Relation between o-equivalence and EA-equivalence for Niho bent functions

Diana Davidova
University of Bergen

join work with
Lilya Budaghyan, Claude Carlet, Tor Helleseth,
Ferdinand Ihringer, Tim Penttila

BFA–2019
Florence, Italy
June 16 - 21, 2019
\(\mathbb{F}_{2^n} \) is a field with \(2^n \) elements, \(\mathbb{F}^*_n = \mathbb{F}_{2^n} \setminus \{0\} \).

- **Trace function**
 A mapping \(Tr^r_k : \mathbb{F}_{2^k} \rightarrow \mathbb{F}_{2^r} \), defined in the following way:

 \[
 Tr^r_k(x) = \sum_{i=0}^{k r-1} x^{2^{ir}}
 \]

 for any \(k, r \in \mathbb{Z}^+ \), such that \(k \) is dividing by \(r \).

 For \(r = 1 \), \(Tr^1_1 \) is called the absolute trace:

 \[
 Tr^1_k(x) = Tr_k(x) = \sum_{i=0}^{k-1} x^{2^i}.
 \]
Notation and preliminaries

Boolean function \(f : \mathbb{F}_{2^n} \mapsto \mathbb{F}_2 \).

- **Walsh transformation**
 is a Fourier transformation of \(\chi_f = (-1)^f \), whose value is defined by:
 \[
 \hat{\chi}_f (w) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + Tr_n (wx)},
 \]
 at point \(w \in \mathbb{F}_{2^n} \).

- **The Hamming distance**
 \(f, g : \mathbb{F}_{2^n} \mapsto \mathbb{F}_2, d_H(f, g) = |\{ x \in \mathbb{F}_{2^n} | f(x) \neq g(x) \}|. \)

- **Nonlinearity**
 \(\mathcal{N}L(f) = \min_{l \in A_n} d_H(f, l) \), where
 \[
 A_n = \{ l : \mathbb{F}_{2^n} \mapsto \mathbb{F}_2 | l = Tr_n(ax) + b, a \in \mathbb{F}_{2^n}, b \in \mathbb{F}_2 \}.
 \]
 High nonlinearity prevents cryptosystem from linear attacks and correlation attacks.
Bent functions

\[\mathcal{NL}(f) = 2^{n-1} - \frac{1}{2} \max_{a \in \mathbb{F}_{2^n}} \hat{\chi}_f(a). \]

\[\mathcal{NL}(f) \leq 2^{n-1} - 2^{\frac{n}{2}-1}. \]

The \(\mathcal{NL}(f) \) reach the upper bound only for even \(n \).

- **Bent function**
 A boolean function \(f : \mathbb{F}_{2^n} \mapsto \mathbb{F}_2 \) (\(n \) is even), if \(\mathcal{NL}(f) = 2^{n-1} - 2^{\frac{n}{2}-1} \), equivalently if \(\hat{\chi}_f(w) = \pm 2^{\frac{n}{2}} \) for any \(w \in \mathbb{F}_{2^n} \).

- Boolean functions \(f \) and \(g \) are called **EA-equivalent**, if there exist an affine automorphism \(A \) and an affine Boolean function \(l \) s.t. \(f = g \circ A + l \).
A positive integer d (understood modulo $2^n - 1$ with $n = 2m$) is a Niho exponent and $t \mapsto t^d$, is a Niho power function, if the restriction of t^d to \mathbb{F}_{2^m} is linear, i.e. $d \equiv 2^j (mod 2^m - 1)$ for some $j < n$.

Example

Niho bent functions

1. Quadratic functions $Tr_m(at^{2^m+1}), a \in \mathbb{F}_{2^m}^*$;
2. Binomilas of the form $f(t) = Tr_n(\alpha_1 t_1^{d_1} + \alpha_2 t_2^{d_2})$, where $\alpha_1, \alpha_2 \in F_{2^n}$, $d_1 = (2^m - 1)\frac{1}{2} + 1$, and d_2 can be: $(2^m - 1)3 + 1$, $(2^m - 1)\frac{1}{4} + 1$ (m is odd), $(2^m - 1)\frac{1}{6} + 1$ (m is even).
3. For $r > 1$ with $gcd(r, m) = 1$
 $f(x) = Tr_n\left(a^2 t^{2^m+1} + (a + a^{2^m}) \sum_{i=1}^{2^{r-1}-1} t^{d_i}\right)$,
 where $2^r d_i = (2^m - 1)i + 2^r$, $a \in \mathbb{F}_{2^n}$ s.t. $a + a^{2^m} \neq 0$.
Class \mathcal{H} of bent functions

