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Relation btw quantum cryptography and boolean functions ? 
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BB84	QKD		encoding:	{|0>,	|1>,	|+>,	|->	}	

1	bit	max	capacity	
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 ‘‘Quantum’’ is a frontier for computational cryptography 

“When	elementary	quantum	systems		…	are	
used	to	transmit	digital	informaZon,	the	
uncertainty	principle	gives	rise	to	novel	
cryptographic	phenomena	unachievable	with	
tradiZonal	transmission	media.”	

Charles	H.	Benne_	et	Gilles	Brassard	(1984)	
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- 	Key	DistribuZon:	QKD	(BB94,	E91,	GG02,	DI-QKD,	MDI-QKD,	etc..)	
- 	Randomness	GeneraZon:	QRNG,	DI-QRNG	
- 	Secure	mulZ-party	computaZon:	Bit	commitment,	OT,	Blind	QC	
	
Common	point:	realize	some	exis1ng	cryptographic	func1onali1es	
without	computa1onal	assump1on:	

	 	 	 		ITS	security	=	Uncondi1onal	Security	
	



Quantum Key Distribution: large-scale deployment in view 

First	European	QKD	Network,	Vienna		(2008)	
Geneva-Lausanne	QKD	link	(1998)	



Quantum Key Distribution: large-scale deployment in view 

First	European	QKD	Network,	Vienna		(2008)	
Geneva-Lausanne	QKD	link	(1998)	

	Q	Satellite	Micius	(2016)	
2000	km	Ground	QKD	Network		(2018)		

European	Quantum	CommunicaZon	
	Infrastructure:	deployment	planned	by	2030	



Challenge: fundamental rate-loss trade-off  (PLOB bound) 

Lines	=		
Upper	bounds	
	
	

Points	=	Experimental	
results	
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Maximum Distance depends on conditions (i.e Dmax such that R(Dmax) ~1 bit/s)  
 

400 km   lab environment   low-loss fiber  supra-conducting detector 

240 km   lab environment   dark fiber   avalanche photodiode   

150 km   field deployment  dark fiber   avalanche photodiode  

<100 km  field deployment  WDM    avalanche photodiode	



Breaking the rate-loss fundamental barrier 
Quantum	Repeaters	
	

	
Quantum	Internet	Alliance	project	
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This	work:	Quantum-Computa;onal	Hybrid	Cryptography	
Use	computa,onal	assump,ons	to	boost	quantum	cryptography	
	
Ø  Implementable	with	current	technology	(no	quantum	memory,	no	repeaters)	
	
Ø  Change	of	security	model	

•  Relax	uncondiZonal	security	requirement	
•  Keep	core	cryptographic	advantage:	everlasZng	security	



 
Assumption 1 : Short-term-secure encryption exists  
 

Legitimate users can use a (computationally-secure) symmetric encryption 

scheme indisguishable from a random function during a time at least τenc 
 
 

Assumption 2 : Noisy Quantum Storage 

Quantum memory decoheres within a time τcoh  <<  τenc 

Quantum Computational Hybrid (QCH) Security Model 
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~min 1 Day 25 years 
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How to design a KD protocol in the QCH model ? 

	

High	dimensional	
(d>>1)		quantum	
	encoding	
	
e.g	d=64	
	
(arZsZc	view)	
	
	
	

(H0,H1):	parZZon	in		
	two	d/2-dimensional	
	boolean	subspaces	
	
	

H0	
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High-level	idea	for	q	cryptographic	protocol:	
	

•  Encrypt	and	send	(H0,H1)	
•  Encode	1		bit	b		as	a	q	state	|φx>		that	belongs	to	H0	or	H1	

If	one	knows	(H0,H1)	è		can	decode	b	(measurement	(H0,H1)	)	
If	does	not	know	(H0,H1)	è	cannot	guess	b		(what	measurement	?)	
	
