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Motivation: blockchain privacy

Blockchain, a decentralized peer-to-peer (P2P) ledger system, in addition of

applications in cryptocurrency, is gaining interest to many different applications,

such as

I decentralized identity management,
I supply chain management,
I private data management,
I · · ·

Blockchains can provide trusted consensus, computation, and immutable data
between untrusted entities.

However, those applications need privacy!

Tool for blockchain privacy: zero-knowledge proofs.
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Zero-Knowledge Proofs

Loosely speaking, zero-knowledge proofs are proofs that yields nothing
beyond the validity of the assertion.
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Zero-Knowledge Proofs (cont.)

Prover
Alice

X = “I have x Bitcoin”

Verifier
Bob

I believe X is true.
But I do not know why!

- Completeness: P can convince V if X is true

- Soundness: No malicious P∗ cannot convince V if X is not true

- Zero Knowledge: V∗ learns nothing except for the validity of X
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ZKP efficiency

Prover complexity: Computational cost for the prover to run the protocol.

Round complexity: Number of transmissions between prover and verifier.

Proof length (or communication): Total size of communication between prover
and verifier.

Verifier complexity: Computational cost for the verifier.

Setup cost: Size of setup parameters, e.g. a common reference string (CRS),
and computational cost of creating the setup.
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How about integrity of computation?
Prover
Alice

y

VVerifier
Bob

How can Alice to prove to Bob that a hash value y = h(x) is correctly evaluated
without sending Bob the pre-image x?

In other words, how can the prover convince the verifier the following NP
statement without giving out x:

X ={ I know that x such that y = f(x). }

Verifiable computation
The integrity of computation is achieved by verifiable computation. It can be done
through representing an algorithm/program as a circuit.
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A special ZK class: zkSNARK

zkSNARK
zero-knowledge Succinct Non-interactive ARgument of Knowledge.

Properties of zkSNARK

Zero-Knowledge: does not leak any information about witness

Succinct: Proof size is independent of NP witness sizes, i.e., the computing
complexity of the prover/verifier and communication (i.e., the proof length) are
computationally bounded.

Non-interactive: only one message is sent by prover.

ARgument of Knowledge.
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Constructions of zkSNARKs

A general approach for zkSNARKs consists of four steps:

1 Convert a program/algorithm to an arithmetic circuit.

2 Convert the arithmetic circuit to polynomials.

3 Build an argument to prove something about the polynomial using (fully)
homomorphic encryption or probabilistic checkable proof (PCP) with error
correcting codes.

4 Add zero-knowledge and using Fiat-Shamir transform to convert interactive to
non-interactive if not done in the steps 2 and 3.

In the rest of the talk, we focus on Step 2.
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Some recent zkSNARKs

α1 α2 α3

1

2

β1

β2

ga
te
s

input

(α1 + α2)α3

Properties of different zkSNARK schemes
scheme setup security implementation

QAP/QSP based private KOE libsnark (BCTV14)
(GGPR13, Groth16) Pinocchio, Zcach
(BCTV14a) Hawk

Bullet proof (BCCGP16) public DLOG experiments
Marlin (CHMMVW20) private Strong DH experiments
SpartanDL,OR (Setty20) public DLOG, (CRH, PRG) experiments

Ligero (AHIV17) public CRH, PRG Ligero cryptocurrency
Stark (BBHR18) public CRH, PRG libstark
Aurora (BCRSVW19) public CRH, PRG libiop
Virgo (ZXZS20) public CRH, PRG security below 128 bit
Polaris (HG2022) public CRH, PRG partial tests
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Rank 1 Constraint Satisfiability (R1CS) Relation

From now on, we assume that we have obtained R1CS relation from a circuit converted
from a given algorithm/program.

R1CS instance
T = (F, A,B,C, v,m, n) and corresponding witness w

• A,B,C are m×m matrices over a large finite field F representing the
computation circuit

• v is the public input and output vector of the instance

• w is the private input vector of the instance

• there are at most n non-zero entries in each matrix
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R1CS relation

There exists a witness w ∈ Fm−|v|−1 such that

(A · z) ◦ (B · z)− (C · z) = ~0,

where z := (1, w, v) ∈ Fm, “·” is the matrix-vector product, and “◦” denotes the
Hadamard product (i.e., term-wise product).