Niho bent functions in the univariant representation are functions in the following class \mathcal{H}:

$$g(x, y) = \begin{cases}
 \text{Tr}_m \left(xG \left(\frac{y}{x} \right) \right), & \text{if } x \neq 0; \\
 \text{Tr}_m(\mu y), & \text{if } x = 0,
\end{cases}$$

where $\mu \in \mathbb{F}_{2^m}$, $G : \mathbb{F}_{2^m} \mapsto \mathbb{F}_{2^m}$ satisfying the following conditions:

1. $F : z \mapsto G(z) + \mu z$ is a permutation over \mathbb{F}_{2^m}
2. $z \mapsto F(z) + \beta z$ is 2-to-1 on \mathbb{F}_{2^m} for any $\beta \in \mathbb{F}_{2^m}^*$.

Condition (2) implies condition (1) and it necessary and sufficient for g being bent. Functions in \mathcal{H} and a class of functions introduced by Dillon in 1974 are the same up to addition a linear term.

A polynomial $F : \mathbb{F}_{2^m} \mapsto \mathbb{F}_{2^m}$ is called an $o-$polynomial, if

1. F is a permutational polynomial satisfies $F(0) = 0, F(1) = 1$;

2. the function $F_s(x) = \begin{cases} 0, & \text{if } x = 0, \\ \frac{F(x+s)+F(s)}{x} & \text{if } x \neq 0 \end{cases}$

is a permutation for each $s \in \mathbb{F}_{2^m}^*$.

Theorem

A polynomial F defined on \mathbb{F}_{2^m} such that $F(0) = 0, F(1) = 1$ is an $o-$polynomial, iff

$$z \mapsto F(z) + \beta z$$

is 2-to-1 on \mathbb{F}_{2^m} for any $\beta \in \mathbb{F}_{2^m}^*$.

Every o-polynomial defines a Niho bent function and vice versa.
Let F be an o-polynomial defined on \mathbb{F}_{2^m}. Then o-polynomial $G = A_1 \circ F \circ A_2$ defines Niho bent function EA-equivalent to F, if

1. $A_1(x) = \frac{1}{F(b)} x$, $A_2(x) = bx$;

2. $A_1(x)$ is an automorphism over \mathbb{F}_{2^m} and $A_2 = A_1^{-1}$,

3. $A_1(x) = x + a$ and $A_2(x) = x + b$ for $a, b \in \mathbb{F}_{2^m}$, $b = F(a)$ and $F(a + 1) + F(a) = 1$.

Note that from 1. easily follows that every o-polynomial on \mathbb{F}_{2^m} defines a vectorial Niho bent function $xF(\frac{y}{x})$ from $\mathbb{F}_{2^m} \times \mathbb{F}_{2^m}$ to \mathbb{F}_{2^m}.\(^2\)

The list of known o-polynomials

1. \(F(x) = x^{2^i}, \gcd(i, m) = 1, \)
2. \(F(x) = x^6, m \text{ is odd}, \)
3. \(F(x) = x^{3 \cdot 2^k + 4}, m = 2k - 1, \)
4. \(F(x) = x^{2^k + 2^k}, m = 4k - 1, \)
5. \(F(x) = x^{2^{2k+1} + 2^{3k+1}}, m = 4k + 1, \)
6. \(F(x) = x^{2^k} + x^{2^k + 2} + x^{3 \cdot 2^k + 4}, m = 2k - 1, \)
7. \(F(x) = x^{\frac{1}{6}} + x^{\frac{1}{2}} + x^{\frac{5}{6}}, m \text{ is odd}. \)
8. \(F(x) = \frac{1}{Tr^n_m(v)} \left(Tr^n_m(v^r)(x+1)+(x+Tr^n_m(v)x^{\frac{1}{2}} + 1)^{1-r} Tr^n_m(vx + v^{2m})^r \right) + x^{\frac{1}{2}}, \)
where \(m \) is even, \(r = \pm 2^{m-1}, v \in \mathbb{F}_{2^m}, v^{2m+1} \neq 1, v \neq 1, \)
9. \(F(x) = x^4 + x^{16} + x^{28} + \omega^{11}(x^6 + x^{10} + x^{14} + x^{18} + x^{22} + x^{26}) + \omega^{20}(x^8 + x^{20}) + \omega^6(x^{12} + x^{24}) \text{ with } \omega^5 = \omega^2 + 1. \)
Niho bent functions are **o-equivalent** if the corresponding o-polynomials are equivalent.

