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Intro to side-channel analysis



Known challenge: embedded crypto devices
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Side-channel Analysis (SCA) Attacks
and Countermeasures



Greybox/Whitebox scenario

Cryptographic Device CiphertextPlaintext

Leakage

Greybox = SCA adversary in the wild:

I Crypto is implemented on a real device such as a microcontroller, FPGA, ASIC
I Adversary can measure and process physical quantities in the device’s vicinity
I Adversary’s goal: secret key, message recovery, IP, etc.

Whitebox = Security evaluator:

I Algorithms and implementation details are (partially) known
I Adversary’s goal: secret key or message recovery by observing input/output pairs

while trying all known attacks
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Power side-channel: Modeling the leakage

I The Hamming distance model counts the number of 0→ 1 and 1→ 0 transitions

I Example 1: Assume a hardware register R storing the result of an AES round.
The register initially contains value v0 and gets overwritten with value v1

I The power consumption because of the register transition v0 → v1 is related to
the number of bit flips that occurred

I Thus it can be modeled as HammingDistance(v0, v1) = HammingWeight(v0⊕ v1)
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Power side-channel: Modeling the leakage

I Example 2: In a microcontroller, assume register A with value v0 and an assembly
instruction that moves the contents of register A to register B

mov rB, rA

I In general-purpose processors the instruction will transfer value v0 from register A
to B via the CPU, using the bus

I Often the bus is a very leaky component and also precharged to all bits to zeros
(or all to 1) i.e. busInitialValue

I The power consumption of the assembly instruction can be modeled as
HammingDistance(busInitialValue,v0) = HammingWeight(v0 ⊕ 0) = HW(v0)
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Differential Power Analysis (DPA)

I The most popular side-channel attack

I Aims at recovering the secret key by using a large number of power
measurements (traces)

I Nowadays often combined/replaced with a leakage evaluation methodology such
as Test Vector Leakage Assessment (TVLA)
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Actual setups

DPA setup

FA setup

Tempest

EM setups
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Countermeasures: main idea

Goal: break the link between the actual data and power consumption

I Masking: power consumption remains dependent on the data on which
computation is performed but not the actual data

I Hiding: power consumption is independent of the intermediate values and of the
operations
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Masking

Boolean masking: a dth-order (Boolean) masking scheme splits an internal sensitive
value v into d + 1 shares (v0, v1, ..., vd ), as follows:

v = v0 ⊕ v1 ⊕ · · · ⊕ vd

Probing-secure scheme. We refer to a scheme that uses certain families of shares as
d−probing-secure iff any set of at most d intermediate variables is independent from
the sensitive values.

Consequently, the leakage of up to d values does not disclose any information to the
attacker.

Masking in practice: unintended interactions between values in the processor cause
leakage in 1st order (caused often by transitional effects and glitches).
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Masking with 2 shares

I Split the intermediate variable X into two shares X1 and X2 such that
X1 ⊕ X2 = X

I The leakage L(X ) = HW (X1,X2) depends on two variables.

I It does not reveal info on the value of X when a DPA is performed, in theory

If a program that processes a secret value X contains two consecutive instructions
(the first uses X1 and the second uses X2), then the transitional effect of changing the
contents of the bus leaks the Hamming distance between X1 and X2.

Actually, Balasch et al. show [BGGRS14] that unintended interactions typically halve
the number of intermediate values the adversary needs to acquire.
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Test Vector Leakage Assessment (TVLA)

I Leakage assessment of a device is very important for the semiconductor and the
security evaluation industries

I Number of attacks to check the device’s resistance against keeps on growing

I Various attackers’ models possible but security evaluation often goes for the
strongest adversary

I It is using Welch’s t-test to differentiate between two sets of measurements, one
with fixed inputs and the other with random inputs

I Leakage from combining multiple points is not detected
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TVLA on masked implementations

The slowdowns of the “fixes” for ChaCha, Xoodoo and AES are 61% (1 322 vs. 2 122 cycles),
18% (637 vs. 753 cycles) and 15% (1 285 vs 1 479).

