = \mathrm{C}^2(a,b)$$

LC DC requirements are of the following type:

 $\forall (a, b) \neq (0, 0) : DP(a, b) < \text{ limit}$ $\forall (a, b) \neq (0, 0) : LP(a, b) < \text{ limit}$

• There are other propagation properties that play a role in certain attacks

- There are other propagation properties that play a role in certain attacks
- The most powerful in many scenario's are *summing attacks*

- There are other propagation properties that play a role in certain attacks
- The most powerful in many scenario's are summing attacks
 - AKA higher order differentials, cube attacks, division property, ...

- There are other propagation properties that play a role in certain attacks
- The most powerful in many scenario's are summing attacks
 - AKA higher order differentials, cube attacks, division property, ...
 - principle: summing the outputs corresponding to inputs in a large set V

- There are other propagation properties that play a role in certain attacks
- The most powerful in many scenario's are summing attacks
 - AKA higher order differentials, cube attacks, division property, ...
 - principle: summing the outputs corresponding to inputs in a large set ${\it V}$
 - Often V is an affine space

- There are other propagation properties that play a role in certain attacks
- The most powerful in many scenario's are summing attacks
 - AKA higher order differentials, cube attacks, division property, ...
 - principle: summing the outputs corresponding to inputs in a large set ${\it V}$
 - Often V is an affine space
 - used as a distinguisher

- There are other propagation properties that play a role in certain attacks
- The most powerful in many scenario's are summing attacks
 - AKA higher order differentials, cube attacks, division property, ...
 - principle: summing the outputs corresponding to inputs in a large set V
 - Often V is an affine space
 - used as a distinguisher
 - or to harvest (linear) equations in unknown state bits

Requirements related to summing attacks are of the following type:

$$orall V \subset \mathbb{F}_2^n$$
 such that $orall x \in \mathbb{F}_2^n : \sum_{v \in V} f(x+v) = 0, |V| > \ ext{limit}$

- Permutation as the repetition of a relatively simple round function
 - similar to block ciphers, e.g., DES, Rijndael
 - efficient in hardware but also software

- Permutation as the repetition of a relatively simple round function
 - similar to block ciphers, e.g., DES, Rijndael
 - efficient in hardware but also software
- There are different kinds of round functions
 - Feistel: function applied to one half, result added to other half and swap
 - generalized Feistel: multiple parts
 - Addition, Rotation, XOR (ARX), ...

- Permutation as the repetition of a relatively simple round function
 - similar to block ciphers, e.g., DES, Rijndael
 - efficient in hardware but also software
- There are different kinds of round functions
 - Feistel: function applied to one half, result added to other half and swap
 - generalized Feistel: multiple parts
 - Addition, Rotation, XOR (ARX), ...
 - symmetric, consisting of a non-linear layer and a linear layer

- Permutation as the repetition of a relatively simple round function
 - similar to block ciphers, e.g., DES, Rijndael
 - efficient in hardware but also software
- There are different kinds of round functions
 - Feistel: function applied to one half, result added to other half and swap
 - generalized Feistel: multiple parts
 - Addition, Rotation, XOR (ARX), ...
 - symmetric, consisting of a non-linear layer and a linear layer
- We assume the latter with $\mathrm{R} = \gamma \circ \lambda$

- Permutation as the repetition of a relatively simple round function
 - similar to block ciphers, e.g., DES, Rijndael
 - efficient in hardware but also software
- There are different kinds of round functions
 - Feistel: function applied to one half, result added to other half and swap
 - generalized Feistel: multiple parts
 - Addition, Rotation, XOR (ARX), ...
 - symmetric, consisting of a non-linear layer and a linear layer
- We assume the latter with $\mathrm{R}=\gamma\circ\lambda$
 - non-linear layer γ of identical S-boxes (we'll assume)

- Permutation as the repetition of a relatively simple round function
 - similar to block ciphers, e.g., DES, Rijndael
 - efficient in hardware but also software
- There are different kinds of round functions
 - Feistel: function applied to one half, result added to other half and swap
 - generalized Feistel: multiple parts
 - Addition, Rotation, XOR (ARX), ...
 - symmetric, consisting of a non-linear layer and a linear layer
- We assume the latter with $\mathrm{R}=\gamma\circ\lambda$
 - non-linear layer γ of identical S-boxes (we'll assume)
 - linear layer λ where $y = \lambda(x) = Mx + c$ (affine really)

• For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard

- For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
- But over a single round computing DP(a, b) or LP(a, b) is easy

- For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
- But over a single round computing DP(a, b) or LP(a, b) is easy
- Round diff/approx $(a^0, a^1), (a^1, a^2), \ldots$ chain to trails $Q = (a^0, a^1, a^2, \ldots)$

- For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
- But over a single round computing DP(a, b) or LP(a, b) is easy
- Round diff/approx $(a^0, a^1), (a^1, a^2), \ldots$ chain to trails $Q = (a^0, a^1, a^2, \ldots)$
- General approach for differential propagation
 - approximate trail DP(Q) by $EDP(Q) = \prod_i DP(a^{i-1}, a^i)$

- For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
- But over a single round computing DP(a, b) or LP(a, b) is easy
- Round diff/approx $(a^0, a^1), (a^1, a^2), \ldots$ chain to trails $Q = (a^0, a^1, a^2, \ldots)$
- General approach for differential propagation
 - approximate trail DP(Q) by $EDP(Q) = \prod_i DP(a^{i-1}, a^i)$
 - bound EDP(Q) (often during the design effort)

- For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
- But over a single round computing DP(a, b) or LP(a, b) is easy
- Round diff/approx $(a^0, a^1), (a^1, a^2), \ldots$ chain to trails $Q = (a^0, a^1, a^2, \ldots)$
- General approach for differential propagation
 - approximate trail DP(Q) by $EDP(Q) = \prod_i DP(a^{i-1}, a^i)$
 - bound EDP(Q) (often during the design effort)
 - then verify $DP(Q) \approx EDP(Q)$: hypothesis of stochastic equivalence

- For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
- But over a single round computing DP(a, b) or LP(a, b) is easy
- Round diff/approx $(a^0, a^1), (a^1, a^2), \ldots$ chain to trails $Q = (a^0, a^1, a^2, \ldots)$
- General approach for differential propagation
 - approximate trail DP(Q) by $EDP(Q) = \prod_i DP(a^{i-1}, a^i)$
 - bound EDP(Q) (often during the design effort)
 - then verify $DP(Q) \approx EDP(Q)$: hypothesis of stochastic equivalence
 - and check clustering of trails in differentials as $DP(a, b) = DP_{Q \in (a,b)}(Q)$

- For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
- But over a single round computing DP(a, b) or LP(a, b) is easy
- Round diff/approx $(a^0, a^1), (a^1, a^2), \ldots$ chain to trails $Q = (a^0, a^1, a^2, \ldots)$
- General approach for differential propagation
 - approximate trail DP(Q) by $EDP(Q) = \prod_i DP(a^{i-1}, a^i)$
 - bound EDP(Q) (often during the design effort)
 - then verify $DP(Q) \approx EDP(Q)$: hypothesis of stochastic equivalence
 - and check clustering of trails in differentials as $DP(a, b) = DP_{Q \in (a,b)}(Q)$
- General approach for correlation
 - correlation contribution of a trail is $C(Q) = \prod_i C(a^{i-1}, a^i)$

- For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
- But over a single round computing DP(a, b) or LP(a, b) is easy
- Round diff/approx $(a^0, a^1), (a^1, a^2), \ldots$ chain to trails $Q = (a^0, a^1, a^2, \ldots)$
- General approach for differential propagation
 - approximate trail DP(Q) by $EDP(Q) = \prod_i DP(a^{i-1}, a^i)$
 - bound EDP(Q) (often during the design effort)
 - then verify $DP(Q) \approx EDP(Q)$: hypothesis of stochastic equivalence
 - and check clustering of trails in differentials as $DP(a, b) = DP_{Q \in (a,b)}(Q)$
- General approach for correlation
 - correlation contribution of a trail is $C(Q) = \prod_i C(a^{i-1}, a^i)$
 - bound LP(Q) (= $C^2(Q)$) (during the design effort)

- For multi-round permutation f bounding DP(a, b) or LP(a, b) directly is hard
- But over a single round computing DP(a, b) or LP(a, b) is easy
- Round diff/approx $(a^0, a^1), (a^1, a^2), \ldots$ chain to trails $Q = (a^0, a^1, a^2, \ldots)$
- General approach for differential propagation
 - approximate trail DP(Q) by $EDP(Q) = \prod_i DP(a^{i-1}, a^i)$
 - bound EDP(Q) (often during the design effort)
 - then verify $DP(Q) \approx EDP(Q)$: hypothesis of stochastic equivalence
 - and check clustering of trails in differentials as $DP(a, b) = DP_{Q \in (a,b)}(Q)$
- General approach for correlation
 - correlation contribution of a trail is $C(Q) = \prod_i C(a^{i-1}, a^i)$
 - bound LP(Q) (= $C^2(Q)$) (during the design effort)
 - then check clustering of trails as $C(a, b) = C_{Q \in (a,b)}(Q)$

For a differential (a^0, a^1) over R we have

 $\mathsf{DP}_{\mathrm{R}}(a^0,a^1)=\mathsf{DP}_{\gamma}(b^0,a^1)$ with $b^0=\mathrm{M}a^0$