o-equivalent Niho bent functions defined by o-polynomials F and F^{-1} can be EA-inequivalent.
\(\mathcal{F} \) is the collection of all o-polynomials defined on \(\mathbb{F}_{2^m} \) and
\[\langle H \rangle = \langle \{ \tilde{\sigma}_a, \tilde{\tau}_c, \varphi, \rho_{2j} | 0 \leq j \leq m - 1, c \in \mathbb{F}_{2^m}, a \in \mathbb{F}_{2^m}^* \} \rangle \] is a group of transformations acting on \(\mathcal{F} \) as follow:
\[\tilde{\sigma}_a F(x) = \frac{1}{F(a)} F(ax), \ a \in \mathbb{F}_{2^m}^*; \]
\[\tilde{\tau}_c F(x) = \frac{1}{F(1+c)+F(c)} (F(x+c)+F(c)) = \alpha_F^c (F(x+c)+F(c)), \ c \in \mathbb{F}_{2^m}, \]
\[\varphi F(x) = F'(x) =xF(x^{-1}); \]
\[\rho_{2j} F(x) = F^{2j}(x^{2^{-j}}), \ 0 \leq j \leq m - 1. \]

Proposition

Two o-polynomials are equivalent if and only if they lie on the same orbit of the action of the group generated by \(H \) and the inverse map.
Theorem

Let F be an o-polynomial. Then an o-polynomial \bar{F} obtained from F using one transformation from H and the inverse map can produce a Niho bent function EA-inequivalent to those defined by F and F^{-1} only if $\bar{F} = (F')^{-1}$.
General transformation

Let i be a positive integer and $k_i \geq 0$. Denote by H_i a composition of length k_i of generators φ and $\tilde{\tau}_c$ as follows:

$$H_i = \varphi \circ \tilde{\tau}_{c_{i_1}} \circ \varphi \circ \tilde{\tau}_{c_{i_2}} \circ \ldots \underbrace{\circ \varphi \circ \tilde{\tau}_{c_{i_k}}}_{k_i}$$

(1)

where $c_{i_j} \in \mathbb{F}_{2^m}$.

Theorem

Let F be an o-polynomial, g_F the corresponding Niho bent function and G_F the class of all functions o-equivalent to g_F. Then o-polynomials of the form

$$(H_1(h_2(h_3(\ldots(H_qF)^{-1}\ldots)^{-1})^{-1})^{-1})^{-1},$$

(2)

where H_i is defined by (1), for all $i \in \{1 \ldots q\}$, $q \geq 1$, and $k_i \geq 1$ for $i \geq 3$, $k_i \geq 0$ for $i \leq 2$, provide representatives for all EA-equivalence classes within G_F. That is, up to EA-equivalence, all Niho bent functions o-equivalent to g_F arise from (2).
Some particular cases of formula (2)

- For $q = 1$ and $k_1 = 2$:
 \[F_c^\circ(x) = (\varphi \circ \tau_c F)^{-1}(x) = \left(\alpha_F^c x \left(F\left(\frac{1}{x} + c \right) + F(c) \right) \right)^{-1}, \quad c \in \mathbb{F}_{2^m}. \]
 For $c = 0$ $F_c^\circ = \left(F' \right)^{-1}$.
 F_c° defines a sequence of Niho bent functions $g_{F_c^\circ}$ potentially EA-inequivalent to each other for different c, and EA-inequivalent to Niho bent functions defined by F, F^{-1}.

