

Quantum-Computational Hybrid Cryptography based on the Boolean Hidden Matching Problem

Workshop Boolean Functions and Applications June 21, 2019

Romain Alléaume

Relation btw quantum cryptography and boolean functions?

Quantum bit (Qbit) \Leftrightarrow SU(2) \Leftrightarrow Point on the Block Sphere

|0>, |1> : orthogonal vectors of SU(2)

 $|\psi\rangle = \cos(\theta/2) |0\rangle + e^{i\phi} \sin(\theta/2) |1\rangle$

Relation btw quantum cryptography and boolean functions?

Quantum bit (Qbit) \Leftrightarrow SU(2) \Leftrightarrow Point on the Block Sphere

|0>, |1> : orthogonal vectors of SU(2)

$$|\psi\rangle = \cos(\theta/2) |0\rangle + e^{i\phi} \sin(\theta/2) |1\rangle$$

Holevo Theorem (73): the classical capacity of n qubits is at most n bits

Relation btw quantum cryptography and boolean functions?

Quantum bit (Qbit) \Leftrightarrow SU(2) \Leftrightarrow Point on the Block Sphere

|0>, |1> : orthogonal vectors of SU(2)

$$|\psi\rangle = \cos(\theta/2) |0\rangle + e^{i\phi} \sin(\theta/2) |1\rangle$$

Holevo Theorem (73): the classical capacity of n qubits is at most n bits

 $\{|0\rangle, |1\rangle\} \Leftrightarrow F_2 \Leftrightarrow 1$ classical bit

BB84 QKD encoding: {|0>, |1>, |+>, |-> }

1 bit max capacity

Zero-error eavesdropping Impossible

=>(...) Security

"Quantum" is a frontier for computational cryptography

"When elementary quantum systems ... are used to transmit digital information, the uncertainty principle gives rise to novel cryptographic phenomena unachievable with traditional transmission media."

Charles H. Bennett et Gilles Brassard (1984)

"Quantum" is a frontier for computational cryptography

"When elementary quantum systems ... are used to transmit digital information, the uncertainty principle gives rise to novel cryptographic phenomena unachievable with traditional transmission media."

Charles H. Bennett et Gilles Brassard (1984)

- Key Distribution: QKD (BB94, E91, GG02, DI-QKD, MDI-QKD, etc..)
- Randomness Generation: QRNG, DI-QRNG
- Secure multi-party computation: Bit commitment, OT, Blind QC

Common point: realize some existing cryptographic functionalities <u>without computational assumption</u>:

ITS security = Unconditional Security

Quantum Key Distribution: large-scale deployment in view

Geneva-Lausanne QKD link (1998)

First European QKD Network, Vienna (2008)

Quantum Key Distribution: large-scale deployment in view

Geneva-Lausanne QKD link (1998)

First European QKD Network, Vienna (2008)

Q Satellite Micius (2016) 2000 km Ground QKD Network (2018)

European Quantum Communication Infrastructure: deployment planned by 2030

OUANTUM FLAGSHIP

Challenge: fundamental rate-loss trade-off (PLOB bound)

Challenge: fundamental rate-loss trade-off (PLOB bound)

Maximum Distance depends on conditions (i.e Dmax such that R(Dmax) ~1 bit/s)

400 km	lab environment
240 km	lab environment
	field deployment
150 KM	neia aepioymeni

low-loss fiber dark fiber **dark fiber** WDM supra-conducting detector avalanche photodiode **avalanche photodiode** avalanche photodiode

Breaking the rate-loss fundamental barrier

Quantum Repeaters

Breaking the rate-loss fundamental barrier

OUANTUM

DELFT

This work: Quantum-Computational Hybrid Cryptography Use computational assumptions to boost quantum cryptography

- Implementable with current technology (no quantum memory, no repeaters) \succ
- Change of security model
 - Relax unconditional security requirement
 - Keep core cryptographic advantage: everlasting security

Quantum Computational Hybrid (QCH) Security Model

Assumption 1 : Short-term-secure encryption exists

Legitimate users can use a (computationally-secure) symmetric encryption

scheme indisguishable from a random function during a time at least au_{enc}

<u>Assumption 2</u> : Noisy Quantum Storage

Quantum memory decoheres within a time τ_{coh} << τ_{enc}

Quantum Computational Hybrid (QCH) Security Model

<u>Assumption 1</u> : Short-term-secure encryption exists

Legitimate users can use a (computationally-secure) symmetric encryption

scheme indisguishable from a random function during a time at least au_{enc}

Assumption 2 : Noisy Quantum Storage

Quantum memory decoheres within a time $\tau_{coh} << \tau_{enc}$

How to design a KD protocol in the QCH model ?

High dimensional (d>>1) quantum encoding

e.g d=64

(artistic view)

(H0,H1): partition in two d/2-dimensional boolean subspaces

How to design a KD protocol in the QCH model ?

High dimensional (d>>1) quantum encoding

e.g d=64

(artistic view)

(H0,H1): partition in two d/2-dimensional boolean subspaces

High-level idea for q cryptographic protocol:

- Encrypt and send (H0,H1)
- Encode 1 bit b as a q state $|\phi_x\rangle$ that belongs to H0 or H1

If one knows (H0,H1) → can decode b (*measurement (H0,H1)*) If does not know (H0,H1) → cannot guess b (what measurement ?)

Boolean Hidden Matching (BHM)

Boolean Hidden Matching (BHM)

Reference

Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald De Wolf. *Exponential separations for one-way quantum commun complexity, with appl. to cryptography.* ACM Symposium on Theory of Computing 2007.

Classical One-way computational complexity of BHM **O**(\sqrt{n}) **bits**

Quantum One-way computational complexity of BHM log(n) qubits

- Alice sends $|\psi_{\mathbf{X}}\rangle = \sum_{i=1..n} (-1)^{\mathbf{X}i} |i\rangle$
- Bob measures according to matching M : projections $P_k^{(\pm)}$ on $|i_k > \pm |j_1 >$

New Q Crypto framework : Quantum Computational Timelock (QCT)

The **timelock** is a timer designed to prevent the opening of a vault until it reaches a preset time.

Very strong security when combined with external security mechanism (e.g. Sheriff)

New Q Crypto framework : Quantum Computational Timelock (QCT)

The **timelock** is a timer designed to prevent the opening of a vault until it reaches a preset time.

Very strong security when combined with external security mechanism (e.g. Sheriff)

New Q Crypto framework : Quantum Computational Timelock (QCT)

The **timelock** is a timer designed to prevent the opening of a vault until it reaches a preset time.

Very strong security when combined with external security mechanism (e.g. Sheriff)

QCT leads to reduction (C/Q separation) to Hidden Matching

Performance of Hidden Matching - QCT protocol

Implementable with coherent states, with high dimensional (n modes) encoding

Granted Patent EP15305017.4 **WO**2016110582 ROMAIN ALLÉAUME, COMMUNICATIONS WITH EVERLASTING SECURITY FROM SHORT-TERM-SECURE ENCRYPTED COMMUNICATION

Conclusion and perspectives

Q Crypto can be boosted by ephemeral computational assumptions

- Everlasting security in noisy storage model
- Improved performances
- Improved functionalities: 1 to N KD ; no need to trust Bob

Future work and Open questions

Experimental Implementation (*ongoing work, frequency encoding*)

Is a better scaling achievable ? (*e.g, rate scales like O(n)*)

→ Explore alternative constructions and connections with:

- Communication complexity
- Locally decodable codes
- Randomness extractors
- Other techniques from cryptography and coding ?