For a differential (a^0, a^1) over R we have

 $\mathsf{DP}_{\mathrm{R}}(a^0,a^1)=\mathsf{DP}_{\gamma}(b^0,a^1)$ with $b^0=\mathrm{M}a^0$

We can further split $DP_{\gamma}(b^0, a^1)$ with $b^0 = (b_0, b_1, \dots, b_{m-1}), a^1 = (a_0, a_1, \dots, a_{m-1})$ $DP_{R}(a^0, a^1) = DP_{\gamma}(b^0, a^1) = \prod_i DP_{S}(b_i, a_i)$

For a differential (a^0, a^1) over R we have

 $\mathsf{DP}_{\mathrm{R}}(a^0,a^1)=\mathsf{DP}_{\gamma}(b^0,a^1)$ with $b^0=\mathrm{M}a^0$

We can further split
$$DP_{\gamma}(b^0, a^1)$$
 with $b^0 = (b_0, b_1, \dots, b_{m-1}), a^1 = (a_0, a_1, \dots, a_{m-1})$
 $DP_{R}(a^0, a^1) = DP_{\gamma}(b^0, a^1) = \prod_i DP_S(b_i, a_i)$

Switching from DP to weight with: $2^{-w(a,b)} = DP(a,b)$ makes it additive

$$w_{\mathrm{R}}(a^0,a^1) = \sum_i w(b_i,a_i)$$
 with $b^0 = \mathrm{M}a^0$

For a differential (a^0, a^1) over R we have

 $\mathsf{DP}_{\mathrm{R}}(a^0,a^1)=\mathsf{DP}_{\gamma}(b^0,a^1)$ with $b^0=\mathrm{M}a^0$

We can further split
$$DP_{\gamma}(b^0, a^1)$$
 with $b^0 = (b_0, b_1, \dots, b_{m-1}), a^1 = (a_0, a_1, \dots, a_{m-1})$
 $DP_{R}(a^0, a^1) = DP_{\gamma}(b^0, a^1) = \prod_i DP_{S}(b_i, a_i)$

Switching from DP to weight with: $2^{-w(a,b)} = DP(a,b)$ makes it additive

$$w_{\mathrm{R}}(a^0,a^1) = \sum_i w(b_i,a_i)$$
 with $b^0 = \mathrm{M}a^0$

An S-box with zero input difference contributes 0 to the weight: it is passive. $\frac{16}{53}$

For a linear approximation (a^0, a^1) over R we have

 $\mathsf{LP}_{\mathrm{R}}(a^0,a^1) = \mathsf{LP}_{\gamma}(b^0,a^1)$ with $a^0 = \mathrm{M}^{\mathrm{T}} b^0$

For a linear approximation (a^0, a^1) over R we have

 $\mathsf{LP}_{\mathrm{R}}(a^0,a^1) = \mathsf{LP}_{\gamma}(b^0,a^1)$ with $a^0 = \mathrm{M}^{\mathrm{T}} b^0$

We can further split $LP_{\gamma}(b^0, a^1)$ with $b^0 = (b_0, b_1, \dots, b_{m-1}), a^1 = (a_0, a_1, \dots, a_{m-1})$ $LP_{R}(a^0, a^1) = LP_{\gamma}(b^0, a^1) = \prod_i LP_{S}(b_i, a_i)$

For a linear approximation (a^0, a^1) over R we have

 $\mathsf{LP}_{\mathrm{R}}(a^0,a^1) = \mathsf{LP}_{\gamma}(b^0,a^1)$ with $a^0 = \mathrm{M}^{\mathrm{T}} b^0$

We can further split $LP_{\gamma}(b^0, a^1)$ with $b^0 = (b_0, b_1, \dots, b_{m-1}), a^1 = (a_0, a_1, \dots, a_{m-1})$ $LP_{R}(a^0, a^1) = LP_{\gamma}(b^0, a^1) = \prod_i LP_S(b_i, a_i)$

Switching from LP to weight with: $2^{-w(a,b)} = LP(a,b)$ makes it additive

$$w_{\mathrm{R}}(a^0,a^1) = \sum_i w(\Delta_{b_i},\Delta_{a_i}) ext{ with } a^0 = \mathrm{M}^{\mathrm{T}} b^0$$

For a linear approximation (a^0, a^1) over R we have

 $\mathsf{LP}_{\mathrm{R}}(a^0,a^1) = \mathsf{LP}_{\gamma}(b^0,a^1)$ with $a^0 = \mathrm{M}^{\mathrm{T}} b^0$

We can further split $LP_{\gamma}(b^0, a^1)$ with $b^0 = (b_0, b_1, \dots, b_{m-1}), a^1 = (a_0, a_1, \dots, a_{m-1})$ $LP_{R}(a^0, a^1) = LP_{\gamma}(b^0, a^1) = \prod_i LP_S(b_i, a_i)$

Switching from LP to weight with: $2^{-w(a,b)} = LP(a,b)$ makes it additive

$$w_{\mathrm{R}}(a^0,a^1) = \sum_i w(\Delta_{b_i},\Delta_{a_i})$$
 with $a^0 = \mathrm{M}^{\mathrm{T}} b^0$

An S-box with zero output mask contributes 0 to the weight: it is passive.

Weight of trails

The weight of a differential trail is the sum of the weights of its active S-boxes

$$w(Q) = \sum_{i,r} w(b_i^{r-1}, a_i^r)$$
 with $b^i = Ma^i$ and $\mathsf{DP}(Q) \approx \mathsf{EDP}(Q) = 2^{-w(Q)}$

The weight of a linear trail is the sum of the weights of its active S-boxes

$$w(Q) = \sum_{i,r} w(b_i^{r-1}, a_i^r)$$
 with $a^i = M^T b^i$ and $LP(Q) = 2^{-w(Q)}$
• Design strategy addressing resistance against LC and DC

- $\bullet\,$ Design strategy addressing resistance against LC and DC
 - $\bullet\,$ reaction to DC/LC attacks on DES that made use of light trails

- Design strategy addressing resistance against LC and DC
 - reaction to DC/LC attacks on DES that made use of light trails
 - quasi consensus among cryptographers: we need wider S-boxes

- Design strategy addressing resistance against LC and DC
 - reaction to DC/LC attacks on DES that made use of light trails
 - quasi consensus among cryptographers: we need wider S-boxes
 - wide trail: no, we need more active S-boxes (or non-linear operations)

- Design strategy addressing resistance against LC and DC
 - reaction to DC/LC attacks on DES that made use of light trails
 - quasi consensus among cryptographers: we need wider S-boxes
 - wide trail: no, we need more active S-boxes (or non-linear operations)
- Idea: round composed of three layers
 - non-linear layer operating locally
 - mixing layer operating locally
 - shuffle layer(s): moving nearby bits/cells away from each other
- Two flavours: aligned (or cell-oriented) and non-aligned (or bit-oriented)

- Design strategy addressing resistance against LC and DC
 - reaction to DC/LC attacks on DES that made use of light trails
 - quasi consensus among cryptographers: we need wider S-boxes
 - wide trail: no, we need more active S-boxes (or non-linear operations)
- Idea: round composed of three layers
 - non-linear layer operating locally
 - mixing layer operating locally
 - shuffle layer(s): moving nearby bits/cells away from each other
- Two flavours: aligned (or cell-oriented) and non-aligned (or bit-oriented)
- Symmetry plays an important role

- $\bullet\,$ Design strategy addressing resistance against LC and DC
 - $\bullet\,$ reaction to DC/LC attacks on DES that made use of light trails
 - quasi consensus among cryptographers: we need wider S-boxes
 - wide trail: no, we need more active S-boxes (or non-linear operations)
- Idea: round composed of three layers
 - non-linear layer operating locally
 - mixing layer operating locally
 - shuffle layer(s): moving nearby bits/cells away from each other
- Two flavours: aligned (or cell-oriented) and non-aligned (or bit-oriented)
- Symmetry plays an important role
 - leads to simple specification

- $\bullet\,$ Design strategy addressing resistance against LC and DC
 - $\bullet\,$ reaction to DC/LC attacks on DES that made use of light trails
 - quasi consensus among cryptographers: we need wider S-boxes
 - wide trail: no, we need more active S-boxes (or non-linear operations)
- Idea: round composed of three layers
 - non-linear layer operating locally
 - mixing layer operating locally
 - shuffle layer(s): moving nearby bits/cells away from each other
- Two flavours: aligned (or cell-oriented) and non-aligned (or bit-oriented)
- Symmetry plays an important role
 - leads to simple specification
 - less corners where weaknesses can hide

Thanks to *superboxes* proving any 4-round trail has at least 25 active S-boxes is easy!