The goal of a zkSNARK scheme is to prove the above relation.

R1CS relation generalizes the problem of arithmetic circuit satisfiability.

For the three matrices A, B, C, the vectors Az, Bz and Cz represent the left
input, right input and output vectors of the multiplicative gates in the circuit
respectively. The witness w consists of the circuit’s private input and wire values.
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Example – a Boolean circuit with three AND gates

G. Gong Polynomial Embeddings for zkSNARKs 13 / 37



Example – R1CS instance

z = (z0, z1, · · · , z7) where z0 = 1.

AND i gl · gr − go = 0

1 z1 · (1⊕ z2)− z5 = 0
2 z2 · z3 − z6 = 0
3 (z5 ⊕ z6) · (1⊕ z3 ⊕ z4)− z7 = 0

I Encoding the circuit to an R1CS instance: A

A =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0

 =⇒ Az =

 z1
z2

z5 ⊕ z6



Encoding the circuit to an R1CS instance: B,C

B =

1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0

 =⇒ Bz =

 1⊕ z2
z3

1⊕ z3 ⊕ z4



C =

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 =⇒ Cz =

z5z6
z7


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Example – R1CS instance (cont.)

R1CS relation
(Az) ◦ (Bz)− Cz = 0 (1)

where ◦ is the bit-wise Hadamard product in this case.

In this case, we have a R1CS instance

(F, A,B,C, v,m, n) = (GF (23t), A,B,C, 1, 8, 6)

where m = 8, the size of z, n = 6, the maximum among the number of nonzero
entries in each matrix, and

w = (z1, · · · , z6), v = z7.

If we take
(z1, z2, z3, z4) = (1011)⇒ (z5, z6, z7) = (101)

then (1) is true. So, this is an R1CS instance. But if we take z′ = 11011100, then
(1) is not true.
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Encoding Methods

Two different methods to encode R1CS:

to represent the matrices as biivariate polynomials and vector z as a univariate
polynomial and

to represent them as multi-variate polynomials.
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Example

z = (11011101), let F23 be defined by the primitive polynomial t(x) = x3 + x+ 1 and
t(α) = 0:

univariate poly
z = (11011101)
f(x) = 1 + Tr(x) + Tr(α3x3)
z0 = 1, zi = f(αi−1),
i = 1, · · · , 7
=⇒
Trace representation of
the sequence

(x2, x1, x0) z

000 1
001 1
010 0
011 1
100 1
101 1
110 0
111 1

multivariate poly

g(x0, x1, x2) = 1 + x1 + x0x1

zi = g(i0, i1, i2),
i = i0 + i12 + i222, ij ∈ F2

=⇒
Golay sequence
representation
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Detour: some basic properties of uni/multi variate
polynomials

Given any sequence of length N = 2s over F, say u = (u0, · · · , u2s−1), we can
represent it as a univariate polynomial, say f(x) through Lagrange interpolation
over the evaluating set H = {α0, · · · , α2s−1} ⊂ F:

f(x) =

2s−1∑
i=0

uiσi(x), f(αi) = ui, i = 0, · · · , 2s − 1,

where {σi(x)} is the Lagrange basis.

The request of N = 2s is to facilitate a fast computation through Fast Fourier
transform (FFT) and inverse FFT (Lagrange interpolation).
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Bivariate polynomial ∆H(x, y)

Let H be an s-dimensional affine space of F (so in this case, F has characteristic
2), and

ZH(x) =
∏
a∈H

(x+ a) = x2s

+
s∑
i=1

cix
2i−1

, ci ∈ F

a linearized polynomial.

Define

∆H(x, y) =
ZH(x) + ZH(y)

x+ y
, (2)

Then the Lagrange basis element σi(x) becomes

σi(x) =
∆H(x, αi)

c1
=

1

c1

ZH(x)

x+ αi
, 0 ≤ i < 2s

where c1 is the coefficient of x in ZH(x).

The matrices A,B,C can be represented by bivariate polynomial ∆H(x, y), and
the witness vector z can be represented by ZH(y).
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Multivariate polynomial encodings of sequences
For a sequence u = (u0, · · · , uN−1), we associate it with a function
f(t) : ZN → F by

f(t) = ut, 0 ≤ t < N

i.e.,
u = (f(0), f(1), · · · , f(N − 1)).

