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Abstract

We prove that for arbitrary prime p the angles of Kloosterman sums over the
field Fp are incommensurable with the constant π.

1 Introduction

Let Fq be the finite field of characteristic p and order q = pm. As usually, we denote by

F∗q the set of non-zero elements of Fq, and by ζn the primitive n−th root of unity e
2πi
n .

Let us recall the notion of classical Kloosterman sum over Fq.

Definition 1.1 For each u ∈ Fq, the Kloosterman sum Kq(u) is a special kind exponential
sum defined by

Kq(u) =
∑
x∈F∗

q

ζp
Tr(x+ux−1),

and the absolute trace Tr(a) over Fp of an element a ∈ Fq is defined as

Tr(a) = a+ ap + ...+ ap
m−1

.

It can be easily shown that Kq(u) is a real non-zero number. Recall, as well, that the
Weil bound (see, [12]) states:

|Kq(u)| ≤ 2
√
q. (1)

This inequality implies the existence of a unique real number θu such that

Kq(u)

2
√
q

= cos θu, 0 ≤ θu ≤ π, θu 6= π/2. (2)

The angle θu is referred to as angle of the Kloosterman sum Kq(u).
The behaviour of the angles of Kloosterman sums has been studied by many authors.

Here, we only refer to some of these works (see, [1][2][5][9][11]), and that list is certainly
far from being complete.

The simplest kind of Kloosterman sum is that over the prime field Fp, i.e., of the

form Kp(u) =
∑

x∈F∗
p
ζp

x+ux−1

. It is worth pointing out the existence of some successful

attempts to prove that the inequality (1) is always strict for the angles of Kp(u), u ∈ Fp,
so θu 6= 0, π (see [3, Theorem 8]).

In the present paper, we show that for any u ∈ Fp the ratio θu/π takes only irrational
values, thus establishing additional constraints of the same type as the strictness of the
inequality (1).



2 Preliminaries

We need some notions from Algebraic Number Theory (ANT) as algebraic number, min-
imal polynomial of an algebraic number and algebraic integer (see, e.g. [10, Chapter 3]).
An algebraic number is one that satisfies some equation of the form

xn + a1x
n−1 + . . .+ an = 0, (3)

with rational coefficients. (A polynomial having leading coefficient 1 is called monic.)
Any algebraic number α satisfies a unique monic polynomial equation of smallest degree,
called the minimal polynomial of α, and the algebraic degree of α (over the field of rational
numbers Q) is defined as the degree of its minimal polynomial. Remind, as well, that
the set of all algebraic numbers forms a number field, i.e. the sum, difference, product
and ratio of algebraic numbers are algebraic, too. If an algebraic number α satisfies some
equation of type (3) with integer coefficients we say that α is an algebraic integer. The
minimal polynomial of an algebraic integer is also with integer coefficients.

For more sophisticated concepts of ANT we direct the readers to [7, Chapter 2]. Herein,
in the amount of knowledge needed for this paper, we recall some basic facts concerning
those notions (possibly with slight abuses).

Let α be an algebraic number with minimal polynomial f(x) = xn+a1x
n−1+. . .+an ∈

Q[x]. The n roots of f(x), α = α1, α2, . . . , αn are called conjugates of α. The absolute
norm N (α) of α is defined as N (α) =

∏n
i=1 αi. Evidently, N (α) = (−1)nan.

In general, given a finite extension of number fields L/K, it can be defined the norm
NL/K(γ) of an arbitrary γ ∈ L, which in case K = Q and L = Q(γ) coincides with N (γ).
(Q(γ) stands for the number field obtained by adjoining γ to Q. In particular, Q(ζn) is
the so-called cyclotomic field generated by ζn.)
We shall make use of the following properties of norm:

P1 : If L ⊃ Q(α) then NL/Q(α) = N l(α), where l is the degree of L/Q(α).
Particularly, if α is an algebraic integer then NL/Q(α) ∈ Z.

P2 : (the multiplicative property of norm) For arbitrary α, β ∈ L it holds:

NL/K(αβ) = NL/K(α)NL/K(β).

We also use previously known facts stated here as several lemmata.

Definition 1.1 easily implies the following lemma.

Lemma 2.1 The Kloosterman sum Kq(u) is an algebraic integer which belongs to the
cyclotomic field Q(ζp).

The second one is an immediate consequence of [4, Proposition 6.4.3].