Proving trail bounds requires computer-assisted search

Choice of the S-box

• Permutation operating on \mathbb{F}_2^n for some small *n* typically $\in \{3, 4, 5, 6, 8\}$

- Permutation operating on \mathbb{F}_2^n for some small *n* typically $\in \{3, 4, 5, 6, 8\}$
 - For block ciphers *n* was quasi always a power of 2
 - For permutations this is no longer required
- Wish list:

- Permutation operating on \mathbb{F}_2^n for some small *n* typically $\in \{3, 4, 5, 6, 8\}$
 - For block ciphers *n* was quasi always a power of 2
 - For permutations this is no longer required
- Wish list:
 - no differentials with high DP

- Permutation operating on \mathbb{F}_2^n for some small *n* typically $\in \{3, 4, 5, 6, 8\}$
 - For block ciphers *n* was quasi always a power of 2
 - For permutations this is no longer required
- Wish list:
 - no differentials with high DP
 - no linear approximations with high LP

- Permutation operating on \mathbb{F}_2^n for some small *n* typically $\in \{3, 4, 5, 6, 8\}$
 - For block ciphers *n* was quasi always a power of 2
 - For permutations this is no longer required
- Wish list:
 - no differentials with high DP
 - no linear approximations with high LP
 - low degree (for protection against masking)

- Permutation operating on \mathbb{F}_2^n for some small *n* typically $\in \{3, 4, 5, 6, 8\}$
 - For block ciphers *n* was quasi always a power of 2
 - For permutations this is no longer required
- Wish list:
 - no differentials with high DP
 - no linear approximations with high LP
 - low degree (for protection against masking)
 - low computational complexity

- Permutation operating on \mathbb{F}_2^n for some small *n* typically $\in \{3, 4, 5, 6, 8\}$
 - For block ciphers *n* was quasi always a power of 2
 - For permutations this is no longer required
- Wish list:
 - no differentials with high DP
 - no linear approximations with high LP
 - low degree (for protection against masking)
 - low computational complexity
 - symmetry: as much as we can get

- Permutation operating on \mathbb{F}_2^n for some small *n* typically $\in \{3, 4, 5, 6, 8\}$
 - For block ciphers *n* was quasi always a power of 2
 - For permutations this is no longer required
- Wish list:
 - no differentials with high DP
 - no linear approximations with high LP
 - low degree (for protection against masking)
 - low computational complexity
 - symmetry: as much as we can get
- Computational complexity

- Permutation operating on \mathbb{F}_2^n for some small *n* typically $\in \{3, 4, 5, 6, 8\}$
 - For block ciphers *n* was quasi always a power of 2
 - For permutations this is no longer required
- Wish list:
 - no differentials with high DP
 - no linear approximations with high LP
 - low degree (for protection against masking)
 - low computational complexity
 - symmetry: as much as we can get
- Computational complexity
 - in hardware: # gate equivalent, circuit depth

- Permutation operating on \mathbb{F}_2^n for some small *n* typically $\in \{3, 4, 5, 6, 8\}$
 - For block ciphers *n* was quasi always a power of 2
 - For permutations this is no longer required
- Wish list:
 - no differentials with high DP
 - no linear approximations with high LP
 - low degree (for protection against masking)
 - low computational complexity
 - symmetry: as much as we can get
- Computational complexity
 - in hardware: # gate equivalent, circuit depth
 - in bit-sliced software: number of bitwise Boolean operations

We can generalize to transformations of \mathbb{F}_{p^n} with p a prime

We can generalize to transformations of \mathbb{F}_{p^n} with p a prime

DP of differentials (a, b) of a transformation of \mathbb{F}_{p^n}

$$\mathsf{DP}(a, b) = \frac{\#\{x \mid f(x + a) - f(x) = b\}}{p^n}$$

We can generalize to transformations of \mathbb{F}_{p^n} with p a prime

DP of differentials (a, b) of a transformation of \mathbb{F}_{p^n}

$$\mathsf{DP}(a,b) = \frac{\#\{x \mid f(x+a) - f(x) = b\}}{p^n}$$

For correlation we need the trace function that maps \mathbb{F}_{p^n} to \mathbb{F}_p : $\operatorname{Tr}(x) = \sum_{0 \le i \le n} x^{p^i}$

We can generalize to transformations of \mathbb{F}_{p^n} with p a prime

DP of differentials (a, b) of a transformation of \mathbb{F}_{p^n}

$$\mathsf{DP}(a,b) = \frac{\#\{x \mid f(x+a) - f(x) = b\}}{p^n}$$

For correlation we need the trace function that maps \mathbb{F}_{p^n} to \mathbb{F}_p : $\operatorname{Tr}(x) = \sum_{0 \le i \le n} x^{p^i}$

Correlation and LP of linear approximations (a, b) of a transformation of \mathbb{F}_{p^n}

$$C(a, b) = \frac{\sum_{x} \omega^{\operatorname{Tr}(ax - bf(x))}}{p^{n}} \text{ with } \omega = e^{\frac{2\pi i}{p}}$$
$$LP(a, b) = C(a, b)\overline{C}(a, b)$$

- Functions of the form $y \leftarrow x^e$
- Invertible if e is coprime to $p^n 1$
- Invertible power functions form a group
 - isomorphic to $(\mathbb{Z}/(p^n-1)\mathbb{Z})^*$
 - order is $\varphi(p^n-1)$
- Inverse of $y \leftarrow x^e$ is $y \leftarrow x^d$ with $d = e^{-1} \mod (p^n 1)$

- Differentials and correlation:
 - $DP(a, b) = p^{-n} \# \{ x \mid (x + a)^e x^e = b \}$
 - $C(a, b) = p^{-n} \sum_{x} \omega^{Tr(ax-bx^e)}$

- Differentials and correlation:
 - $DP(a, b) = p^{-n} \# \{ x \mid (x + a)^e x^e = b \}$
 - $C(a, b) = p^{-n} \sum_{x} \omega^{Tr(ax-bx^e)}$
- Symmetry in propagation

- Differentials and correlation:
 - $\mathsf{DP}(a, b) = p^{-n} \# \{ x \mid (x + a)^e x^e = b \}$
 - $C(a, b) = p^{-n} \sum_{x} \omega^{Tr(ax-bx^e)}$
- Symmetry in propagation
 - $DP(a, b) = DP(1, ba^{-e}) = DP(ab^{-d}, 1)$

- Differentials and correlation:
 - $\mathsf{DP}(a, b) = p^{-n} \# \{ x \mid (x + a)^e x^e = b \}$
 - $C(a, b) = p^{-n} \sum_{x} \omega^{Tr(ax-bx^e)}$
- Symmetry in propagation
 - $DP(a, b) = DP(1, ba^{-e}) = DP(ab^{-d}, 1)$
 - $C(a,b) = C(1,ba^{-e}) = C(ab^{-d},1)$

- Differentials and correlation:
 - $DP(a, b) = p^{-n} \# \{ x \mid (x + a)^e x^e = b \}$
 - $C(a, b) = p^{-n} \sum_{x} \omega^{Tr(ax-bx^e)}$
- Symmetry in propagation
 - $DP(a, b) = DP(1, ba^{-e}) = DP(ab^{-d}, 1)$
 - $C(a,b) = C(1,ba^{-e}) = C(ab^{-d},1)$
- Power functions with $e = p^i$ are *linear*, giving additional symmetry

- Differentials and correlation:
 - $DP(a, b) = p^{-n} \# \{ x \mid (x + a)^e x^e = b \}$
 - $C(a, b) = p^{-n} \sum_{x} \omega^{Tr(ax-bx^e)}$
- Symmetry in propagation
 - $DP(a, b) = DP(1, ba^{-e}) = DP(ab^{-d}, 1)$
 - $C(a,b) = C(1,ba^{-e}) = C(ab^{-d},1)$
- Power functions with $e = p^i$ are *linear*, giving additional symmetry
 - $\forall i < n : \mathsf{DP}(1, p^i b) = \mathsf{DP}(1, b)$
 - $\forall i < n : \mathcal{C}(1, p^i b) = \mathcal{C}(1, b)$
• Converting from \mathbb{F}_{p^n} to \mathbb{F}_p^n requires choice of a basis

- Converting from \mathbb{F}_{p^n} to \mathbb{F}_p^n requires choice of a basis
- Normal basis: $\{\alpha, \alpha^p, \dots, \alpha^{p^{n-1}}\}$

- Converting from \mathbb{F}_{p^n} to \mathbb{F}_p^n requires choice of a basis
- Normal basis: $\{\alpha, \alpha^p, \dots, \alpha^{p^{n-1}}\}$
 - Raising to a power p^i in \mathbb{F}_{p^n} corresponds to a cyclic coordinate shift in \mathbb{F}_p^n

- Converting from \mathbb{F}_{p^n} to \mathbb{F}_p^n requires choice of a basis
- Normal basis: $\{\alpha, \alpha^p, \dots, \alpha^{p^{n-1}}\}$
 - Raising to a power p^i in \mathbb{F}_{p^n} corresponds to a cyclic coordinate shift in \mathbb{F}_p^n
 - $(x^e)^p = x^{pe} = (x^p)^e$: power function gives a *shift-invariant S-box*

- Converting from \mathbb{F}_{p^n} to \mathbb{F}_p^n requires choice of a basis
- Normal basis: $\{\alpha, \alpha^p, \dots, \alpha^{p^{n-1}}\}$
 - Raising to a power p^i in \mathbb{F}_{p^n} corresponds to a cyclic coordinate shift in \mathbb{F}_p^n
 - $(x^e)^p = x^{pe} = (x^p)^e$: power function gives a *shift-invariant S-box*
- It also implies a partitioning of exponents in classes

