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Abstract

Boolean functions satisfying good cryptographic criteria when restricted to the set of vectors
with constant Hamming weight play an important role in the known FLIP stream cipher proposed
by Méaux et al. at the conference Eurocrypt 2016. After providing a security analysis on the
FLIP cipher, those functions were nicely-investigated firstly by Carlet et al. in 2017 before taking a
high interest by the community. Handling such Boolean functions and designing those with optimal
characteristic cryptographic properties is no easy assignment.

This paper attempts to broaden the range of choices for these functions by offering two new
concrete constructions of weightwise perfectly balanced (WPB) functions on 2m variables (where m
is a positive integer) with optimal algebraic immunity. Simultaneously, the k-weight nonlinearities of
these newly constructed WPB functions on 2m variables are discussed for small values of m. Lastly,
comparisons of the k-weight nonlinearities of all the known WPB functions are given, including the
known results from computer investigations.

1 Introduction

In symmetric cryptographic framework, Boolean functions used as (important) primitives in stream
ciphers and block ciphers are classically studied with input defined on the whole vector space Fn

2 (where
the integer n stands the number of variables of the Boolean function). A precious (very recent) book in
this context is the one of Carlet [2] (without forget his chapter [1]).

At Eurocrypt 2016, Méaux et al. [8] proposed a new family of stream ciphers, called FLIP, which
is intended to be combined with a homomorphic encryption scheme to create an acceptable system of
fully homomorphic encryption. The FLIP cipher is based on a new stream cipher model, called the
filter permutator and tries to minimize some parameters (including the multiplicative depth). It consists
of updating at each clock cycle a key register by a permutation of the coordinates. A pseudorandom
number generator (PRNG) pilots the choice of the permutation. The permuted key is then filtered,
like in a classical stream cipher, by a Boolean function f whose output provides the keystream. A nice
description of the FLIP cipher can be found in [8]).

The symmetric primitive FLIP requires the Hamming weight of the key register to be invariant. This
produces a particular situation for the structure of the filter function: the input of the filter function
consists of those vectors in Fn

2 which have constant Hamming weight. Then, it leads to the problem of
evaluating the security of a Boolean function f with restricted input, i.e., the input of f is a subset of Fn

2 .
Besides, in particular stream ciphers, knowing the Hamming weight of a key register enables the attacker
to distinguish the keystream from a random bit-stream [5]. Therefore, filter functions with a slight bias
when restricted to vectors with constant Hamming weight are preferred.

Note that there exists a guess and determine attack on an early version of the FLIP cipher given by
Duval, Lallemand, and Rotella ([4]) but such an attack is not efficient on the updated versions of FLIP. In
2017, Carlet, Méaux, and Rotella [3] provided a security analysis on FLIP cipher and gave the first study
on cryptographic criteria of Boolean functions with restricted input. This produces a special situation
for the structure of filter function: the input of the filter function consists of those vectors in Fn

2 which
have constant Hamming weight (in fact, by definition, in the filter permutator, the input to the Boolean
function has constant Hamming weight equal to the weight of the secret key).



Boolean functions which are uniformly distributed over {0, 1} on any vector set of Fn
2 with the same

Hamming weight are called weightwise perfectly balanced functions.
Significant attention has been made to the constructions of weightwise perfectly balanced functions,

but the literature is still thin on this topic since studying Boolean functions in restricted input and
deriving those which are weightwise perfectly balanced is not an easy task. In the following, we briefly
present the state-of-the-art (given chronology) on the known construction of weightwise perfectly balanced
functions.

• in 2017, Carlet, Méaux, and Rotella provided in paper [3] a construction of a weightwise perfectly
balanced function. Such construction is designed through a method involving secondary construc-
tions.

• in 2019, Liu and Mesnager ([7]) proposed a large class of weightwise perfectly balanced functions,
which is 2-rotation symmetric.

• in 2019, Tang and Liu gave in [11] a family of weightwise (almost) perfectly balanced Boolean
functions with optimal algebraic immunity.

• in 2020, Mesnager and Su have exhibited in [9] several concrete constructions of weightwise (almost)
perfectly balanced Boolean functions by modifying linear or quadratic functions.

