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Abstract

We show how to construct binary multi de Bruijn sequences using the cross-join method.
We experimentally confirm that some multi de Bruijn sequences can be generated by Galois
Nonlinear Feedback Shift Registers.

1 Introduction

De Bruijn sequences have been investigated for decades [6, 2, 7]. It is known that binary de
Bruijn sequences can be generated by Nonlinear Feedback Shift Registers (NLFSR) [8]. Knowing
a de Bruijn sequence one can apply the cross-join method to construct new de Bruijn sequences
[8, 7, 9, 3, 12]. In papers [11, 1] we proved that the cross-join method generates all de Bruijn
sequences of given order. In [1] an algorithm was explicitly given that begins with a de Bruijn
sequence from a finite alphabet and outputs a Hamiltonian path in the corresponding cross-join
graph. The paper [13] generalizes the notion of de Bruijn sequences to multi de Bruijn sequences,
where patterns of fixed length appear m times (m = 1 for ordinary de Bruijn sequences). Multi
de Bruijn sequences over some alphabets appear in biological investigations [10].

We prove that all binary multi de Bruijn sequences can be generated starting from one such
sequence by using the cross-join method. The proof is non-constructive and there are needed
methods to construct multi de Bruijn sequences. We implemented this method for the case of
multi de Bruijn sequences of the type C(2, 2, 3) (binary multi de Bruijn sequences of order 3 with
multiplicity 2 and patterns of length 3). Galois NLFSRs were considered in papers [4, 5]. We
confirmed experimentally that some of sequences of type C(2, 2, 3) can be generated by Galois
NLFSRs listed in [5]. In fact, they are modified sequences where one of the patterns has a
lower multiplicity. It is an open problem whether all binary multi de Bruijn sequences can be
generated by suitable Galois NLFSRs.

2 Multi de Bruijn sequences

We introduce multi de Bruijn sequences following Tesler’s paper [13]. Let ⌦ be a totally ordered
alphabet of size q � 1. A linear sequence is an ordinary sequence of elements of ⌦ denoted
a1a2 . . . an. Define the cyclic shift of a linear sequence by ⇢(a1a2 . . . an) = ana1 . . . an�1. In a
cyclic sequence, we treat all rotations of a given linear sequence as equivalent. A k-mer is a
sequence of length k over ⌦. The set of all k-mers over ⌦ is ⌦k. A cyclic de Bruijn sequence is
a cyclic sequence over alphabet ⌦ in which all k-mers occur exactly once. The length of such a
sequence is N = qk.

Definition 2.1 A cyclic multi de Bruijn sequence is a cyclic sequence over alphabet ⌦ of size
k in which each k-mer occurs exactly m-times with m, q, k � 1. k is the order of the sequence.

Let C(m, q, k) denote the set of all such sequences. The length of such a sequence is N = mqk,
since each of the qk k-mers accounts for m-starting positions. Tesler [13] derived the formula
for the cardinality of C(m, q, k). In the following we consider multi de Bruijn sequences over
binary alphabet ⌦ = {0, 1}.



Figure 1: The geometric depict of the cross-join method.

Definition 2.2 Let a sequence (xi) 2 C(m, 2, k) be represented as a sequence of its states
(Si), where each state is a k-mer Si = (xi, xi+1, . . . , xi+k�1). It is conjugate to a state Sj =
(xj , xj+1, . . . , xj+k�1) if xi = xj + 1. We denote this Si = Ŝj. The state Si is a companion of
the state Sj if xi+k�1 = xj+k�1 + 1.

Definition 2.3 Let a multi de Bruijn sequence (xi) be considered as a cyclic sequence and
represented as a sequence of states (Si). Then four succeeding states (Si, Sj , Ŝi, Ŝj) are called
the cross-join pair for the sequence (xi).

Definition 2.4 Let (xi) 2 C(m, 2, k) and (Si, Sj , Ŝi, Ŝj) be its cross-join pair. We construct a
new multi de Bruijn sequence (yi) by swapping the successors of Si and Ŝi and the successors of
Sj and Ŝj. That is, by going from Si to the successor of Ŝi, then from Ŝj to the successor of Sj

and so on until closing the cycle. This construction is called the cross-join method.