- Converting from \mathbb{F}_{p^n} to \mathbb{F}_p^n requires choice of a basis
- Normal basis: $\{\alpha, \alpha^p, \dots, \alpha^{p^{n-1}}\}$
 - Raising to a power p^i in \mathbb{F}_{p^n} corresponds to a cyclic coordinate shift in \mathbb{F}_p^n
 - $(x^e)^p = x^{pe} = (x^p)^e$: power function gives a *shift-invariant S-box*
- It also implies a partitioning of exponents in classes
 - so $x \leftarrow x^{pe}$ is just $x \leftarrow x^{e}$ followed by a cyclic shift

- Converting from \mathbb{F}_{p^n} to \mathbb{F}_p^n requires choice of a basis
- Normal basis: $\{\alpha, \alpha^p, \dots, \alpha^{p^{n-1}}\}$
 - Raising to a power p^i in \mathbb{F}_{p^n} corresponds to a cyclic coordinate shift in \mathbb{F}_p^n
 - $(x^e)^p = x^{pe} = (x^p)^e$: power function gives a *shift-invariant S-box*
- It also implies a partitioning of exponents in classes
 - so $x \leftarrow x^{pe}$ is just $x \leftarrow x^{e}$ followed by a cyclic shift
 - cyclic shift can be absorbed in linear layer

- Converting from \mathbb{F}_{p^n} to \mathbb{F}_p^n requires choice of a basis
- Normal basis: $\{\alpha, \alpha^p, \dots, \alpha^{p^{n-1}}\}$
 - Raising to a power p^i in \mathbb{F}_{p^n} corresponds to a cyclic coordinate shift in \mathbb{F}_p^n
 - $(x^e)^p = x^{pe} = (x^p)^e$: power function gives a *shift-invariant S-box*
- It also implies a partitioning of exponents in classes
 - so $x \leftarrow x^{pe}$ is just $x \leftarrow x^{e}$ followed by a cyclic shift
 - cyclic shift can be absorbed in linear layer
 - exponents $e, pe, p^2e...$ are equivalent with respect to our analysis

Let's try building an invertible 4-bit S-box from a power function

• We take p = 2, n = 4

Let's try building an invertible 4-bit S-box from a power function

- We take p = 2, n = 4
- (algebraic degree in \mathbb{F}_2^n is Hamming weight of binary representation of e)

Let's try building an invertible 4-bit S-box from a power function

- We take p = 2, n = 4
- (algebraic degree in \mathbb{F}_2^n is Hamming weight of binary representation of e)
- $\varphi(2^4 1) = 8$ candidate exponents in two classes: $\{1, 2, 4, 8\}$ and $\{7, 14, 13, 11\}$

- We take p = 2, n = 4
- (algebraic degree in \mathbb{F}_2^n is Hamming weight of binary representation of e)
- $\varphi(2^4 1) = 8$ candidate exponents in two classes: $\{1, 2, 4, 8\}$ and $\{7, 14, 13, 11\}$
- exponents in $\{1, 2, 4, 8\}$ give linear power functions

- We take p = 2, n = 4
- (algebraic degree in \mathbb{F}_2^n is Hamming weight of binary representation of e)
- $\varphi(2^4 1) = 8$ candidate exponents in two classes: $\{1, 2, 4, 8\}$ and $\{7, 14, 13, 11\}$
- exponents in $\{1, 2, 4, 8\}$ give linear power functions
- Let us take 14

- We take p = 2, n = 4
- (algebraic degree in \mathbb{F}_2^n is Hamming weight of binary representation of e)
- $\varphi(2^4 1) = 8$ candidate exponents in two classes: $\{1, 2, 4, 8\}$ and $\{7, 14, 13, 11\}$
- exponents in $\{1, 2, 4, 8\}$ give linear power functions
- Let us take 14
 - additional symmetry: involution because $14^2 \mod 15 = 1$ so 14 = -1

- We take p = 2, n = 4
- (algebraic degree in \mathbb{F}_2^n is Hamming weight of binary representation of e)
- $\varphi(2^4 1) = 8$ candidate exponents in two classes: $\{1, 2, 4, 8\}$ and $\{7, 14, 13, 11\}$
- exponents in $\{1, 2, 4, 8\}$ give linear power functions
- Let us take 14
 - additional symmetry: involution because $14^2 \mod 15 = 1$ so 14 = -1
 - represents the mapping that takes the multiplicative inverse and maps 0 to 0

- We take p = 2, n = 4
- (algebraic degree in \mathbb{F}_2^n is Hamming weight of binary representation of e)
- $\varphi(2^4 1) = 8$ candidate exponents in two classes: $\{1, 2, 4, 8\}$ and $\{7, 14, 13, 11\}$
- exponents in $\{1, 2, 4, 8\}$ give linear power functions
- Let us take 14
 - additional symmetry: involution because $14^2 \mod 15 = 1$ so 14 = -1
 - represents the mapping that takes the multiplicative inverse and maps 0 to 0
- Multiplicative inverse mapping is often called the Kaisa S-box [Nyberg, EC '93]

DP-table (aka scaled DDT) of $y \leftarrow x^{-1}$ in \mathbb{F}_2^4

1/8	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f	
1	2					1	1		1		1		1	1		
2			1				1		2	1		1	1		1	
3		1					1	1		1	1	1		2		
4					1	1		1		1			2	1	1	
5				1		1		1	1		2	1			1	
6	1			1	1	1	2			1		1				
7	1	1	1			2	1	1							1	
8			1	1	1		1				1			1	2	
9	1	2			1				1			1		1	1	
а		1	1	1		1						2	1	1		
b	1		1		2			1			1	1	1			
С		1	1		1	1			1	2	1					
d	1	1		2						1	1		1		1	
е	1		2	1				1	1	1				1		
f		1		1	1		1	2	1				1			

DP-table of $x \leftarrow x^{-1}$ in \mathbb{F}_2^4 , reordered

1/8	1	α	α^2	α^3	α^4	α^{5}	$\alpha^{\rm 6}$	α^7	α^{8}	α^9	$\alpha^{\rm 10}$	α^{11}	α^{12}	α^{13}	α^{14}
1	2					1		1			1	1		1	1
α					1		1			1	1		1	1	2
α^2				1		1			1	1		1	1	2	
α^3			1		1			1	1		1	1	2		
α^4		1		1			1	1		1	1	2			
α^{5}	1		1			1	1		1	1	2				
α^{6}		1			1	1		1	1	2					1
α^7	1			1	1		1	1	2					1	
α^8			1	1		1	1	2					1		1
α^9		1	1		1	1	2					1		1	
α^{10}	1	1		1	1	2					1		1		
α^{11}	1		1	1	2					1		1			1
α^{12}		1	1	2					1		1			1	1
α^{13}	1	1	2					1		1			1	1	
α^{14}	1	2					1		1			1	1		1

Correlation matrix (aka scaled LAT) of $x \leftarrow x^{-1}$ in \mathbb{F}_2^4

1/4	1	2	3	4	5	6	7	8	9	а	b	С	d	е	f
1	-1		1		1		-1	-1		-1	2	1		1	2
2				1	1	-1	-1		2	2		1	-1	1	-1
3	1		-1	-1	2	1	2	-1		1			-1		1
4		1	-1			1	-1			1	-1	2	2	-1	1
5	1	1	2		-1	1		-1	2		-1	-1			1
6		-1	1	1	1	2		2		-1	-1	1	-1		
7	-1	-1	2	-1			1	1		2	1		1	-1	
8	-1		-1		-1	2	1		1		1		1	2	-1
9		2			2			1	1	-1	1	-1	1	-1	-1
а	-1	2	1	1		-1	2		-1		-1	1		1	
b	2			-1	-1	-1	1	1	1	-1	1	2			
с	1	1		2	-1	1			-1	1	2		-1	-1	
d		-1	-1	2		-1	1	1	1			-1	1		2
е	1	1		-1			-1	2	-1	1		-1		2	1
f	2	-1	1	1	1			-1	-1				2	1	-1

1/4	1	β	β^2	β^3	β^4	β^5	β^{6}	β^7	β^8	β^9	β^{10}	β^{11}	β^{12}	β^{13}	β^{14}
1		-1	-1	1	-1	2	1		-1	1	2		1		
β	-1	-1	1	-1	2	1		-1	1	2		1			
β^2	-1	1	-1	2	1		-1	1	2		1				-1
β^3	1	-1	2	1		-1	1	2		1				-1	-1
eta^{4}	-1	2	1		-1	1	2		1				-1	-1	1
β^5	2	1		-1	1	2		1				-1	-1	1	-1
β^6	1		-1	1	2		1				-1	-1	1	-1	2
β^7		-1	1	2		1				-1	-1	1	-1	2	1
β^8	-1	1	2		1				-1	-1	1	-1	2	1	
β^9	1	2		1				-1	-1	1	-1	2	1		-1
$eta^{ extsf{10}}$	2		1				-1	-1	1	-1	2	1		-1	1
β^{11}		1				-1	-1	1	-1	2	1		-1	1	2
β^{12}	1				-1	-1	1	-1	2	1		-1	1	2	
β^{13}				-1	-1	1	-1	2	1		-1	1	2		1
β^{14}			-1	-1	1	-1	2	1		-1	1	2		1	

31/53

• $\varphi(2^5-1) = 30$ candidate exponents in six classes

- $\varphi(2^5-1) = 30$ candidate exponents in six classes
- Classes represented by $\{1, 3, 21, 5, 25, 30\}$