M. A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, Y. Yarom: Rosita: Towards
Automatic Elimination of Power-Analysis Leakage in Ciphers. NDSS 2021.
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SCA and AI



AI and Side-channel Analysis (SCA): Why

I Machine learning for SCA was a natural direction:

• PCA to assist profiling/template attacks (dimensionality reduction)
• PCA for pre-processing measurement traces
• Machine Learning (ML)-based SCA distingushers

I Deep learning in SCA:

• neural nets for profiling attacks
• defeating countermeasures e.g. attacking higher-order masking
• leakage assessment/simulators
• TEMPEST-like techniques e.g. screen gleaning

I SCA attacks on AI:

• SCA for reverse engineering neural net (NN) implementations
• applied to various platforms such as FPGAs, GPUs
• input recovery from NN implementations
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AI for SCA: When

Figure: Deep learning papers and datasets.

S. Picek, G. Perin, L. Mariot, L. Wu and L. Batina, SoK: Deep Learning-based
Physical Side-channel Analysis, https://eprint.iacr.org/2021/1092, ACM
Comput. Surv. 55(11): 227:1-227:35 (2023)
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Applications for machine learning

I Supervised learning (the most common in SCA): the machine learns with a
supervisor, for every example we tell the machine what the correct answer is;

I Unsupervised learning: the machine discovers hidden patterns in the data;
training is done on unlabelled data;

I Prediction: the machine predicts the future, based on past events

18
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Workflow machine learning
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Data preparation for SCA

A visual overview of how data is split:

I Over-fitting: an undesired phenomena, when the performance of the model on
the training data is very good, while the performance on testing data is poor;

I Cross-validation: the process of splitting the training data repeatedly into training
and validation sets for more reliable results, which avoid over-fitting;

I Under-fitting: when the model does not produce accurate results on the training
data;
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A simple MLP architecture

A simple multilayer perceptron (MLP) neural network architecture, which contains a
series of layers formed of connected neurons. The strength of the connection between
two neurons is determined by the associated weight.

I In SCA, we use relatively small networks and simple arch.: MLP and CNN
I During training the value of the weights and biases are adjusted;

SCA-context:

I # nodes in the input layer = # of samples in a trace;
I # nodes in the output layer = # the number of labels (a.k.a. classes);
I We only need to make decisions about the hidden layer

21
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Activation functions

We need to deal with non-linear functions.

22



SCA of PQC Implementations



Similarities to SCA attacks “classical” PKC

I Application is providing an attack scenario i.e. a threat model

I Ephemeral i.e. 1-time vs static keys: profiled or non-profiled attacks

I Partial key exposure attacks

I Horizontal attacks: a bunch of techniques all basically focusing on a single-trace
attack

• using ideas from collision-based attacks on symmetric crypto
• Online Template Attacks (OTA)
• as PKC implementations typically take a “long” time, there is much more

info to exploit in a trace

23
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Attacking (lattice-based) PQC

I Due to the NIST PQC competition a lot of research is done on implementations

I Implementation attacks on all finalists were discussed

I Algorithm-specific and other countermeasures proposed

I SCA attacks on implementations protected against higher order attacks found to
be feasible

I Deep learning attacks made a difference → profiling attacks

24



Example: Kyber

25



SCA attacks on Kyber

I SCA attack goals: msg recovery → secret-key recovery

I Attacks focus:

• decapsulation step i.e. re-encryption step (encoding the key into a
polynomial), tricky to mask, assuming chosen ciphertext attack
• leakage in the Number-Theoretic Transform (NTT)

I Recent DL attacks broke a 6-shares implementation

I Countermeasures deemed very expensive

26



Screen Gleaning



TEMPEST: Cause and History

Oscillating electric currents create EM radiation in the RF range and those signal drive
the video display of various screens.