To be more precise, let us denote Ŝi = Sk and Ŝj = Sl. Then the original sequence has states
that proceed as:

Si, Si+1, . . . , Sj , Sj+1, . . . , Sk, Sk+1, . . . , Sl, Sl+1, . . . ;Si�1.

After the cross-join operation the modified sequence has states that proceed as:

Si, Sk+1, . . . , Sl, Sj+1, . . . , Sk, Si+1, . . . , Sj , Sl+1, . . . , Si�1.

The conjugate pair of states Si, Ŝi splits the full cycle into two shorter cycles after interchanging
their successors. Then the states Sj , Ŝj are on di↵erent cycles and after interchanging their
successors we obtain a new de Bruijn cycle (see Figure 1).

Definition 2.5 Let (xi), (yi) be two sequences from C(m, 2, k). The length of the sequences is
N = m2k. We take the least lexicographical representatives of both sequences and consider the
length L of the longest common initial path of these sequences

(x1, x2, · · · , xL, · · · , xN ), (x1, x2, · · · , xL, yL+1, · · · , yN ).



We define the function (pseudo-distance) of the sequences as d(x, y) = N � L.

Lemma 2.6 The function d(x, y) has the properties:

• d(x, x) = 0 for all x 2 C(m, 2, k).

• d(x, y) = d(y, x) for all x, y 2 C(m, 2, k).

There are examples of three multi de Bruijn sequences which are concatenation of de Bruijn
sequences of lower order for which the triangle inequality is not satisfied. It seems that when we
exclude such cases then the triangle inequality is satisfied on the set of remaining multi de Bruijn
sequences of a given order.

Definition 2.7 Let x and y be two distinct multi de Bruijn sequences. We say that y is a
neighbour of x if y can be obtained from x by applying a sequence of cross-join operations.

Lemma 2.8 Let x = (xi) and y = (yi) be two distinct multi de Bruijn sequences from the space
C(m, 2, k). Then there exists a multi de Bruijn sequence u 2 C(m, 2, k), which is a neighbour of
x in C(m, 2, k) such that d(u, y) < d(x, y).

Lemma 2.8 is crucial in the proof of following

Theorem 2.9 Any two distinct multi de Bruijn sequences in C(m, 2, k) can be connected by
applying a sequence of the cross-join operations.

Proof: Let x and y be two distinct sequences in C(m, 2, k). By Lemma 2.8 x has a neighbour
u1 such that d(u1, y) < d(x, y). If u1 = y then we are done, otherwise the same argument can
be iterated to get a sequence u2, which is a neighbour of u1, with d(u2, y) < d(u1, y). Due to
the strict inequality, and since the number of sequences in C(m, 2, k) is finite, it is evident that
this iterative process must end at y after a finite number of steps l, leading to the desired path
u0 = x, u1, . . . , ul = y. ⇤

Proof of Lemma 2.8. We take the least lexicographical representatives of the sequences
x = (Xi) and y = (Yi), where Xi and Yi are successive states of the multi de Bruijn sequences.
Let M0 be the maximal common initial sequence of x and y. Suppose that the sequence

M0 : 0 = X1 ! X2 ! · · · ! XL0

is common to x and y and L0 is maximal. Since x 6= y, L0 < N and for the successors of XL0

in x and y at least one is distinct from the state 0. Let us refer to these successors as X(1) and
XL0+1. Since x is a multi de Bruijn sequence it contains every state, so it must contain XL0+1.

The later is at least one of the states in fM0 the complement of M0 in x; that is, the sub-sequence
of x that starts with X(1) and ends just before the state 0. Let ⇤X0 be the the predecessor of
XL0+1 in x. Since XL0+1 belongs to fM0, the state ⇤X0 is either in fM0 or it is XL0 itself. But
the later is not possible because otherwise the common initial sub-sequence of x and y would
extend to XL0+1 defying the maximality of M0. Now XL0 and ⇤X0 are predecessors of the same
state and hence they are conjugate. Swapping their successors we split x into two cycles, a cycle
C1 that includes the state 0 and another cycle eC1 that includes the states ⇤X0 ! X(1).