For any ∀x ∈ ZN ,

x =

s−1∑
v=0

xv · 2v ↔ x = (x0, x1, · · · , xs−1), xv ∈ {0, 1}.

Let δt(x) =

s−1∏
i=0

(xiti + (1− xi)(1− ti)). (3)

Then any function f : ZN → F can be represented by

f(x) =

2s−1∑
t=0

f(t)δt(x). (4)

The representation of Golay sequences!
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Embedding of multilinear extension

When xi and ti take values in F,

f̃(x) =
∑

t∈{0,1}s
f(t)δt(x),x ∈ Fs. (5)

is called a embedding of f(x) or a multi-linear extension (MLE) of f(x) from
{0, 1}s 7→ F to Fs 7→ F.
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Uni/multi variate embeddings of R1CS

For a given m×m matrix A = (aij) over F, the prover needs to compute the following
Lagrange interpolated polynomials (m = 2s):

A(x, y) = 1
c21

∑
(i,j)∈[2s]2 aij∆H(x, αi)∆H(y, αj) Univariate in Polaris

A(x,y) =
∑

(i,j)∈[2s]2 aijδ(i,j)(x,y), (x,y) ∈ (Fs)2 MLE in Spartan

(6)
Note that [2s] = {0, 1, · · · , 2s − 1}.

From the property of ∆(x, y), we have the following simplified formulae

A(x, y) = 1
c21

∑
(i,j)∈[2s]2 aij

ZH (x)
x+αi

· ZH (y)
y+αj

(7)

Similarly, we have B(·, ·), C(·, ·).
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Uni/multi variate embeddings of R1CS (cont.)

Univariate MLE

Ā(x) =
∑
y∈H A(x, y)Z(y) Ā(x) =

∑
y∈Zs

2
A(x,y)Z(y)

B̄(x) =
∑
y∈H B(x, y)Z(y) B̄(x) =

∑
y∈Zs

2
B(x,y)Z(y)

C̄(x) =
∑
y∈H C(x, y)Z(y) C̄(x) =

∑
y∈Zs

2
C(x,y)Z(y)

Define Fw(·) that is used to encode the vector z:

Univariate MLE

Fw(x) = Ā(x) · B̄(x)− C̄(x) Fw(x) = Ā(x) · B̄(x)− C̄(x)

Lemma
A pair (T , w) is a valid instance-witness pair, i.e., (T , w) ∈ RR1CS if and only if

Fw(x) = 0 for any x ∈ H if it is encoded by the univariate polynomial and

Fw(x) = 0 for any x ∈ {0, 1}s if it is encoded by the MLE.
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Uni/multi variate embeddings of R1CS (cont.)

Univariate MLE

Ā(x) =
∑
y∈H A(x, y)Z(y) Ā(x) =

∑
y∈Zs

2
A(x,y)Z(y)

B̄(x) =
∑
y∈H B(x, y)Z(y) B̄(x) =

∑
y∈Zs

2
B(x,y)Z(y)

C̄(x) =
∑
y∈H C(x, y)Z(y) C̄(x) =

∑
y∈Zs

2
C(x,y)Z(y)

Define Fw(·) that is used to encode the vector z:

Univariate MLE

Fw(x) = Ā(x) · B̄(x)− C̄(x) Fw(x) = Ā(x) · B̄(x)− C̄(x)

Lemma
A pair (T , w) is a valid instance-witness pair, i.e., (T , w) ∈ RR1CS if and only if

Fw(x) = 0 for any x ∈ H if it is encoded by the univariate polynomial and

Fw(x) = 0 for any x ∈ {0, 1}s if it is encoded by the MLE.
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Polaris Protocol: Univariate encoding

Given an R1CS instance over F T = (F, A,B,C, v,m, n), encoded by univariate polynomials over H, an affine space
of F. V in Polaris checks

Fw(rx)
?
= G(rx) · ZH (rx)

from the claims of P.

Quad-check: P computes Ā(rx) = vA, B̄(rx) = vB , and C̄(rx) = vC , G(rx) = η and send
(vA, vB , vC , η) to V where G(x) is committed through a polynomial commitment scheme. V computes
γ = ZH (rx), verifies η = G(rx) by the polynomial commitment. If it is successful, V checks

vA · vB − vC
?
= η · γ

If it is true, continue. Otherwise, it rejects.