Lemma 2.2 For arbitrary odd prime p, the number
√
p is an algebraic integer that belongs

to the cyclotomic field Q(ζn) where

n =

{
p, if p ≡ 1 (mod 4)

4p, if p ≡ 3 (mod 4).

Lemma 2.3 For any r = k
n
∈ Q with relatively primes k and n > 0, the trigonometric

value 2 cos (2πr) is an algebraic integer in the cyclotomic field Q(ζn).



Remark 2.4 Lemma 2.3 is a part of D. H. Lehmer’s work [6, Theorem 1].

We shall need, as well, the next simple lemma.

Lemma 2.5 The cyclotomic fields Q(ζk) and Q(ζl) can be embedded in a common cyclo-
tomic field, e.g., Q(ζLCM(k,l)) where LCM(k, l) stands for the least common multiple of k
and l.

The last lemma is derived by [8, Lemma 11].

Lemma 2.6 For any u ∈ F∗q, the absolute norm of Kloosterman sum Kq(u) satisfies the
congruence N (Kq(u)) ≡ (−1)d (mod p) where d is the algebraic degree of Kq(u).

Remark 2.7 Since Kq(0) = −1 then N (Kq(0)) = −1 which means that Lemma 2.6 is
still valid for u = 0.

3 Results and their proofs

We will prove the following theorem.

Theorem 3.1 Let p be an odd prime. Then, for each u ∈ Fp, the angle θu of the Klooster-
man sum Kp(u) and π are incommensurable, i.e., their ratio θu/π is an irrational number.

Proof: By Eq. (2) we have:

Kp(u) = 2
√
p cos θu =

√
p ∗ 2 cos θu. (4)

Assume, on the contrary, θu = 2πr for some r ∈ Q.

Lemmata 2.1, 2.2 and 2.3 show that Kp(u),
√
p and 2 cos 2πr, respectively, belong to some

cyclotomic fields. Now, Lemma 2.5 implies that the number fields: Q(Kp(u)),Q(
√
p) and

Q(2 cos 2πr) can be embedded in a common (cyclotomic) field L with extension degrees,
say, e1, e2 and e3, respectively.
Further, on the one hand, by P1 and Lemma 2.6 (with q = p) we easily get:

NL/Q(Kp(u)) = N e1(Kp(u)) ≡ ±1 (mod p). (5)

But, on the other hand, by Eq. (4) and properties P2 and P1 we consecutively obtain:

NL/Q(Kp(u)) = NL/Q(
√
p ∗ 2 cos θu) =

NL/Q(
√
p)NL/Q(2 cos θu) = N e2(

√
p)N e3(2 cos 2πr).

Hence, by the apparent N (
√
p) = −p and by N (2 cos 2πr) ∈ Z which is deduced from

Lemma 2.3, it follows NL/Q(Kp(u)) ≡ 0 (mod p). The latter congruence contradicts
Congr. (5) which completes the proof. �

Remark 3.2 In case p = 2, we have: 2 cos θ1 = K2(1)/
√

2 = 1√
2
. Thus, 2 cos θ1 is a root

of x2 − 1
2

= 0, so it is not an algebraic integer. Now, Lemma 2.3 implies the counterpart
of Theorem 3.1 for binary case.

Example 3.3 Hereinafter, we present two examples illustrating the main statement.



� Let p = 3, so K3(1) = −1 and K3(2) = 2. Thus, x2 − 1
3

and x2 − 4
3

are minimal for
2 cos θ1 and 2 cos θ2, so these trigonometric values are not algebraic integers.

� Let u ∈ F∗q with q = pm (p = 2, 3) be a Kloosterman zero. Then 2 cos θu = − 1
pm/2

and its minimal polynomial is: x2− 1
pm

in case m odd; x+ 1
pm/2

in case m even. So,

2 cosθu is not an algebraic integer and therefore θu/π ∈ R \Q.

Remark 3.4 The assertion of Theorem 3.1 seems to be valid in more general settings.
However, the precise statement and proof of this result are postponed to a forthcoming
extended version of that paper.

As an immediate consequence of Theorem 3.1, we obtain the following corollary.

Corollary 3.5 The Weil bound cannot be attained by the sums Kp(u), u ∈ Fp.

Proof: Suppose for some u ∈ Fp it holds Kp(u) = ±2
√
p. Then, evidently, either θu = 0

or θu = π which contradicts the assertion of Theorem 3.1. �
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