- $\varphi(2^5-1) = 30$ candidate exponents in six classes
- Classes represented by $\{1,3,21,5,25,30\}$
 - 1 is linear

- $\varphi(2^5-1) = 30$ candidate exponents in six classes
- Classes represented by $\{1,3,21,5,25,30\}$
 - 1 is linear
 - 30 = -1: multiplicative inverse

- $\varphi(2^5-1) = 30$ candidate exponents in six classes
- Classes represented by $\{1, 3, 21, 5, 25, 30\}$
 - 1 is linear
 - 30 = -1: multiplicative inverse
 - 3 and 21 are each other's inverses

- $\varphi(2^5-1) = 30$ candidate exponents in six classes
- Classes represented by $\{1, 3, 21, 5, 25, 30\}$
 - 1 is linear
 - 30 = -1: multiplicative inverse
 - 3 and 21 are each other's inverses
 - 5 and 25 are each other's inverses
- Multiplicative inverse:

- $\varphi(2^5-1) = 30$ candidate exponents in six classes
- Classes represented by {1, 3, 21, 5, 25, 30}
 - 1 is linear
 - 30 = -1: multiplicative inverse
 - 3 and 21 are each other's inverses
 - 5 and 25 are each other's inverses
- Multiplicative inverse:
 - $DP(a, b) = 2^{-4}$ if $Tr((ab)^{-1}) = 0$ or $b = a^{-1}$ and 0 otherwise

- $\varphi(2^5-1)=30$ candidate exponents in six classes
- Classes represented by $\{1, 3, 21, 5, 25, 30\}$
 - 1 is linear
 - 30 = -1: multiplicative inverse
 - 3 and 21 are each other's inverses
 - 5 and 25 are each other's inverses
- Multiplicative inverse:
 - $DP(a, b) = 2^{-4}$ if $Tr((ab)^{-1}) = 0$ or $b = a^{-1}$ and 0 otherwise
 - correlation matrix: $C(a, b) = 2^{-3}x$ with $x \in \{-2, -1, 0, 1, 2, 3\}$ (as found in [Carlet et al., 2010])

- $\varphi(2^5-1)=30$ candidate exponents in six classes
- Classes represented by $\{1, 3, 21, 5, 25, 30\}$
 - 1 is linear
 - 30 = -1: multiplicative inverse
 - 3 and 21 are each other's inverses
 - 5 and 25 are each other's inverses
- Multiplicative inverse:
 - $DP(a, b) = 2^{-4}$ if $Tr((ab)^{-1}) = 0$ or $b = a^{-1}$ and 0 otherwise
 - correlation matrix: $C(a, b) = 2^{-3}x$ with $x \in \{-2, -1, 0, 1, 2, 3\}$ (as found in [Carlet et al., 2010])
 - DP table has 16 non-zero entries per row, correlation matrix 26

• Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in \mathbb{F}_2^n

- Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in \mathbb{F}_2^n
- Power functions with exponents $e = 2^{i} + 1$ are called Gold functions [Gold '68]

- Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in \mathbb{F}_2^n
- Power functions with exponents $e = 2^{i} + 1$ are called Gold functions [Gold '68]
- For odd *n* they have (as found in [Carlet et al., 2010])

- Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in \mathbb{F}_2^n
- Power functions with exponents $e = 2^{i} + 1$ are called Gold functions [Gold '68]
- For odd *n* they have (as found in [Carlet et al., 2010])
 - $DP(a, b) = 2^{1-n}$ if $Tr(ba^{-e}) = 1$ and DP(a, b) = 0 otherwise

- Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in \mathbb{F}_2^n
- Power functions with exponents $e = 2^{i} + 1$ are called Gold functions [Gold '68]
- For odd *n* they have (as found in [Carlet et al., 2010])
 - $DP(a, b) = 2^{1-n}$ if $Tr(ba^{-e}) = 1$ and DP(a, b) = 0 otherwise
 - $LP(a, b) = 2^{1-n}$ if $Tr(ab^{-d}) = 1$ and LP(a, b) = 0 otherwise
- Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in \mathbb{F}_2^n
- Power functions with exponents $e = 2^{i} + 1$ are called Gold functions [Gold '68]
- For odd *n* they have (as found in [Carlet et al., 2010])
 - $DP(a, b) = 2^{1-n}$ if $Tr(ba^{-e}) = 1$ and DP(a, b) = 0 otherwise
 - $LP(a, b) = 2^{1-n}$ if $Tr(ab^{-d}) = 1$ and LP(a, b) = 0 otherwise
- Due to the linearity of the trace function:
 - Output diff *b* compatible with input diff *a* form an affine space
 - Input masks a compatible with output mask b form an affine space

- Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in \mathbb{F}_2^n
- Power functions with exponents $e = 2^{i} + 1$ are called Gold functions [Gold '68]
- For odd *n* they have (as found in [Carlet et al., 2010])
 - $DP(a, b) = 2^{1-n}$ if $Tr(ba^{-e}) = 1$ and DP(a, b) = 0 otherwise
 - $LP(a, b) = 2^{1-n}$ if $Tr(ab^{-d}) = 1$ and LP(a, b) = 0 otherwise
- Due to the linearity of the trace function:
 - Output diff *b* compatible with input diff *a* form an affine space
 - Input masks a compatible with output mask b form an affine space
 - All valid differentials and approximations (a, b) have weight n 1

- Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in \mathbb{F}_2^n
- Power functions with exponents $e = 2^i + 1$ are called Gold functions [Gold '68]
- For odd *n* they have (as found in [Carlet et al., 2010])
 - $DP(a, b) = 2^{1-n}$ if $Tr(ba^{-e}) = 1$ and DP(a, b) = 0 otherwise
 - $LP(a, b) = 2^{1-n}$ if $Tr(ab^{-d}) = 1$ and LP(a, b) = 0 otherwise
- Due to the linearity of the trace function:
 - Output diff *b* compatible with input diff *a* form an affine space
 - Input masks a compatible with output mask b form an affine space
 - All valid differentials and approximations (a, b) have weight n 1
- Still, in general
 - Input diff a compatible with output diff b form no affine space
 - Output masks *b* compatible with input mask *a* form no affine space

- Exponents e = 3 and e = 5 give S-boxes with algebraic degree 2 in \mathbb{F}_2^n
- Power functions with exponents $e = 2^i + 1$ are called Gold functions [Gold '68]
- For odd *n* they have (as found in [Carlet et al., 2010])
 - $DP(a, b) = 2^{1-n}$ if $Tr(ba^{-e}) = 1$ and DP(a, b) = 0 otherwise
 - $LP(a, b) = 2^{1-n}$ if $Tr(ab^{-d}) = 1$ and LP(a, b) = 0 otherwise
- Due to the linearity of the trace function:
 - Output diff **b** compatible with input diff **a** form an affine space
 - Input masks a compatible with output mask b form an affine space
 - All valid differentials and approximations (a, b) have weight n 1
- Still, in general
 - Input diff *a* compatible with output diff *b* form no affine space
 - Output masks *b* compatible with input mask *a* form no affine space
 - Propagation of masks follows a different rule than propagation of differences

- It would be great if
 - propagation of masks follows the same rule than propagation of differences
 - forward and backward propagation would be the same or at least similar

- It would be great if
 - propagation of masks follows the same rule than propagation of differences
 - forward and backward propagation would be the same or at least similar
- Taking n = 3 and d = e = 6 = -1 results in a Golden Kaisa function
 - $DP(a, b) = 2^{-2}$ if Tr(ab) = 1 and DP(a, b) = 0 otherwise
 - $LP(a, b) = 2^{-2}$ if Tr(ab) = 1 and LP(a, b) = 0 otherwise

- It would be great if
 - propagation of masks follows the same rule than propagation of differences
 - forward and backward propagation would be the same or at least similar
- Taking n = 3 and d = e = 6 = -1 results in a Golden Kaisa function
 - $DP(a, b) = 2^{-2}$ if Tr(ab) = 1 and DP(a, b) = 0 otherwise
 - $LP(a, b) = 2^{-2}$ if Tr(ab) = 1 and LP(a, b) = 0 otherwise
- $y \leftarrow x^6$ in \mathbb{F}_{2^3} has following properties
 - forward, backward, differential and linear propagation are all the same
 - compatible masks/differences form affine spaces

- It would be great if
 - propagation of masks follows the same rule than propagation of differences
 - forward and backward propagation would be the same or at least similar
- Taking n = 3 and d = e = 6 = -1 results in a Golden Kaisa function
 - $DP(a, b) = 2^{-2}$ if Tr(ab) = 1 and DP(a, b) = 0 otherwise
 - $LP(a, b) = 2^{-2}$ if Tr(ab) = 1 and LP(a, b) = 0 otherwise
- $y \leftarrow x^6$ in \mathbb{F}_{2^3} has following properties
 - forward, backward, differential and linear propagation are all the same
 - compatible masks/differences form affine spaces
- This works for no other size *n* or exponent *e*!