Lin-check: V chooses rA, rB , rC ∈ F uniformly at random, sends them to P, and computes
c = rA · vA + rB · vB + rC · vC . P and V invoke the univariate sumcheck protocol together with GKR
protocol to verify

c
?
=
∑
y∈H

Qrx (y)

where
Qrx (y) :=

(
rA · A(rx, y) + rB · B(rx, y) + rC · C(rx, y)

)
· Z(y).
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Summary of encoding R1CS relation in Polaris
Quad-check. Product checking polynomial Fw(x) is converted to Poly-SAT

Fw(x) = ZH (x) ·G(x)

⇓ ⇓soundness

Fw(rx) = ZH (rx) ·G(rx) for a random rx ∈ F \H

Lin-check. Univariate sum check together with GKR protocol This is to check whether the validity of three
evaluations: vA = Ā(rx), vB = B̄(rx), vC = C̄(rx) through a random combination:

c = rAvA + rBvB + rCvC
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Spartan Protocol: multivariate encoding

Given an R1CS instance over F, T = (F, A,B,C, v,m, n), encoded by multivariate polynomials. The verifier needs

to check F̃w(x) = 0, ∀x ∈ {0, 1}s. This converts to check

∑
x∈{0,1}s F̃w(x)δt0 (x) = 0 through the mutivariate sumcheck protocol converted to check

F̃w(x)δt0 (x) = ex, t0, rx ∈R Fs.

Quad-check: So P computes three claims: Ã(rx) = v′A, B̃(rx) = v′B , and C̃(rx) = v′C , sends them to
V and commits ex. V computes δt0 (rx) and checks

(v
′
Av
′
B − v

′
C)δt0 (rx)

?
= ex.

If it is true, continue. Otherwise, it rejects.

Lin-check: V chooses r′A, r′B , r′C ∈ F uniformly at random, sends them to P, and computes

c′ = r′A · v
′
A + r′B · v

′
B + r′C · v

′
C . P and V invoke the multivariate sumcheck protocol to verify

c
′

=
∑

y∈{0,1}s
Q
′
rx

(y) =⇒ to check Q
′
rx

(ry)
?
= ey, ry ∈R Fs, ey ∈ F.
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Summary of two protocols
Recall [2] = {0, 1}.

Univariate MLE

R1CS instanceFw(x), x ∈ F Fw(x),x ∈ Fs

Fw(x) = 0, ∀x ∈ H Fw(x) = 0, ∀x ∈ [2]s

Fw(x) = Gw(x)ZH(x) Jw(t) =
∑

t∈[2]s Fw(x)δt(x)

To check To prove Jw(t) a zero polynomial

Fw(rx)
?
= Gw(rx)ZH(rx), rx ∈R F Jw(t0) = 0, t0 ∈R Fs

invoking the multi sumcheck protocol

=⇒ Fw(rx)δt0(rx)
?
= ex, rx ∈R Fs, ex ∈ F

Quad-check: Quad-check:

vA · vB − vC
?
= Gw(rx)ZH(rx) (v′Av

′
B − v′C)δt0(rx)

?
= ex

Lin-check: Lin-check:
c = rA · vA + rB · vB + rC · vC c′ = r′Av

′
A + r′Bv

′
B + r′Cv

′
C

=⇒ =⇒
c

?
=

∑
y∈H Qrx(y) c′

?
=

∑
y∈[2]s Qrx(y)

Univariate sumcheck and GKR second time multi sumcheck
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Efficiency analysis

Univariate poly in Polaris

P: complexity is bounded by
the complexity of computing
G(x) = Fw(x)/ZH(x). The
most efficient way is to apply
additive FFT, bounded by
O(s2s).

Proof size is bounded by O(s2).

V: the complexity is bounded
by O(s2) from the univariate
sumcheck and GKR protocol.

Multivariate poly in Spartan

P: It does not actually compute
F̃w(x) instead it only needs to
evaluate F̃w(x) at a random
point rx ∈ Fs. So the
complexity for the prover is
linear on 2s.

The proof size is similar as the
univariate case.

V: this has a problem to make
it logarithmic on 2s, like the
univariate case. Spartan gets
the result by using special
memory structure.
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Problem on the number of multiplication gates

How does the number of multiplication gates effect the performance of
zkSNARKs?