I Bell Labs noted this vulnerability for teleprinter communications during WW II
recovering 75% of the plaintext being processed from a distance of 24m

I NSA published TEMPEST Fundamentals in 1982 referring to spying on systems
through leaking emanations, including radio or el. signals, sounds and vibrations

I TEMPEST covers both methods to spy and to shield equipment against such
spying

I Van Eck phreaking: In 1985 published the first unclassified analysis of the security
risks of emanations from computer monitors using just 15$ equipment+TV set

I Van Eck phreaking was used to successfully compromise ballot secrecy for
electronic voting in Brazil
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Motivation and Outcomes

Motivation:

I Using TEMPEST the adversaries can reconstruct the images displayed through
leaking emanations

I TEMPEST attack is known for a long time but no methodology has been
established to evaluate it on mobile devices

In this work we:

I Introduce Screen Gleaning, a new electromagnetic TEMPEST attack targeting
mobile phones

I Demonstrate the attack and its portability to different targets using machine
learning

I Provide a testbed and parameterized attacker model for further research
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Screen gleaning (Theory)
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Screen gleaning (Practice)

The signal we observe is, in most cases, not interpretable to the human eye.
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Attacker model: Motivating story and assumptions

Alice keeps her phone on a stack of magazines on her desk (face
down) to block the visual line of sight to the screen. Eve has
hidden an antenna under the top magazine to read the security
code via electromagnetic emanations of the phone.

I The set of symbols displayed on the phone is finite and known (digits 0-9)

I The attacker has access to a profiling device that is “similar” to the target device

I The attacker can collect electromagnetic traces from the target device
(representing the image displayed on the screen)
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Attacker model: setup

I The target emits EM signal intercepted by an antenna connected to a
software-defined radio (SDR)

I The leaked information is collected and reconstructed as a gray-scale image
(emage)

I From emage, the 6-digit security code is cropped and fed into a CNN classifier for
recognition
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Screen gleaning setup
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Security code results

Figure: Confusion matrix of the inter-session accuracy of the security.

Digits 0 1 2 3 4 5 6 7 8 9 All

Acc. (%) 87.2 86.8 97.4 75.8 99.1 97.4 95.1 93.1 82.5 86.1 89.8

Table: Accuracy with respect to different digits (0-9) and overall accuracy in our security code attack.

6 digits ≥ 5 digits ≥ 4 digits

Acc. (%) 50.5 89.5 99.0

Table: Accuracy of predicting partial security code correctly.
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Security code results

I Attack on different phones of the same model
E.g., cross-device accuracy of 61.5%, where the classifier is trained and tested on two
distinct iPhone 6.

I Attack on different phone of different model
E.g., accuracy of 74.0% on Huawei Honor 6X.

I Attack at a greater distance (through a magazine)
E.g., accuracy of 65.8% on Huawei Honor 6X through 200 pages.

Z. Liu, Niels Samwel, L. Weissbart, Z. Zhao, D. Lauret, L. Batina, M. Larson, Screen
Gleaning: A Screen Reading TEMPEST Attack on Mobile Devices Exploiting an
Electromagnetic Side Channel, NDSS 2021.
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Conclusions

I Screen gleaning is a new TEMPEST attack that uses an antenna and SDR to
capture an electromagnetic side channel, i.e., emanations leaking from a mobile
phone

I We demonstrated the effectiveness of it on three different phones with an
example of the recovery of a security code

I We introduced 5-dimension attacker model that can be extended further

I We proposed a testbed providing a standard setup in which screen gleaning can
be tested further with different attacker models

36



Conclusions

I Screen gleaning is a new TEMPEST attack that uses an antenna and SDR to
capture an electromagnetic side channel, i.e., emanations leaking from a mobile
phone

I We demonstrated the effectiveness of it on three different phones with an
example of the recovery of a security code

I We introduced 5-dimension attacker model that can be extended further

I We proposed a testbed providing a standard setup in which screen gleaning can
be tested further with different attacker models

36



Conclusions

I Screen gleaning is a new TEMPEST attack that uses an antenna and SDR to
capture an electromagnetic side channel, i.e., emanations leaking from a mobile
phone

I We demonstrated the effectiveness of it on three different phones with an
example of the recovery of a security code