• in 2020, Li and Su have also derived in [6] constructions of weightwise perfectly balanced Boolean
functions after modifications of Boolean functions with a low algebraic degree.

An important parameter adapted to the restricted Boolean functions is the k-weight nonlinearity,
inherited from the classic concept of nonlinearity. We emphasize that upper bounds on the k-weight
nonlinearity of Boolean functions have been discovered in the literature. More specifically, a first upper
bound on the nonlinearity of a Boolean function restricted to a subset of Fn

2 was given by Carlet, Méaux,
and Rotella ([3]). In the same paper, Carlet et al. have also derived bounds on the weightwise nonlinearity
of Boolean functions. Two years after, Mesnager, Zhou, and Ding have improved in [10] the best know
upper bound on nonlinearity of a Boolean function restricted to a subset of Fn

2 and discussed also bounds
on the weightwise nonlinearity of Boolean functions.

In this paper, we continue our way in investigating constructions of WPB functions initiated by
Carlet et al. Our main strategy is to push further the method presented by Tang and Liu in their paper
[11]. Consequently, two concrete constructions of weightwise perfectly balanced (WPB) functions on 2m

variables (where m is a positive integer) with optimal algebraic immunity are derived.
The remainder of this paper is organized as follows. Formal definitions and necessary preliminaries

are introduced in Section 2. A first concrete construction of a family of WPB functions with optimal
algebraic immunity is presented in Section 3. Next, another concrete construction of WPB functions with
optimal algebraic immunity is presented in Section 4. Simultaneously, the comparison of the k-weight
nonlinearities of all the known WPB functions is given.

2 Some preliminaries

An n-variable Boolean function is a mapping from (the F2-vector space of dimension n) Fn
2 into F2. We

denote by Bn the set of all the n-variable Boolean functions. A function f ∈ Bn is said to be balanced
if its truth table contains an equal number of 1’s and 0’s, i.e., if its Hamming weight wt(f) = 2n−1. We
denote 0n = (0, 0, · · · , 0) ∈ Fn

2 and 1n = (1, 1, · · · , 1) ∈ Fn
2 .

Definition 2.1 Given an n-variable Boolean function f , denote

AI(f) = min{deg(g) | 0 6= g ∈ Bn such that fg = 0 or (f ⊕ 1)g = 0},

which is called the algebraic immunity of the function f .

An n-variable Boolean function f is said to have optimal algebraic immunity if AI(f) = dn2 e.
For 0 ≤ k ≤ n, we always denote

En,k = {x ∈ Fn
2 |wt(x) = k}. (1)

Obviously, En,0 = {0n}, En,n = {1n}, and
⋃n

k=0 En,k = Fn
2 . Denote by suppk(f) the support of a

Boolean function f on all the input with fixed Hamming weight k, i.e., suppk(f) = {x ∈ En,k | f(x) = 1}.
The k-Hamming weight of the function f ∈ Bn, denoted by wtk(f), is the cardinality of the subset
suppk(f), i.e., wtk(f) =

∣∣{x ∈ En,k | f(x) = 1}
∣∣.

2



Definition 2.2 If a function f ∈ Bn satisfies wtk(f) = 1
2

(
n
k

)
for all 1 ≤ k ≤ n − 1 and f(0n) 6= f(1n),

then f(x) is called a weightwise perfectly balanced (WPB) function.

The nonlinearity of f with input restricted on the subset En,k defined in (1) is called k-weight non-
linearity, which is denoted by NLk(f), where 1 ≤ k ≤ n− 1. The set of all the k-weight nonlinearity for
all 1 ≤ k ≤ n− 1 is called the weightwise nonlinearity profile of the function f .

Proposition 2.3 ([3]) Given an n-variable Boolean function f , its k-weight nonlinearity is equal to

NLk(f) =
1

2

(
n

k

)
− 1

2
max
a∈Fn

2

∣∣∣ ∑
x∈En,k

(−1)f(x)⊕a·x
∣∣∣,

where the subset En,k is defined in (1) and 1 ≤ k ≤ n− 1.