The degrees of the polynomials or the number of variables of multivariate
polynomials involved in R1CS are determined by the number of multiplication
gates of the circuit.

For example, in Zcash, one needs to prove y = SHA256(x) where x is the number

of Bitcoin for which the user wishes to spend. SHA256 has about 23k AND

gates and proof is based on a Merkle tree with high 64 . In this case

s = dlog(64× 23000)e = 21.

I The size of H is 221, and those polynomials has degree 221 − 1 for
M̄(x),M ∈ {A,B,C}.

I In the multivariate case, the number of variables is 21 and there are
221 monomials involved in the computation.

Thus it requests the underline hash functions should have minimal multiplicative
complexity → MiMC for symmetric-key cryptography!
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Can we do better?

By selecting a special H, for example, to take H as a subfield of F
instead of an affine subspace (or a multiplicative coset of F).

In this case, we have
ZH(x) = x2

s
+ x

=⇒ no computation needed!

Can we reduce the degrees of those uni/multi variate polynomials?

Yes, we have algebraic attacks/selective DFT attack in our area
to make it happen (undergoing).
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Concluding remarks

We have presented how uni/multi variate polynomial embeddings work for
R1CS.

As examples, we use Polaris and Spartan for demonstrating those post zkSNARK
schemes. Those constructions of zkSNARKS are quantum secure, since they only
involve polynomial operations and hash functions.

We have showed that the computation of univariate polynomial embeddings can
be optimized by selecting affine space/multiplicative cosets as a subfield.

Applications are immense, but our focus is for implementing blockchain privacy.

Currently, we are investigating to their concrete computational cost for both
embeddings.
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Remarks on some related areas

1 Recently, NIST called the post-quantum secure digital signature schemes which
has the deadline in June 2023. Currently it has 50 submissions.

2 A zkSNARK scheme with post-quantum security is naturally a post-quantum
secure digital signature scheme. (E.g. Picnic style digital signatures are in this
class.)

3 In other words, let pk = F (sk) where F is either an encryption or a hash function.
A zkSNARK to prove the NP statement:

”I know sk such that pk = F (sk)”

without giving out sk to verifiers yields a signature scheme where the proof is the
signature, sk is the signing key and pk is the verification key.

4 However, we need the underline symmetric key algorithm F is MiMC.
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Open problems on MiMC design

How small can we go to get MiMC symmetric key algorithm at a designated
security level?

If we take H as a multiplicative coset of F, where |H| = 2s. Then F has to be a

prime field, i.e., F = GF (q) where q is a prime or a power of a prime 6= 2.

I Can we find good permutations of Kt where K is a subfield of F,
with |Kt| ≈ |H|?

I In other words, the permutations with good nonlinearity, differential
uniformity or APN property, ... .
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Open problems on MiMC design (cont.)

We have proposed to apply WAGE’s (NIST LWC Round 2 Candidate) structure for
obtaining MiMC for the binary field case. However, even for WG permutations of
F2n , we do not know the above mentioned properties for nonbinary fields.

WAGE one round function

WAGE, an authenticated WG encryption, is obtained by taking parameters of
LFSR of order 37 over F27 in the WG stream cipher with additionally added
nonlinear operations SB.
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Open problem on uni/multi variate poly. interp./eval
For multivariate polynomial embedded R1CS (e.g. Spartan), at the end, the
verifier has to evaluate Qrx(y) at a random point ry = (r0, r1, · · · , rs−1) in Fs in
order to check the equality (we shorten Qrx(y) as Q(y)):

Q(ry)
?
= ey, ry ∈R Fs, ey ∈ F

We may consider the coefficients of Q(y) as a vector (or equivalently a sequence),
say o = (o0, · · · , 0d−1) and its monomial terms re00 re11 · · · r

es−1
s−1 as another vector,

say p = (p0, · · · , pd−1) where d is the number of monomials in Q(y).

In this way, we can interpolate o and p over another affine space of F, say H ′, say
O(x) and P (x) respectively, Thus

Q(ry) =
∑
a∈H′

O(a)P (a)
?
= ey.

So this is converted to the univariate polynomial sumcheck for polynomial
S(x) = O(x)P (x) (used in Virgo in [ZXZS20]) → Polaris’ verification!

Can we do this conversion with time
complexity O(|H ′|) instead of O(|H ′| log |H ′|) ?
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Thanks! Questions?
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