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Abstract. We propose a quantum algorithm that verifies that a given Boolean func-
tion, in form of a quantum oracle satisfies the “strict avalanche criterion” (SAC). The
complexity of our algorithm is of order O(n2) compared to the O(n2n) complexity for
the classical environment.
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1 Introduction

An n-variable Boolean function F is a function from Fn2 to F2. The set of all such functions
is denoted by Bn. We associate to each function F ∈ Bn its character form f : Fn2 → R,
defined by f(x) = (−1)F (x), for all x ∈ Fn2 (we use capitals letters for classical Boolean
functions and lower cases for the signatures of such). In this article, abusing notation,
we refer to the character forms f as Boolean functions and go to the extent of writing
f ∈ Bn, whenever F ∈ Bn, surely, if there is no danger of confusion. For any x, y ∈ Fn2 ,
the inner product is x · y =

∑n
i=1 xiyi, where the sum is over F2. The (Hamming)

weight of a vector u = (u1, . . . , un) ∈ Fn2 is wt(u) =
∑n
i=1 ui, where the sum is over

Z. The weight of a Boolean function F ∈ Bn, or equivalently f ∈ Bn is the cardinality
wt(F ) =

∣∣{x ∈ Fn2 : F (x) 6= 0}
∣∣, or equivalently wt(f) =

∣∣{x ∈ Fn2 : f(x) 6= 1}
∣∣. We define

the Fourier coefficient of f at u ∈ Fn2 by f̂(u) = 2−n
∑
x∈Fn2

f(x)(−1)u·x. Recall the well

known Parseval’s identity
∑
u∈Fn2

f̂(u)2 = 1. The derivative of f ∈ Bn at c ∈ Fn2 is the

function ∆cf(x) = f(x)f(x + c) (or, equivalently, ∆cF (x) = F (x + a) + F (x)) for all
x ∈ Fn2 .

2 Strict Avalanche Criterion

A Boolean function f ∈ Bn satisfies the strict avalanche criterion (SAC) if the probability
of the function changing its value when a single input value is flipped is exactly 0.5 that
is, the derivative ∆cF (x) is a balanced function for all c ∈ Fn2 such that wt(c) = 1. We
refer to Budaghyan [2], Carlet [3], and Cusick and Stănică [4] for detailed discussions on
SAC and other cryptographic properties of Boolean functions. The Fourier transform of
the function f̂(w) satisfies the following relation∑

w∈Fn2

(−1)w·c f̂(w)2 = 0, for all c ∈ Fn2 such that wt(c) = 1. (1)



As there are n possible strings c of weight 1, the above expression represents n different
relations simultaneously satisfied by f̂(w). These relations can also be written in terms
of wi, the ith bit of w as follows:

∑
w∈Fn2

(−1)wi f̂(w)2 = 0, for all i ∈ Z+, 1 ≤ i ≤ n,

i.e.,
∑

w∈Fn2 |wi=0

f̂(w)2 =
∑

w∈Fn2 |wi=1

f̂(w)2 =
1

2
, for all i ∈ Z+, 1 ≤ i ≤ n.

(2)

The last relation is obtained by using Parseval’s identity. Classically verifying SAC for a
Boolean function has a time complexity of O(n2n).

3 Quantum information: definitions and notation

In this section, we will introduce some notation that we use throughout the paper. For
an introduction to quantum computing, we refer to Rieffel and Polak [9], or Nielsen and
Chuang [8]. The fundamental unit of quantum information is called a qubit. The states
of a qubit is denoted by |ψ〉 = a |0〉+ b |1〉 where a, b ∈ C such that |a|2 + |b|2 = 1. If we
measure the qubit |ψ〉 using the standard basis {|0〉 , |1〉} the probabilities of observing
|0〉 and |1〉 are |a|2 and |b|2, respectively.

In the following, we will use the conventional notation |a〉 |b〉 := |a〉⊗ |b〉, or |ab〉 := |a〉⊗
|b〉. A state on n qubits can be represented as a C-linear combination of the vectors of the
standard basis |ψ〉 =

∑
x∈Fn2

ax |x〉, where ax ∈ C, for all x ∈ Fn2 , and
∑
x∈Fn2

|ax|2 = 1;

the set of vectors |x〉 forms a basis for the n qubit states and is referred to as the
computational basis. Let |0n〉 be the quantum state associated with the zero vector in

Fn2 . The vectors |+〉 = |0〉+|1〉√
2

and |−〉 = |0〉−|1〉√
2

define the Hadamard basis for single
qubit states.