3 Construction of WPB functions with optimal algebraic im-
munity

Lemma 3.1 ([11]) Let n be equal to a power of 2. For every integer 1 ≤ k ≤ n− 1, we define Uk to be
an arbitrary subset of E=

n,k = {(x′, x′′) |x′ ∈ En
2 , k2

, x′′ ∈ En
2 , k2
} such that |Uk| = 1

2 |E
=
n,k|. Obviously, Uk

is an empty set when k is odd. Define a Boolean function f ∈ Bn as follows

f(x) =

{
1, x ∈W> ∪ U,
0, otherwise,

where x ∈ Fn
2 , En

2 , k2
is defined in (1), W> = {(x′, x′′) |x′ ∈ F

n
2
2 , x′′ ∈ F

n
2
2 ,wt(x′) > wt(x′′)}, and

U =
⋃n−1

k=1 Uk ∪ {0n} or
⋃n−1

k=1 Uk ∪ {1n}. Then, f is a WPB function with optimal algebraic immunity.

For m ≥ 2, define a 2m-variable Boolean function as

fm(x) =

 1, wt(x′) > wt(x′′),
0, wt(x′) < wt(x′′),
fm−1(x′), wt(x′) = wt(x′′),

(2)

where x = (x1, x2, · · · , x2m) ∈ F2m

2 , x′ = (x1, x2, · · · , x2m−1), x′′ = (x2m−1+1, x2m−1+2, · · · , x2m), and
f1(x1, x2) = x1.

Theorem 3.2 The 2m-variable Boolean function fm defined in (2) is WPB.

Sketch of proof: We proceed a mathematical induction on m. Assume that the function fm−1 is WPB.

(1) When k is odd, then we show that

wtk(fm) =
∣∣{x ∈ E2m,k |wt(x′) > wt(x′′)}

∣∣
=

k−1
2∑

i=0

(
2m−1

k − i

)(
2m−1

i

)
=

1

2

(
2m

k

)
.

(2) When k is even, then we show that

wtk(fm) =
∣∣{x ∈ E2m,k |wt(x′) > wt(x′′)}

∣∣+∣∣{x ∈ E2m,k |wt(x′) = wt(x′′), fm−1(x′) = 1}
∣∣

=

k
2−1∑
i=0

(
2m−1

k − i

)(
2m−1

i

)
+
∣∣{x′ ∈ E2m−1, k2

| fm−1(x′) = 1}
∣∣∣∣E2m−1, k2

∣∣
=

k
2−1∑
i=0

(
2m−1

k − i

)(
2m−1

i

)
+

1

2

(
2m−1

k
2

)2

=
1

2

(
2m

k

)
.

�
Next, the algebraic immunity of our newly constructed WPB functions is examined by highlighting that
our functions form a subclass of the one given by Tang and Liu in[11]. From this fact, we deduce the
2m-variable WPB function fm in (2) has an optimal algebraic immunity as well.
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4 Construction of WPB functions with optimal algebraic im-
munity and higher k-weight nonlinearity

In this section, another concrete construction of WPB functions with optimal algebraic immunity is
presented. The k-weight nonlinearities of these newly constructed WPB functions are high enough when
k is even.

For m ≥ 2, define a 2m-variable Boolean function as

gm(x) =

 1, wt(x′) > wt(x′′) or x = 12m ,
0, wt(x′) < wt(x′′),
gm−1(x′)⊕ gm−1(x′′), wt(x′) = wt(x′′) and x 6= 12m ,

(3)

where x = (x1, x2, · · · , x2m) ∈ F2m

2 , x′ = (x1, x2, · · · , x2m−1), x′′ = (x2m−1+1, x2m−1+2, · · · , x2m), and
g1(x1, x2) = x1.

Theorem 4.1 The 2m-variable Boolean function gm defined in (3) is WPB.