I We introduced 5-dimension attacker model that can be extended further

I We proposed a testbed providing a standard setup in which screen gleaning can
be tested further with different attacker models

36



Conclusions

I Screen gleaning is a new TEMPEST attack that uses an antenna and SDR to
capture an electromagnetic side channel, i.e., emanations leaking from a mobile
phone

I We demonstrated the effectiveness of it on three different phones with an
example of the recovery of a security code

I We introduced 5-dimension attacker model that can be extended further

I We proposed a testbed providing a standard setup in which screen gleaning can
be tested further with different attacker models

36



Reverse Engineering of NN
Architectures Through SCA



Motivation for SCA to reverse engineer NNs

I Well-trained models are valuable for certain industries

I In some cases hyper-parameters and other training details are considered IP

I By 2024, the number of edge-based AI chips will be doubled

I Neural nets are being deployed on various platforms on low-power processors for
always-on systems e.g. ARM Cortex-M microcontrollers, FPGAs, GPUs etc.

I Implementations on those platforms are common targets for side-channel
adversaries
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Threat model and attacker’s capabilities

Goal: Recover the neural network architecture using only side-channel information

Target: Pretrained neural network model executed on an embedded device while
running inference
Fact 1: Implementations of ML algorithm are not protected against SCA
Fact 2: This approach does not need access to training data

Threat model:

I Adversary can query the model with known/chosen inputs and passively observe
side-channel information corresponding to the executed inference

I No specific assumption on the type of inputs or its source, as we work with real
numbers
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Complete setup for AVR
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SCA analysis

The adversary feeds known random inputs in a form of floating point real numbers
and observes side channels.

The leakage model used is Hamming weight (HW).

The attacker wants to learn:

I Information about layers

I Information about neurons

I Information about activation functions

I Information about weights
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Activation functions

I Function f of a node defining the output of a node given an input or set of inputs

y = Activation(
∑

(weight · input) + bias). (1)

I Examples: Sigmoid, tanh, softmax, ReLU
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Reverse engineering activation functions

Timing behavior can be observed directly from the EM trace

Table: Minimum, Maximum, and Mean computation time (in ns)

Activation Function Minimum Maximum Mean
ReLU 5 879 6 069 5 975

Sigmoid 152 155 222 102 189 144
Tanh 51 909 210 663 184 864

Softmax 724 366 877 194 813 712

(a) ReLU (b) Sigmoid (c) Tanh (d) Softmax
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Weights recovery via DPA
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(a) First byte recovery (sign and 7-bit exponent)
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(b) Second byte recovery (lsb exponent and mantissa)
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SEMA on hidden layers
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(a) One hidden layer with 6 neurons
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(b) 2 hidden layers (6 and 5 neurons
each)
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(c) 3 hidden layers (6,5,5 neurons
each)
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Methodology

Figure: Methodology to reverse engineer the target neural network
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ARM Cortex M-3 and MLP

I Tests with MNIST and DPAv4 datasets

I DPAv4: the original accuracy equals 60.9% and the accuracy of the reverse
engineered network is 60.87%

I MNIST: the accuracy of the original network is equal to 98.16% and the accuracy
of the reverse engineered network equals 98.15%, with an average weight error
converging to 0.0025

Lejla Batina, Shivam Bhasin, Dirmanto Jap, Stjepan Picek: CSI NN: Reverse Engineering of
Neural Network Architectures Through Electromagnetic Side Channel. USENIX Security
Symposium 2019: 515-532.
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Recent work: reverse engineering commercial GPUs

I Architecture recovery from NVIDIA Jetson Nano device with 128-core GPU

I Weights recovery

I Known input assumption
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Lessons learned

I The context in which a cryptosystem is used defines the adversarial model

I “Provably” secure implementations are regularly broken

I But we should not give up on theory

I AI-assisted SCA attacks are more powerful in some use cases

I But, in many SCA evaluations “classical” techniques could be more efficient

I SCA and AI are getting more and more intertwined
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The end

Thank you for your attention!

https://cescalab.cs.ru.nl/
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