- It would be great if
 - propagation of masks follows the same rule than propagation of differences
 - forward and backward propagation would be the same or at least similar
- Taking n = 3 and d = e = 6 = -1 results in a Golden Kaisa function
 - $DP(a, b) = 2^{-2}$ if Tr(ab) = 1 and DP(a, b) = 0 otherwise
 - $LP(a, b) = 2^{-2}$ if Tr(ab) = 1 and LP(a, b) = 0 otherwise
- $y \leftarrow x^6$ in \mathbb{F}_{2^3} has following properties
 - forward, backward, differential and linear propagation are all the same
 - compatible masks/differences form affine spaces
- This works for no other size *n* or exponent *e*!
- When choosing the normal basis, Tr(ab) = 1 translates to $a_0b_0 + a_1b_1 + a_2b_2 = 1$

• Limitation is mostly its width of 3

- Limitation is mostly its width of 3
 - due to small size its diff/approx have weight of only w = 2

- Limitation is mostly its width of 3
 - due to small size its diff/approx have weight of only w = 2
 - implies permutation width has to be a multiple of 3

- Limitation is mostly its width of 3
 - due to small size its diff/approx have weight of only w = 2
 - implies permutation width has to be a multiple of 3
- What if we want to use larger S-boxes?

- Limitation is mostly its width of 3
 - due to small size its diff/approx have weight of only w = 2
 - implies permutation width has to be a multiple of 3
- What if we want to use larger S-boxes?
 - for odd size there is *more choice* than for even

- Limitation is mostly its width of 3
 - due to small size its diff/approx have weight of only w = 2
 - implies permutation width has to be a multiple of 3
- What if we want to use larger S-boxes?
 - for odd size there is *more choice* than for even
 - computational cost of power functions increases sharply with width

- Limitation is mostly its width of 3
 - due to small size its diff/approx have weight of only w = 2
 - implies permutation width has to be a multiple of 3
- What if we want to use larger S-boxes?
 - for odd size there is *more choice* than for even
 - computational cost of power functions increases sharply with width
- Rijndael S-box

- Limitation is mostly its width of 3
 - due to small size its diff/approx have weight of only w = 2
 - implies permutation width has to be a multiple of 3
- What if we want to use larger S-boxes?
 - for odd size there is *more choice* than for even
 - computational cost of power functions increases sharply with width
- Rijndael S-box
 - *w* ≥ 6

- Limitation is mostly its width of 3
 - due to small size its diff/approx have weight of only w = 2
 - implies permutation width has to be a multiple of 3
- What if we want to use larger S-boxes?
 - for odd size there is *more choice* than for even
 - computational cost of power functions increases sharply with width
- Rijndael S-box
 - *w* ≥ 6
 - 10 xor and 4 and/or per bit [Boyar & Peralta 2010][Stoffelen & Schwabe 2016]

- Limitation is mostly its width of 3
 - due to small size its diff/approx have weight of only w = 2
 - implies permutation width has to be a multiple of 3
- What if we want to use larger S-boxes?
 - for odd size there is *more choice* than for even
 - computational cost of power functions increases sharply with width
- Rijndael S-box
 - *w* ≥ 6
 - 10 xor and 4 and/or per bit [Boyar & Peralta 2010][Stoffelen & Schwabe 2016]
- Golden Kaisa S-box
 - *w* = 2

- Limitation is mostly its width of 3
 - due to small size its diff/approx have weight of only w = 2
 - implies permutation width has to be a multiple of 3
- What if we want to use larger S-boxes?
 - for odd size there is *more choice* than for even
 - computational cost of power functions increases sharply with width
- Rijndael S-box
 - *w* ≥ 6
 - 10 xor and 4 and/or per bit [Boyar & Peralta 2010][Stoffelen & Schwabe 2016]
- Golden Kaisa S-box
 - *w* = 2
 - $y_i \leftarrow x_i + (x_{i+1 \mod 3} + 1)x_{i+2 \mod 3}$: costs 1 xor and 1 and per bit

• The Golden Kaisa S-box can be generalized to any width *n* and is called χ_n

• The Golden Kaisa S-box can be generalized to any width *n* and is called χ_n

• The Golden Kaisa S-box can be generalized to any width *n* and is called χ_n

 $\forall i: b_i = a_i + (a_{i+1 \bmod n} + 1)a_{i+2 \bmod n}$

• Invertible if *n* is odd

• The Golden Kaisa S-box can be generalized to any width *n* and is called χ_n

- Invertible if n is odd
- For n > 3 a lot of symmetry is lost

• The Golden Kaisa S-box can be generalized to any width *n* and is called χ_n

- Invertible if *n* is odd
- For n > 3 a lot of symmetry is lost
 - inverse is more complex and has higher degree: (n+1)/2

• The Golden Kaisa S-box can be generalized to any width *n* and is called χ_n

- Invertible if *n* is odd
- For n > 3 a lot of symmetry is lost
 - inverse is more complex and has higher degree: (n+1)/2
 - backwards propagation does not give affine spaces

• The Golden Kaisa S-box can be generalized to any width *n* and is called χ_n

- Invertible if *n* is odd
- For n > 3 a lot of symmetry is lost
 - inverse is more complex and has higher degree: (n + 1)/2
 - backwards propagation does not give affine spaces
 - weight increases with Hamming weight of differences/masks

• The Golden Kaisa S-box can be generalized to any width n and is called χ_n

- Invertible if *n* is odd
- For n > 3 a lot of symmetry is lost
 - inverse is more complex and has higher degree: (n+1)/2
 - backwards propagation does not give affine spaces
 - weight increases with Hamming weight of differences/masks
 - correlation matrix has fewer zeroes than DP table

• The Golden Kaisa S-box can be generalized to any width n and is called χ_n

- Invertible if *n* is odd
- For n > 3 a lot of symmetry is lost
 - inverse is more complex and has higher degree: (n+1)/2
 - backwards propagation does not give affine spaces
 - weight increases with Hamming weight of differences/masks
 - correlation matrix has fewer zeroes than DP table
- Popular choice is n = 5: Keccak and Ascon

• The Golden Kaisa S-box can be generalized to any width n and is called χ_n

- Invertible if *n* is odd
- For n > 3 a lot of symmetry is lost
 - inverse is more complex and has higher degree: (n+1)/2
 - backwards propagation does not give affine spaces
 - weight increases with Hamming weight of differences/masks
 - correlation matrix has fewer zeroes than DP table
- Popular choice is n = 5: Keccak and Ascon
- Extreme: in Subterranean n = 257

• The Golden Kaisa S-box can be generalized to any width n and is called χ_n

- Invertible if *n* is odd
- For n > 3 a lot of symmetry is lost
 - inverse is more complex and has higher degree: (n+1)/2
 - backwards propagation does not give affine spaces
 - weight increases with Hamming weight of differences/masks
 - correlation matrix has fewer zeroes than DP table
- Popular choice is n = 5: Keccak and Ascon
- Extreme: in Subterranean n = 257
- Excellent trade-off between implementation cost and non-linearity

The linear layer

• linear layer split in mixing layer and shuffle

- linear layer split in mixing layer and shuffle
- Cell-oriented (aligned)

- linear layer split in mixing layer and shuffle
- Cell-oriented (aligned)
 - state is an array of cells, defined by the S-box layer: typically bytes or nibbles
- linear layer split in mixing layer and shuffle
- Cell-oriented (aligned)
 - state is an array of cells, defined by the S-box layer: typically bytes or nibbles
 - mixlayer operates on super-cells: sub-arrays of cells

- linear layer split in mixing layer and shuffle
- Cell-oriented (aligned)
 - state is an array of cells, defined by the S-box layer: typically bytes or nibbles
 - mixlayer operates on super-cells: sub-arrays of cells
 - shuffle moves cells to different super-cells

- linear layer split in mixing layer and shuffle
- Cell-oriented (aligned)
 - state is an array of cells, defined by the S-box layer: typically bytes or nibbles
 - mixlayer operates on super-cells: sub-arrays of cells
 - shuffle moves cells to different super-cells
 - analysis and specification is natural at the cell level

- linear layer split in mixing layer and shuffle
- Cell-oriented (aligned)
 - state is an array of cells, defined by the S-box layer: typically bytes or nibbles
 - mixlayer operates on super-cells: sub-arrays of cells
 - shuffle moves cells to different super-cells
 - analysis and specification is natural at the cell level
- Bit-oriented (non-aligned)

- linear layer split in mixing layer and shuffle
- Cell-oriented (aligned)
 - state is an array of cells, defined by the S-box layer: typically bytes or nibbles
 - mixlayer operates on super-cells: sub-arrays of cells
 - shuffle moves cells to different super-cells
 - analysis and specification is natural at the cell level
- Bit-oriented (non-aligned)
 - three layers partition the statebits in different ways

- linear layer split in mixing layer and shuffle
- Cell-oriented (aligned)
 - state is an array of cells, defined by the S-box layer: typically bytes or nibbles
 - mixlayer operates on super-cells: sub-arrays of cells
 - shuffle moves cells to different super-cells
 - analysis and specification is natural at the cell level
- Bit-oriented (non-aligned)
 - three layers partition the statebits in different ways
 - analysis and specification is natural at the bit level

• State as a 4 by 4 array of bytes

- State as a 4 by 4 array of bytes
- Powerful S-box operating on individual bytes

- State as a 4 by 4 array of bytes
- Powerful S-box operating on individual bytes
- Mixing layer operating in parallel on each 4-byte column

- State as a 4 by 4 array of bytes
- Powerful S-box operating on individual bytes
- Mixing layer operating in parallel on each 4-byte column
 - Multiplication in \mathbb{F}_{2^8} with a 4 \times 4 matrix