The cycle C1 aligned to start at the state 0 and the multi de Bruijn cycle y have a maximal
common initial sequence of states

M1 : 0 = X1 ! X2 ! · · · ! XL0 ! · · · ! XL1

where L1 � XL0+1. The rest of the proof depends on establishing the following

Claim 1: It is possible to join C1 and eC1 by using the state in fM1 - the complement of M1

in C1 - and a conjugate state in eC1, i.e., there is a state in fM1 that has a conjugate in eC1. The
proof of the claim goes by contradiction and it will be presented in the entire paper.



Corollary 2.10 Starting with a multi de Bruijn sequence in C(m, 2, k) and applying the cross-
join method generates all sequences in C(m, 2, k).

We have implemented the cross-join method for the multi de Bruijn sequences of the type
C(2, 2, 3). We have started from the first sequences in the list in Example 2.11 and generated all
sequences. The implementation has been done in SAGE [14]. For each sequence the succeeded
states are represented as decimals and the sequence representative is a least lexicographical one.

Example 2.11 The sequences C(2, 2, 3), |C(2, 2, 3)| = 82. (Tesler [?])

(0425210463567731) (0425635210467731) (0425631042567731) (0421042563567731) (0042521463567731) (0042563521467731)
(0042563142567731) (0042563567731421) (0046314252567731) (0046314252567731) (0046352521467731) (0046352142567731)
(0046356773521421) (0046773142563521) (0046773563521421) (0046735214256731) (0046773521425631) (0042525631467731)
(0042567735631421) (0042567314256731) (0042567731425631) (0042146352567731) (0042146356773521) (0042146773563521)
(0042146735256731) (0042146773525631) (0042142567356731) (0042142567735631) (0046352567731421) (0046773146352521)
(0046735256731421) (0046773525631421) (0046773142525631) (0042567731463521) (0042567356731421) (0042525677314631)
(0042567314673521) (0042563146773521) (0421046352567731) (0421046356773521) (0463521046773521) (0463525210467731)
(0467310467352521) (0463104677352521) (0425677310463521) (0425673521046731) (0425677352104631) (0425256310467731)
(0425256731046731) (0425256773104631) (0425210467356731) (0425210467735631) (0421046773563521) (0421046735256731)
(0421046773525631) (0425673104673521) (0425631046773521) (0421042567735631) (0421042567356731) (0425673104256731)
(0046735252146731) (0046773525214631) (0042567352146731) (0042567735214631) (0042525673146731) (0042521467356731)
(0042521467735631) (0046352146773521) (0046314256773521) (0046773563142521) (0046731425256731) (0046735673142521)
(0046314677352521) (0046731425673521) (0046731467352521) (0046735214673521) (0046773521463521) (0046735673521421)
(0042146735673521) (0042142563567731) (0467352104673521) (0421046735673521)

The green and the red sequences are the contatenation of de Bruijn sequences of lower order.

3 Galois NLFSRs

Following Dubrova [4, 5] we introduce Galois NLFSRs. Each bit i in the state of Galois NLFSR is
updated to its next-state function which is a Boolean function of state variables. We considered
Galois NLFSRs of order 4 given by Dubrova ([5], Table 1) which have period 15. We checked
experimentally that some of them generate modified multi de Bruijn sequences of type C(2, 2, 3)
in which one of the 3-mers (here (000) and in the one case (111)) appears once.
Open problem: All binary multi de Bruijn sequences can be generated by some Galois NLFSRs.

Fig. 1 (from [5]). A scheme of Galois NLFSRs of order n.

Example 3.1 The list of Galois NLFSRs generating modified multi de Bruijn sequences of the
type C(2, 2, 3).