- For $q = 1$ and $k_1 = 3$:
 \[(F_c^*)^{-1} = (\varphi \circ \tau_c \circ \varphi F)^{-1}(x) = \left(\alpha_F^c \left((1 + cx) F\left(\frac{x}{1+cx} \right) + cx F\left(\frac{1}{c} \right) \right) \right)^{-1}, \quad c \in \mathbb{F}_{2^m}. \]
 For $c = 0$, $(F_c^*)^{-1} = F^{-1}$.
 Niho bent functions $g_{(F_c^*)^{-1}}$ can potentially be EA-inequivalent to each other for different c and EA-inequivalent to Niho bent functions defined by F, F_c°.
The case of o-monomials

Lemma

For an o-monomial $F(x) = x^d$, the Niho bent functions defined by F_c and F_1 are EA-equivalent, for any $c \in \mathbb{F}^{*}_{2^m}$.

Lemma

For an o-monomial $F(x) = x^d$, the Niho bent functions defined by $(F_c)^{-1}$, $(F^*)^{-1}$ and F_1 are EA-equivalent, for $c \in \mathbb{F}^{*}_{2^m}$.
The case of o-monomials

Lemma

Let F be an o-monomial. Then for $q \geq 3$

$$(H_1(H_2(\ldots(H_qF)^{-1}\ldots)^{-1})^{-1})^{-1} = \begin{cases}
\beta \tau_1 G^{-1}; \\
\gamma(\varphi \circ \tau_1 G)^{-1}; \\
\eta \varphi \circ \tau_1 G,
\end{cases}$$

where $G \in \{F, (\varphi F)^{-1}, \varphi F^{-1}, F^{-1}, (\varphi F^{-1})^{-1}, \varphi F\}$, $\beta, \gamma, \eta \in \mathbb{F}_{2^m}^*$ and H_i are defined by (1) for all i.

Proposition

For each o-monomials o-equivalence can give at most 4 EA-inequivalent functions. For an o-monomial F the 4 potentially EA-inequivalent bent functions are defined by F, F^{-1}, $(F')^{-1}$ and F_1°.
Proposition

For Frobenius map o-equivalence gives exactly 3 EA-inequivalent functions corresponding to $F, F^{-1}, (F')^{-1}$.
\[F(x) = x^{\frac{1}{6}} + x^{\frac{1}{2}} + x^{\frac{5}{6}} \]

Proposition

For o-polynomial \(F(x) = x^{\frac{1}{6}} + x^{\frac{1}{2}} + x^{\frac{5}{6}} \) o-equivalence can give EA-inequivalent Niho bent functions corresponding to o-polynomials \(F \) and \(F^c \), \(c \in \mathbb{F}^*_{2^m} \).

Example

For \(m = 5 \) we checked computationally that the o-polynomial \(F(x) = x^{\frac{1}{6}} + x^{\frac{1}{2}} + x^{\frac{5}{6}} \) over \(\mathbb{F}_{2^m} \) defines 6 EA-inequivalent Niho bent functions corresponding to o-polynomials \(F, F^{-1} = F_0^c \) and \(F_w^c, F_{w^3}^c, F_{w^5}^c \), where \(w \) is a primitive element of \(\mathbb{F}_{2^m} \).

Example

\(F(x) = x^{\frac{1}{6}} + x^{\frac{1}{2}} + x^{\frac{5}{6}} \) gives \(\frac{3m+2^{m-1}-1}{m} \) EA-inequivalent Niho bent functions over the field \(F_{2^{2m}} \) with prime \(m \).

For \(m = 7 \) (12), \(m = 11 \) (96), \(m = 13 \) (318), \(m = 17 \) (3858) and so on.
The case of other o-polynomials

For Subiaco, Adelaide and \(x^{2k} + x^{2k+2} + x^{3\cdot2^k+4} \) o-polynomials \(F \) o-equivalence can give a sequence of EA-inequivalent functions defined by o-polynomials on the orbits \(F, F^{-1}, F_c^o, (\tilde{\tau}_c F)_c^o, (\tilde{\tau}_c (F'))_c^o \) and so on.

Example

From o-polynomial \(x^{2k} + x^{2k+2} + x^{3\cdot2^k+4} \) we obtain \(\frac{4m+2^m-2}{m} \) EA-inequivalent Niho bent functions over the field \(F_{2^{2m}} \) with prime \(m \).
For \(m = 7 \) (22) \(m = 11 \) (190), \(m = 13 \) (634), \(m = 17 \) (7714) and so on.
Thank You! :-}