- State as a 4 by 4 array of bytes
- Powerful S-box operating on individual bytes
- Mixing layer operating in parallel on each 4-byte column
 - Multiplication in \mathbb{F}_{2^8} with a 4 \times 4 matrix
 - Matrix is MDS, has branch number 5: at least 5 active bytes before and after

- State as a 4 by 4 array of bytes
- Powerful S-box operating on individual bytes
- Mixing layer operating in parallel on each 4-byte column
 - Multiplication in \mathbb{F}_{2^8} with a 4 \times 4 matrix
 - Matrix is MDS, has branch number 5: at least 5 active bytes before and after
 - Matrix symmetry: it is circulant

- State as a 4 by 4 array of bytes
- Powerful S-box operating on individual bytes
- Mixing layer operating in parallel on each 4-byte column
 - Multiplication in \mathbb{F}_{2^8} with a 4 \times 4 matrix
 - Matrix is MDS, has branch number 5: at least 5 active bytes before and after
 - Matrix symmetry: it is circulant
 - Transformation symmetry: multi-permutation where any 4 entries out of 8 can be chosen

- State as a 4 by 4 array of bytes
- Powerful S-box operating on individual bytes
- Mixing layer operating in parallel on each 4-byte column
 - Multiplication in \mathbb{F}_{2^8} with a 4 \times 4 matrix
 - Matrix is MDS, has branch number 5: at least 5 active bytes before and after
 - Matrix symmetry: it is circulant
 - Transformation symmetry: multi-permutation where any 4 entries out of 8 can be chosen
- Shuffle moving bytes of a column to different columns: here transposing the array

- State as a 4 by 4 array of bytes
- Powerful S-box operating on individual bytes
- Mixing layer operating in parallel on each 4-byte column
 - Multiplication in \mathbb{F}_{2^8} with a 4×4 matrix
 - Matrix is MDS, has branch number 5: at least 5 active bytes before and after
 - Matrix symmetry: it is circulant
 - Transformation symmetry: multi-permutation where any 4 entries out of 8 can be chosen
- Shuffle moving bytes of a column to different columns: here transposing the array
- Easy to prove that any 4-round trail has at least 25 active S-boxes

Function	shape	cells	width	type
Rijndael [Daemen & Rijmen, 1998]	4 imes (4 to 8)	bytes	128 to 256	block
Whirlpool [Rijmen & Barreto, 2000]	8 ²	bytes	512	block
Groestl [Rechberger et al., 2008]	8 ²	bytes	512	perm
ECHO [Benadjila et al., 2008]	4 ⁴	bytes	2048	perm
JH [Wu, 2008]	2 ⁸	nibbles	1024	perm
Primates [Andreeva et al., 2014]	(5 or 7) imes 8	5-bit	200 or 280	perm
Saturnin [Canteaut et al., 2019]	4 ³	nibbles	256	block

Function	shape	cells	width	type
Rijndael [Daemen & Rijmen, 1998]	4 imes (4 to 8)	bytes	128 to 256	block
Whirlpool [Rijmen & Barreto, 2000]	8 ²	bytes	512	block
Groestl [Rechberger et al., 2008]	8 ²	bytes	512	perm
ECHO [Benadjila et al., 2008]	4 ⁴	bytes	2048	perm
JH [Wu, 2008]	2 ⁸	nibbles	1024	perm
Primates [Andreeva et al., 2014]	(5 or 7) $ imes$ 8	5-bit	200 or 280	perm
Saturnin [Canteaut et al., 2019]	4 ³	nibbles	256	block

Advances in building efficient MDS matrices: +60 publications at crypto venues

Function	shape	cells	width	type
Rijndael [Daemen & Rijmen, 1998]	4 imes (4 to 8)	bytes	128 to 256	block
Whirlpool [Rijmen & Barreto, 2000]	8 ²	bytes	512	block
Groestl [Rechberger et al., 2008]	8 ²	bytes	512	perm
ECHO [Benadjila et al., 2008]	4 ⁴	bytes	2048	perm
JH [Wu, 2008]	2 ⁸	nibbles	1024	perm
Primates [Andreeva et al., 2014]	(5 or 7) $ imes$ 8	5-bit	200 or 280	perm
Saturnin [Canteaut et al., 2019]	4 ³	nibbles	256	block

Advances in building efficient MDS matrices: +60 publications at crypto venues

• mostly focusing on 4×4 matrices operating on bytes or nibbles

Function	shape	cells	width	type
Rijndael [Daemen & Rijmen, 1998]	4 imes (4 to 8)	bytes	128 to 256	block
Whirlpool [Rijmen & Barreto, 2000]	8 ²	bytes	512	block
Groestl [Rechberger et al., 2008]	8 ²	bytes	512	perm
ECHO [Benadjila et al., 2008]	4 ⁴	bytes	2048	perm
JH [Wu, 2008]	2 ⁸	nibbles	1024	perm
Primates [Andreeva et al., 2014]	(5 or 7) $ imes$ 8	5-bit	200 or 280	perm
Saturnin [Canteaut et al., 2019]	4 ³	nibbles	256	block

Advances in building efficient MDS matrices: +60 publications at crypto venues

- mostly focusing on 4×4 matrices operating on bytes or nibbles
- goal: reduce the total xor count or xor depth

Function	shape	cells	width	type
Rijndael [Daemen & Rijmen, 1998]	4 imes (4 to 8)	bytes	128 to 256	block
Whirlpool [Rijmen & Barreto, 2000]	8 ²	bytes	512	block
Groestl [Rechberger et al., 2008]	8 ²	bytes	512	perm
ECHO [Benadjila et al., 2008]	4 ⁴	bytes	2048	perm
JH [Wu, 2008]	2 ⁸	nibbles	1024	perm
Primates [Andreeva et al., 2014]	(5 or 7) $ imes$ 8	5-bit	200 or 280	perm
Saturnin [Canteaut et al., 2019]	4 ³	nibbles	256	block

Advances in building efficient MDS matrices: +60 publications at crypto venues

- mostly focusing on 4×4 matrices operating on bytes or nibbles
- goal: reduce the total xor count or xor depth
- insight: cost increases sharply with MDS matrix dimension

• S-box

- S-box
 - 4-bit S-box instead of 8-bit one

- S-box
 - 4-bit S-box instead of 8-bit one
 - no power function but $w \ge 2$

- S-box
 - 4-bit S-box instead of 8-bit one
 - no power function but $w \ge 2$
 - cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES

- S-box
 - 4-bit S-box instead of 8-bit one
 - no power function but $w \ge 2$
 - cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
- MDS matrix in mixlayer

- S-box
 - 4-bit S-box instead of 8-bit one
 - no power function but $w \ge 2$
 - cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
- MDS matrix in mixlayer
 - 4×4 operating on elements of \mathbb{F}_{2^4}

- S-box
 - 4-bit S-box instead of 8-bit one
 - no power function but $w \ge 2$
 - cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
- MDS matrix in mixlayer
 - 4×4 operating on elements of \mathbb{F}_{2^4}
 - Cost 2,25 xor per bit instead of 3 xor per bit for AES

- S-box
 - 4-bit S-box instead of 8-bit one
 - no power function but $w \ge 2$
 - cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
- MDS matrix in mixlayer
 - 4×4 operating on elements of \mathbb{F}_{2^4}
 - Cost 2,25 xor per bit instead of 3 xor per bit for AES
- Global structure

- S-box
 - 4-bit S-box instead of 8-bit one
 - no power function but $w \ge 2$
 - cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
- MDS matrix in mixlayer
 - 4×4 operating on elements of \mathbb{F}_{2^4}
 - Cost 2,25 xor per bit instead of 3 xor per bit for AES
- Global structure
 - Cube with side 4 of elements of \mathbb{F}_{2^4}

- S-box
 - 4-bit S-box instead of 8-bit one
 - no power function but $w \ge 2$
 - cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
- MDS matrix in mixlayer
 - 4×4 operating on elements of \mathbb{F}_{2^4}
 - Cost 2,25 xor per bit instead of 3 xor per bit for AES
- Global structure
 - Cube with side 4 of elements of \mathbb{F}_{2^4}
 - Two different shuffles in rounds with index 1 mod 4 and 3 mod 4

- S-box
 - 4-bit S-box instead of 8-bit one
 - no power function but $w \ge 2$
 - cost 1,5 xor plus 1,5 and/or per bit instead of 11 xor plus 4 and/or for AES
- MDS matrix in mixlayer
 - 4×4 operating on elements of \mathbb{F}_{2^4}
 - Cost 2,25 xor per bit instead of 3 xor per bit for AES
- Global structure
 - Cube with side 4 of elements of \mathbb{F}_{2^4}
 - Two different shuffles in rounds with index 1 mod 4 and 3 mod 4
 - Any 8-round trail has at least $5^3 = 125$ active S-boxes

Showdown Saturnin vs AES (not counting round key addition)

Showdown Saturnin vs AES (not counting round key addition)

AES

#	cost		min. trail
rounds	xor	and/or	weight
1	14	4	6
2	28	8	30
3	42	12	56
4	56	16	150

Saturnin

#	cost		min. trail
rounds	xor	and/or	weight
1	3,75	1,5	2
2	7,5	3	10
3	11,25	4,5	18
4	15	6	50
5	18,75	7,5	82
6	22,5	9	90
7	26,25	10,5	122
8	30	12	250
• You can have light S-boxes or light MDS matrices or few rounds