# f3 f2 f1 f0
1 x0 1 + x0 + x1 + x3 + x0x1 1 + x1 + x2 + x3 1 + x0 + x1 + x2 + x0x2
2 x0 x3 + x0x2 x2 + x3 + x1 x1 + x0 + x0x2
3 x0 x3 + x0x2 x2 + 1 + x3 + x0x3 x1 + 1 + x2 + x0 + x2x0
4 x0 x3 + x0x2 x2 + 1 + x0 + x1x0 x1 + 1 + x2 + x0x2
5 x0 x3 + 1 + x1 + x2 + x1x2 x2 + x1 + x0x1 x1 + 1 + x0 + x0x2
6 x0 x3 + x1x2 x2 + x1 + x1x0 x1 + x2x0
7 x0 x3 + x1x2 x2 + 1 + x0 x1 + 1 + x2 + x3 + x2x3
8 x0 x3 + x1 + x0x1 x2 + 1 + x3 + x1 x1 + x2 + x0x2
9 x0 x3 + x2 + x0x2 x2 + 1 + x0 + x1 + x0x1 x1 + 1 + x0 + x0x2
10 x0 x3 + x2 + x1x2 x2 + x3x1 x1 + x2 + x3 + x2x3
11 x0 x3 + x2 + x1x2 x2 + x0x1 x1 + x2 + x0x2
12 x0 x3 + x2 + x1x2 x2 + x0 x1 + x2 + x0x2
13 x0 x3 + x2 + x2x0 x2 x1 + x2x0
14 x0 x3 + 1 + x1 + x2 + x1x2 x2 + 1 + x0 + x1x0 x1 + 1 + x0 + x2 + x2x0
15 x0 + x1x2 x3 + x0x2 x2 x1 + 1 + x0 + x2 + x2x0
16 x0 + 1 + x1 + x2 + x1x2 x3 + 1 + x1 + x2 + x1x2 x2 x1 + x2
17 x0 + 1 + x1 + x3 + x1x3 x3 + x0x1 x2 + 1 + x0 x1 + 1 + x2 + x0
18 x0 + x2x3 x3 + x1 + x2 + x1x2 x2 + x1 + x1x3 x1 + x0

The sequences generated by NLFSRs in the decimal and the binary form.



# Decimal Binary # Decimal Binary
1 (046773525214631) (000111101010011) 10 (042563567731421) (000101101111001)
2 (042525631467731) (000101011001111) 11 (042146356773521) (000100110111101)
3 (046773563521421) (000111101101001) 12 (042525677314631) (000101011110011)
4 (042146773563521) (000100111101101) 13 (042567735631421) (000101111011001)
5 (046773146352521) (0001111001101010 14 (046356773521421) (000110111101001)
6 (046314677352521) (000110011110101) 15 (004252567314631) (000010101110011)
7 (042142567735631) (000100101111011) 16 (042563142567731) (000101100101111)
8 (042142563567731) (0001001011011110 17 (042567731425631) (000101111001011)
9 (046352521467731) (000110101001111) 18 (046352146773521) (000110100111101)

The blue sequence has one 3-mer in decimal (7) and in binary (111).

We thank anonymous referee for very helpful remarks and indicating the improvements.

References

[1] A. Alhakim. Hamiltonicity of the Cross-Join Graph of de Bruijn Sequences.
arXiv:1805.12059v2 [math.CO], 22 Feb 2020.

[2] N. G. de Bruijn. A Combinatorial Problem, Koninklijke Nederlandse Akademie v. Weten-
schappen 49, pp. 758764, (1946).

[3] Z. Chang, M. F. Ezerman, A. A. Fahreza, S. Ling, J. Szmidt, H. Wang. Binary de Bruijn
Sequences via Zech’s Logarithms. SN Computer Science, 2(4), pp. 1-18, (2021).

[4] E. Dubrova. A scalable method for constructing Galois NLFSRs with period 2n � 1 using
cross-join pairs. IEEE Trans. on Inform. Theory, 59(1), pp. 703-709, (2013).

[5] E. Dubrova, M. Teslenko, H. Tenhunen. On Analysis and Synthesis of (n,k)-Non-Linear
Feedback Shift Registers. DATE: 2008, pp. 1286-1291.

[6] C. Flye-Sainte Marie. Solution to problem number 58, l’Intermédiare des Mathématiciens,
vol. 1, pp. 107-110, (1894).

[7] H. Fredricksen. A Survey of Full Length Nonlinear Shift Register Cycle Algorithms. SIAM
Review, Vol. 24, No. 2, pp. 195-221, (1982).

[8] S. Golomb. Shift register sequences. San Fransisco, Holden-Day, (1967), revised edition,
Laguna Hills, CA, Aegean Park Press, 1982.
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