Any Boolean function F ∈ Bn can be implemented as a bit oracle implementation UF ,
so that:

|x〉 |ε〉 UF−−→ |x〉
∣∣ε+ F (x)

〉
. (3)

Here, x ∈ Fn2 and ε ∈ F2. If the target qubit for UF is |−〉, then |x〉 |−〉 UF−−→ (−1)F (x) |x〉 |−〉.
This gives an alternative implementation of a Boolean function oracle known as the phase
oracle implementation of the function F .

The number of initial qubits to a quantum oracle of Boolean function in Bn is n + 1,
any internal ancillary qubits used are not included in this count. If the ith input qubit
acts as the control qubit and the target qubit is the same as the target of the oracle, the
gate is represented by CZi. In the phase oracle representation, the target qubit is in the
|−〉 state the action of CZi is as follows,

|x〉 |−〉 CZi

−−−→ |x〉
(
|0〉−(−1)xi |1〉√

2

)
. (4)

This implies if the xi = 1 the target qubit turns from |−〉 to |+〉.

Let I =

(
1 0
0 1

)
be the 2×2 identity matrix, and H = 1√

2

(
1 1
1 −1

)
be the 2×2 Hadamard

matrix. The tensor product of matrices is denoted by ⊗. The matrix Hn is recursively
defined as:

H2 = H ⊗H,
Hn = H ⊗Hn−1, for all n ≥ 3.

(5)

Note that, for x ∈ Fn2 , Hn |x〉 = 2
−n
2
∑
x′∈Fn2

(−1)x·x
′ ∣∣x′〉.



4 Quantum Algorithm to verify the strict avalanche
criterion

The SAC can be verified for a function F ∈ Bn through the following quantum algorithm.
The initial state of the n + 1 qubits is |0n〉 |0〉. In the following expressions, the symbol
(◦) is used to represent matrix multiplication:

|0n〉 |0〉
Hn⊗(Z◦H)−−−−−−−→ 2−n/2

∑
x∈Fn2

|x〉 |−〉

UF⊗I−−−−→ 2−n/2
∑
x∈Fn2

f(x) |x〉 |−〉

Hn⊗I−−−−→ 2−n
∑
x∈Fn2

f(x)
∑
w∈Fn2

(−1)x·w |w〉 |−〉

≡ 2−n
∑
w∈Fn2

∑
x∈Fn2

f(x)(−1)x·w |w〉 |−〉 =
∑
w∈Fn2

f̂(w) |w〉 |−〉 (6)

CZi

−−−→
∑
w∈Fn2

f̂(w) |w〉
(
|0〉 − (−1)wi |1〉√

2

)
≡

∑
w∈Fn2 |wi=1

f̂(w) |w〉 |+〉 +
∑

w∈Fn2 |wi=0

f̂(w) |w〉 |−〉

In⊗H−−−−→
∑

w∈Fn2 |wi=1

f̂(w) |w〉 |0〉 +
∑

w∈Fn2 |wi=0

f̂(w) |w〉 |1〉 .

The probability that the outcome of a standard measurement on the target qubit |ε〉 will
yield |0〉 or |1〉 is given by:

Pr[ε = 0] =
∑

w∈Fn2 |wi=1

f̂(w)2,

Pr[ε = 1] =
∑

w∈Fn2 |wi=0

f̂(w)2,
(7)

for a function satisfying SAC these two probabilities are 1
2

and the expectation value 〈ε〉
is also 1

2
. it should be noted that the same algorithm must be repeated n times with a

different gate

CZi, for all i ∈ Z+ such that 1 ≤ i ≤ n,

and yield the same value for 〈ε〉
Let

∣∣∣ε(i)〉 ∀ i ∈ Z+ : 1 ≤ i ≤ n denote the state of the target qubit after the CZi gate is

used in the quantum algorithm. Therefore, the probability distribution of the associated
random variable ε(i) is the same as given in (7). We prove the following theorem.

Theorem 1. Let the probability Pr
[
ε(i) = 1

]
= p, and the result of performing m trials

of the algorithm (6) are represented by the random variables ε
(i)
k , for all k ∈ Z+, 1 ≤ k ≤

m. Consider the sample mean given by:

Xi =
1

m

m∑
k=1

ε
(i)
k . (8)

Then for a given margin of error t > 0 we have

Pr
[
Xi − t ≤ pi ≤ Xi + t

]
≥ 1− 2 exp

(
−2mt2

)
.



The number of trials (m), required for each iteration in order to estimate pi is determined
by the degree of uncertainty δ : δ ∈ [0, 1] and the margin of error t. We have

Pr
[
Xi − t ≤ pi ≤ Xi + t

]
≡ 1− δ ≥ 1− 2 exp

(
−2mt2

)
,

which renders m = 1
2t2

ln
(
2
δ

)
.