Sketch of proof: The proof consists of mathematical induction on m. Assume that the function gm−1 is
WPB for m ≥ 4. Then, by Definition 2.2, the k-Hamming weight of the function gm−1 is

wtk(gm−1) =
∣∣{x ∈ E2m−1,k | gm−1(x) = 1}

∣∣
=

1

2

(
2m−1

k

)
,

where 1 ≤ k ≤ 2m−1−1 and E2m−1,k is defined in (1). Furthermore, gm−1(02m−1) = 0 and gm−1(12m−1) =
1. Then, the weightwise perfectly balancedness of the Boolean function gm(x) is determined according
to k, 1 ≤ k ≤ 2m − 1, being odd or even as follows.

(1) When k is odd, we prove that k-Hamming weight of the function gm equals wtk(gm) = wtk(fm) =
1
2

(
2m

k

)
(since fm is WPB by Theorem 3.2).

(2) When k is even, the k-Hamming weight of the function gm is given by

wtk(gm) =
∣∣{x ∈ E2m,k |wt(x′) > wt(x′′)}

∣∣+∣∣{x ∈ E2m,k |wt(x′) = wt(x′′), gm−1(x′) = 1, gm−1(x′′) = 0}
∣∣+∣∣{x ∈ E2m,k |wt(x′) = wt(x′′), gm−1(x′) = 0, gm−1(x′′) = 1}
∣∣

=

k
2−1∑
i=0

(
2m−1

k − i

)(
2m−1

i

)
+

2
∣∣{x ∈ E2m,k |wt(x′) = wt(x′′), gm−1(x′) = 1, gm−1(x′′) = 0}

∣∣
=

k
2−1∑
i=0

(
2m−1

k − i

)(
2m−1

i

)
+ 2
[1

2

(
2m−1

k
2

)][1

2

(
2m−1

k
2

)]

=

k
2−1∑
i=0

(
2m−1

k − i

)(
2m−1

i

)
+

1

2

(
2m−1

k
2

)2

=
1

2

(
2m

k

)
,

where x = (x′, x′′) with x′, x′′ ∈ F2m−1

2 , E2m,k is defined in (1), the third identity holds by the
assumption that the function gm−1 is WPB and the fact that 1 ≤ k

2 ≤ 2m−1−1 since 1 ≤ k ≤ 2m−1
and k is even, and the last identity holds by a technical lemma that we establish.

�
We also study the algebraic immunity and prove that

Theorem 4.2 The 2m-variable WPB function gm in (3) has an optimal algebraic immunity.

Example 4.3 For m = 2 and 3, the k-weight nonlinearities of the WPB functions in papers [6, 7, 9],
the WPB function fm defined in (2), and the WPB function gm defined in (3) are given in Table 1 and
Table 2.
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Table 1: Weightwise nonlinearity profiles of the known 4-variable WPB functions

functions f in [7] g in [6] h in [9] k in [9] fm in (2) gm in (3)
⌊(

n
k

)
/2−

√(
n
k

)
/2
⌋

NL2(·) 0,1 1 1 1 0 1 1

Table 2: Weightwise nonlinearity profiles of the known 8-variable WPB functions

functions f in [7] g in [6] h in [9] k in [9] fm in (2) gm in (3)
⌊(

n
k

)
/2−

√(
n
k

)
/2
⌋

NL2(·) ≤ 9 2 2 2 2 6 11
NL3(·) ≤ 22 12 0 14 8 8 24
NL4(·) ≤ 27 19 3 19 8 26 30

Remark 4.4 In order to make sure the newly constructed WPB functions gm in (3) have optimal al-
gebraic immunity, we only modified the support of the function fm(x) in (2) on the vectors x ∈ F2m

2

satisfying wt(x′) = wt(x′′), where x = (x′, x′′) with x′, x′′ ∈ F2m−1

2 . It is known that if wt(x′) = wt(x′′)
then wt(x) is even. Hence, when k is odd, the k-weight nonlinearity of gm is the same as fm’s, since
gm(x) = fm(x) if wt(x) = k. However, when k is even, the k-weight nonlinearity of gm is much higher
than the k-weight nonlinearity of fm, and it is very close to the optimal result of computer simulation.
This is the first concrete construction of WPB functions in the literature, which have such a high even-
weight nonlinearity. We leave the construction of WPB functions with very high odd-weight nonlinearity
and optimal algebraic immunity as an open problem.
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