- You can have light S-boxes or light MDS matrices or few rounds
- ... but not all at the same time

- You can have light S-boxes or light MDS matrices or few rounds
- ... but not all at the same time
- This is because sparse states propagate to sparse in both directions

- You can have light S-boxes or light MDS matrices or few rounds
- ... but not all at the same time
- This is because sparse states propagate to sparse in both directions
- Example: 16 4 1 4 16 profile

- You can have light S-boxes or light MDS matrices or few rounds
- ... but not all at the same time
- This is because sparse states propagate to sparse in both directions
- Example: 16 4 1 4 16 profile

Clustering and *clipping* in the AES superbox:

- massive clustering of trails in differentials [Daemen & Rijmen, SCN 2006]
- clipping: DP(Q) strongly deviates from EDP(Q) for most trails [Daemen & Rijmen, IET 2007]

Clustering and clipping in the Saturnin superbox, illustrated

Much less clustering and clipping than in AES thanks to smaller S-box, still significant

graph courtesy of Giovanni Uchua de Assis

43/53

- $\bullet\,$ In general it is just a binary matrix $M\,$
 - operating on the full state, or
 - operating in parallel on parts of the state

- $\bullet\,$ In general it is just a binary matrix M
 - operating on the full state, or
 - operating in parallel on parts of the state
- Symmetry: make \mathbf{M}

- $\bullet\,$ In general it is just a binary matrix M
 - operating on the full state, or
 - operating in parallel on parts of the state
- Symmetry: make M circulant

- $\bullet\,$ In general it is just a binary matrix M
 - operating on the full state, or
 - operating in parallel on parts of the state
- Symmetry: make M circulant
- Polynomial representation of input, output and matrix

 $b(X) \leftarrow \theta(X)a(X) \mod 1 + X^m$

- $\bullet\,$ In general it is just a binary matrix $M\,$
 - operating on the full state, or
 - operating in parallel on parts of the state
- Symmetry: make M circulant
- Polynomial representation of input, output and matrix

 $b(X) \leftarrow \theta(X)a(X) \mod 1 + X^m$

• Invertible if $\theta(X)$ is coprime to $1 + X^m$

- $\bullet\,$ In general it is just a binary matrix M
 - operating on the full state, or
 - operating in parallel on parts of the state
- Symmetry: make M circulant
- Polynomial representation of input, output and matrix

 $b(X) \leftarrow \theta(X)a(X) \mod 1 + X^m$

- Invertible if $\theta(X)$ is coprime to $1 + X^m$
- Often one takes a multiplication polynomial that is a trinomial

- $\bullet\,$ In general it is just a binary matrix M
 - operating on the full state, or
 - operating in parallel on parts of the state
- Symmetry: make M circulant
- Polynomial representation of input, output and matrix

 $b(X) \leftarrow \theta(X)a(X) \mod 1 + X^m$

- Invertible if $\theta(X)$ is coprime to $1 + X^m$
- Often one takes a multiplication polynomial that is a trinomial
- Unless carefully chosen, inverse of $\theta(X)$ is dense
 - no problem if the inverse of the permutation is not needed
 - has an advantage for trail bounds

Function	length	# t	non-lin.	b	shuffle
Cellhash [Daemen, AC 1991]	257	3	χ_{257}	257	multiplicative
3Way [Daemen, 1993]	12	7	χ_{3}	96	2 row shift steps
BaseKing [Daemen, 1994]	12	7	χ_{3}	192	2 row shift steps
Panama [Daemen & Clapp, 1997]	17	3	χ_{17}	544	1 row shift step
SHA-256 [NIST, 2001]	32	3	ARX	256	-
SHA-512 [NIST. 2001]	64	3	ARX	512	-
RadioGatun [Bertoni et al., 2006]	19	3	χ_{19}	608	1 row shift step
Ascon [Dobraunig et al., 2019]	64	3	$\chi_5 +$	320	different $m(x)$

Ascon-p Round function

- 320-bit state: 5 rows x_0, \ldots, x_4 and 64 columns
- Round function $\mathbf{R} = p_L \circ p_S \circ p_C$

(c) Linear layer with 64-bit diffusion functions $\Sigma_i(x_i)$

figure by Ascon team

Operations dedicated to mixing in Ascon-p

6 bitwise XOR

 $\begin{array}{l} x_0 \leftarrow x_0 \oplus (x_0 \ggg 19) \oplus (x_0 \ggg 28) \\ x_1 \leftarrow x_1 \oplus (x_1 \ggg 61) \oplus (x_1 \ggg 39) \\ x_2 \leftarrow x_2 \oplus (x_2 \ggg 1) \oplus (x_2 \ggg 6) \\ x_3 \leftarrow x_3 \oplus (x_3 \ggg 10) \oplus (x_3 \ggg 17) \\ x_4 \leftarrow x_4 \oplus (x_4 \ggg 7) \oplus (x_4 \ggg 41) \end{array}$

10 bitwise XOR + 10 cyclic shifts

Showdown Ascon-p vs Saturnin (not counting round key/constant addition)

Showdown Ascon-p vs Saturnin (not counting round key/constant addition)

Saturnin

Ascon

#	C	ost	min. trail
rounds	xor	and/or	weight
1	3,75	1,5	2
2	7,5	3	10
3	11,25	4,5	18
4	15	6	50
5	18,75	7,5	82
6	22,5	9	90
7	26,25	10,5	122
8	30	12	250

#	c	cost	min. trail weight		
rounds	xor	and/or	diff	lin	
1	4,2	1	2	2	
2	8,4	2	8	8	
3	12,6	3	40	28	
4	16,8	4	\geq 86	\geq 88	
5	21	5	≥ 100	\geq 96	
6	25,2	6	≥ 129	≥ 132	

- Good average diffusion, identity for states in kernel
- Cost: 2 xor per bit

Showdown Xoodoo vs Ascon-p

Ascon

Xoodoo

#	cost		min. trail weight	
rounds	xor	and/or	diff	lin
1	4,2	1	2	2
2	8,4	2	8	8
3	12,6	3	40	28
4	16,8	4	\geq 86	\geq 88
5	21	5	≥ 100	\geq 96
6	25,2	6	\geq 129	\geq 132

#		cost	min. trail
rounds	xor	and/or	weight
1	3	1	2
2	6	2	8
3	9	3	36
4	12	4	80
5	15	5	\geq 98
6	18	6	\geq 132

• We investigated clipping and clustering in Xoodoo

- We investigated clipping and clustering in Xoodoo
- 3-round trails [Bordes et al., CRYPTO 2021]

- We investigated clipping and clustering in Xoodoo
- 3-round trails [Bordes et al., CRYPTO 2021]
 - we have checked all differential and linear trails with weight up to 50

- We investigated clipping and clustering in Xoodoo
- 3-round trails [Bordes et al., CRYPTO 2021]
 - we have checked all differential and linear trails with weight up to 50
 - each of them is alone in its differential/linear approximation

- We investigated clipping and clustering in Xoodoo
- 3-round trails [Bordes et al., CRYPTO 2021]
 - we have checked all differential and linear trails with weight up to 50
 - each of them is alone in its differential/linear approximation
 - for each differential trails we have: DP(Q) = EDP(Q)

- We investigated clipping and clustering in Xoodoo
- 3-round trails [Bordes et al., CRYPTO 2021]
 - we have checked all differential and linear trails with weight up to 50
 - each of them is alone in its differential/linear approximation
 - for each differential trails we have: DP(Q) = EDP(Q)
- 4-round trails: work in progress
 - 4 trails of weight 80
 - 2 of these cluster into differential with $EDP(a, b) = 2^{-79}$
 - dependence of round differentials: we're starting

• Develop a family of permutations with varying widths

Ambition

- Develop a family of permutations with varying widths
- Goals:

Ambition

- Develop a family of permutations with varying widths
- Goals:
 - no trails with weight below 128 at cost 12 xor plus 4 and per bit
- Develop a family of permutations with varying widths
- Goals:
 - no trails with weight below 128 at cost 12 xor plus 4 and per bit
 - no noticeable clustering
 - no noticeable dependencies between round differentials
 - attention for resistance against summation attacks

- Develop a family of permutations with varying widths
- Goals:
 - no trails with weight below 128 at cost 12 xor plus 4 and per bit
 - no noticeable clustering
 - no noticeable dependencies between round differentials
 - attention for resistance against summation attacks
- Using:
 - χ_3 or χ_5

- Develop a family of permutations with varying widths
- Goals:
 - no trails with weight below 128 at cost 12 xor plus 4 and per bit
 - no noticeable clustering
 - no noticeable dependencies between round differentials
 - attention for resistance against summation attacks
- Using:
 - χ_3 or χ_5
 - mixing layer with cost 2 xor per bit

- Develop a family of permutations with varying widths
- Goals:
 - no trails with weight below 128 at cost 12 xor plus 4 and per bit
 - no noticeable clustering
 - no noticeable dependencies between round differentials
 - attention for resistance against summation attacks
- Using:
 - χ_3 or χ_5
 - mixing layer with cost 2 xor per bit
 - shuffle with as few shifts as we can afford

Thanks for your attention!