	
	

H0	



,	

Bob	

Boolean Hidden Matching (BHM) 

Alice	

Binary	matching	M, ω																																						
																										
	M	óParZZon	of	{1,n}		
in	n/2	pairs{	(i1,j1),	(i2,j2),…,	(in,jn)}	

	guess		b	

x	�	{0,1}n	

such	that	
M	x	=	ω +	bn/2		
	

c	bits	/	q	qubits	
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Classical	One-way	computaZonal	complexity	of	BHM							O(√n)  bits 
 

Quantum	One-way	computaZonal	complexity	of	BHM				log(n)	qubits	
•  	Alice	sends			|ψx> =	Σi=1..n	(-1)

xi	|i>	
•  	Bob	measures	according	to	matching	M	:	projecZons	Pk(±)	on		|ik>	±	|j1>			
	

Reference	
Dmitry	Gavinsky,	Julia	Kempe,	Iordanis	Kerenidis,	Ran	Raz,	and	Ronald	De	Wolf.	
Exponen,al	separa,ons	for	one-way	quantum	commun	complexity,	with	appl.	to	cryptography.		
ACM	Symposium	on	Theory	of	CompuZng	2007.		
	



New Q Crypto framework : Quantum Computational Timelock (QCT) 
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The	;melock	is	a	Zmer	designed	to	prevent	the	opening	of	a	vault	unZl	it	reaches	a	
preset	Zme.	
Very	strong	security	when	combined	with	external	security	mechanism	(e.g.	Sheriff)		
	

Zme	

Start	opening	(breaking)	locks	
	

Timelocked	

Preset	Zme	
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ComputaZonal		
EncrypZon

τenc	

Decoherence	

τcoh	



	
Timelocked	classical	informaZon	Alice	(K)	

b∈R {0,1}

x ∈ {0,1}n

DK
M,ωEK (M,ω)

Q	Channel							
		   

bBBinary	
matching	M	
	

Bob	(K)	

M,ω ∈R {0,1}
O(n)

Λ

EK (S)

Ideal	Q	channel	
		   

Eve			
X	 No	informaZon	about	S	   

A-B	

Δt > tcomp

X	Timelock	encrypZon	elapsed		  

Measurement

tcoh << tcomp

Noisy		
Quantum	
	Storage

tcoh

X	 Classical	
Decoding	

S
bE

Zme	

Zme	

t	

T+Δt	

QCT leads to reduction (C/Q separation) to Hidden Matching  

A-E	

Alice	(K)	

b∈R {0,1}

x ∈ {0,1}n

S = (M,ω)∈R {0,1}
O(n)

		
		   

 |ψx >		
		   

 |ψx >		
		   

 y		
		   

Q	CommunicaZon	btw	A	and	B	

Reduces	to	C	communicaZon	btw	A	and	E		



Performance of Hidden Matching - QCT protocol 

Reduction to BHM: 
 

Secure KD with O(√n) 
photons / ch use  
 

è Longer reach  
è Higher rates 

               than QKD 
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Granted Patent   EP15305017.4 WO2016110582 
Romain Alléaume, Communications with everlasting security 
from short-term-secure encrypted communication
  

Implementable with coherent states, with high dimensional (n modes) encoding 
	



Conclusion and perspectives 
 

Q	Crypto	can	be	boosted	by	ephemeral	computa;onal	assump;ons	
	

-  Everlas1ng	security	in	noisy	storage	model	
-  Improved	performances	
-  Improved	funcZonaliZes:	1	to	N	KD	;	no	need	to	trust	Bob	

	
	
Future	work	and	Open	ques;ons		
	

Experimental	ImplementaZon	(ongoing	work,	frequency	encoding)	
	

Is	a	beSer	scaling	achievable	?	(e.g,	rate	scales	like	0(n))	

è	Explore	alternaZve	construcZons	and	connecZons	with:	
-  CommunicaZon	complexity	
-  Locally	decodable	codes	
-  Randomness	extractors	

-  Other	techniques	from	cryptography	and	coding	?	