For an uncertainty of 5% and a margin of error t = 0.05 the minimum number of trials
comes out to be 738. It can be observed that this value of m is dependent only on δ and
t and is independent of the size of the Boolean function n.
Combining this with the number of iterations required to verify the strict avalanche
criteria which is n, the overall time complexity of the quantum algorithm to verify the
strict avalanche criteria is O(n2). This is faster compared to the classical algorithm which
has a complexity of O(n2n) for large values of the input size n.

5 Alternative quantum algorithms for verifying SAC

The strict avalanche criterion can be verified using quantum algorithms related to other
Boolean function properties. One algorithm utilizes the fact that ∆cF (x) is balanced for
all c ∈ Fn2 such that wt(c) = 1. This implies the Fourier coefficient of these derivatives
at the point w = 0n is zero. The character form of the derivative ∆cF (x) is defined as
f ′c(x), the Fourier coefficient can be represented as ĝc(w). Therefore, if f satisfies SAC,

then f̂ ′c(0n) = 0 ∀ c ∈ Fn2 : wt(c) = 1.
If the quantum oracle Uf exists, then the oracle for any of the derivatives Uf ′c can be
constructed using two such oracles and an additional X gate. The algorithm for verifying
SAC is equivalent to Deutsch-Jozsa algorithm [6] on Uf ′c . The resultant state will not
contain the vector |0n〉 and therefore measurement of this resultant state will never yield
the outcome 0n. SAC can be verified by repeating this algorithm for each derivative
f ′c(x).
The Forrelation problem defined by Aaronson et al. [1] can be used to analyze a number
of Boolean function properties. Aaronson et al. [1] also gave a quantum algorithm that
evaluates the Forrelation between Boolean functions given their quantum oracles. The
k−fold Forrelation (Φ) between k Boolean functions f1, f2 . . . fk is given by

Φf1,f2...fk =
1

2(k+1)n/2

∑
x1,x2...xk∈Fn2

f1(x1)(−1)x1·x2f2(x2) . . . (−1)xk−1·xkfkxk. (9)

The quantum algorithm evaluating this quantity calls each of the Boolean function oracles
once.
Datta et al. [5, Lemma 3] used the quantum algorithm for 3-fold Forrelation to verify
the m−resilience of a general Boolean function g(x). This algorithm evaluates 3-fold
Forrelation Φg,h,g where h(x) is a symmetric Boolean function such that h(x) = 1 ∀ x ∈
Fn2 : wt(x) > m. If g(x) is m−resilient, the final state of the algorithm is always |0n〉.
The balanced nature of f ′c(x) also implies that it can be considered to be 0−resilient.
This can be verified setting g = f ′c and using the appropriate h(x) which in this case
is just the disjunction between the input variables and the oracle of function can be
constructed using X and CX gates.
SAC can therefore be verified by running the algorithm for each of the derivative function.
It can be seen that the resultant measurement of the Forrelation based algorithm is the
complement of the approach based on the Deutsch-Josza algorithm.

5.1 Comparison of the different quantum algorithms

The algorithm introduced here gives a probabilistic verification of SAC that calls the
Boolean function oracle Uf only once per instance of the algorithm. The first alternative



approach based on Deutsch-Jozsa algorithm requires the oracle of the derivative Uf ′c
which in turn requires two calls to the oracle Uf . The approach utilising Forrelation calls
the derivative oracle twice per instance, this implies Uf is called four times per instance.
Therefore (6) requires the fewest number of gates per instance.
The chief distinction between the algorithm introduced here and the alternative quantum
algorithms is in how the result is presented or read-out form the resultant state. In case
of the alternatives, the result of the algorithm is presented as the probability of the |0n〉
state. In the first alternative case this probability is 0 and in the second case, it is 1. The
verification of SAC is done by estimating the probability of a particular outcome of the
measurement on n qubits.
The algorithm presented in (6) presents the result in target qubit and verification of
SAC is equivalent to the estimation of the expectation value of the measurement on a
single qubit. This operation is simpler than the readout required for alternatives where
n-qubits are measured. the estimation of the expectation value can be performed using
the Hoeffding inequality as shown in Theorem 1.
It should be noted that while Forrelation based algorithms can be used to study a wider
variety of properties. The algorithm in (6) is an extension of the Deutsch-Jozsa algorithm
with a particular focus on verifying SAC and does so through the inclusion of only one
additional gate.

6 Conclusion

The quantum algorithm shown here give a probabilistic verification of the strict avalanche
criterion. the number of gates required grows linearly with n, the size of the Boolean func-
tion and the oracle Uf is called only once per instance. The accuracy of the verification
is independent of n and depends on the number of trials performed. The algorithm uses
fewer gates and calls to the oracle Uf than the alternate algorithms. It also requires the
measurement outcome from only one of the qubits.
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