Recent uses of Boolean and vectorial functions and related problems

Claude Carlet Universities of Bergen and Paris 8
Outline

We present a chapter from a forthcoming book on Boolean and vectorial functions. This chapter is devoted to:

► Physical attacks and related problems on functions and codes

- A new role of correlation immunity and of the dual distance of codes related to side channel attack (SCA) countermeasures,
- Minimizing the number of nonlinear multiplications for reducing the cost of countermeasures against SCA,
- Vectorial functions and threshold implementation,
- Linear complementary dual codes and complementary pairs of codes used for direct sum masking,
- Robust codes, algebraic manipulation detection (AMD) codes.

- Fully homomorphic encryption (FHE), hybrid symmetric-FHE protocols for the cloud, and related questions on Boolean functions (with restricted inputs).

- Local pseudorandom generators (the Goldreich pseudorandom generator) and related criteria on Boolean functions.

- The Gowers norm on pseudo-Boolean functions.
Forthcoming book on Boolean and vectorial functions

The new book is a reorganized and completed version of two chapters by C.C. in a CUP monography (Y. Crama and P. Hammer Eds.) :

Boolean Functions for Cryptography and Error Correcting Codes

Vectorial Boolean Functions for Cryptography

The new book is entitled :

Boolean Functions for Cryptography and Coding Theory
Since these chapters were written (in 2009), about 1500 papers have been published in this domain.

New notions on Boolean and vectorial functions and new ways of using them have also emerged.

In this talk, we present the chapter devoted to these recent and/or not enough studied directions of research.

Tentative table of content of the new book:
1 Introduction to cryptography, codes, Boolean and vectorial functions

1.1 Cryptography
- Symmetric versus public-key cryptosystems
- Block ciphers versus stream ciphers

1.2 Error correcting codes
- Detecting and correcting capacities of a code
- Parameters of a code
- Linear codes
- Cyclic codes
- The MacWilliams identity and the notion of dual distance

1.3 Boolean functions
- Boolean functions and stream ciphers
- Boolean functions and error correcting codes

1.4 Vectorial functions
- Vectorial functions and stream ciphers
- Vectorial functions and block ciphers
- Vectorial functions and error correcting codes

2 Generalities on Boolean and vectorial functions

2.1 A hierarchy of equivalence relations over Boolean and vectorial functions
- Relations between these equivalences

2.2 Representations of Boolean functions and vectorial functions
- Algebraic normal form
- Univariate and trace representations
- Bivariate representation of functions with even number of input bits
- Representation over the reals (numerical normal form)

2.3 The Fourier-Hadamard transform and the Walsh transform
- Fourier-Hadamard transform of pseudo-Boolean functions
- Fourier-Hadamard and Walsh transforms of Boolean functions
2.3.3 Properties of the Fourier-Hadamard and Walsh transforms of Boolean functions 74
2.3.4 Fourier-Hadamard transform and numerical normal form 83
2.3.5 The size of the support of the Fourier-Hadamard transform and Cayley graphs 87
2.3.6 The Walsh transform of vectorial functions 88
2.3.7 The multidimensional Walsh transform 91
2.4 Fast computation of S-boxes 92

3 Boolean functions, vectorial functions and cryptography 93
3.1 Cryptographic criteria (and related parameters) for Boolean functions 93
 3.1.1 Balancedness 94
 3.1.2 Algebraic degree 94
 3.1.3 Nonlinearity and higher order nonlinearity 95
 3.1.4 Correlation immunity and resiliency 103
 3.1.5 Algebraic immunity and fast algebraic immunity 106
 3.1.6 Variants to these criteria in relationship with guess and determine attacks 114
 3.1.7 Avalanche criteria, inexistence of nonzero linear structure, correlation with subsets of indices 114
 3.1.8 Complexity parameters 120
3.2 Cryptographic criteria for vectorial functions in stream and block ciphers 130
 3.2.1 Balancedness of vectorial functions 130
 3.2.2 Algebraic degree of vectorial functions 133
 3.2.3 Nonlinearity of vectorial functions 134
 3.2.4 Algebraic immunity of vectorial functions 146
3.3 Cryptographic criteria and parameters for vectorial functions in stream ciphers 149
 3.3.1 Correlation immunity and resiliency of vectorial functions 150
 3.3.2 Unrestricted nonlinearity of vectorial functions 152
3.4 Cryptographic criteria and parameters for vectorial functions in block ciphers 156
 3.4.1 Differential uniformity 156
 3.4.2 Other features also related to attacks 165
3.5 Search for functions achieving the desired features 165
 3.5.1 The difficulty of designing good S-boxes 165
 3.5.2 Constructions versus computer investigations of Boolean and vectorial functions 166
3.6 Boolean and vectorial functions for secret sharing, authentication, diffusion 168
 3.6.1 Secret sharing, access structures and minimal codes 168
 3.6.2 Authentication schemes 173
4 Boolean functions, vectorial functions and error correcting codes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Reed-Muller codes</td>
<td>174</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Minimum distance and minimum weight codewords</td>
<td>176</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Dual</td>
<td>177</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Automorphism group</td>
<td>178</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Cyclicity of the punctured code $R^*(r, n)$</td>
<td>178</td>
</tr>
<tr>
<td>4.1.5</td>
<td>The problem of determining the weight distributions of Reed-Muller codes</td>
<td>179</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Covering radius</td>
<td>180</td>
</tr>
<tr>
<td>4.2</td>
<td>Other codes related to Boolean functions</td>
<td>182</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Linear codes</td>
<td>182</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Unrestricted codes</td>
<td>183</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Codes and diffusion layers in block ciphers</td>
<td>184</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Codes and association schemes</td>
<td>185</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Codes and secret sharing</td>
<td>185</td>
</tr>
</tbody>
</table>

5 Functions with weights, Walsh spectra and nonlinearities easier to study

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Affine functions and their combinations</td>
<td>186</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Affine functions</td>
<td>186</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Maiorana-McFarland functions</td>
<td>186</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Niho and PS_{ap} functions</td>
<td>189</td>
</tr>
<tr>
<td>5.2</td>
<td>Quadratic functions and their combinations</td>
<td>192</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Quadratic Boolean functions</td>
<td>192</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Concatenations of quadratic functions</td>
<td>201</td>
</tr>
<tr>
<td>5.3</td>
<td>Cubic functions</td>
<td>202</td>
</tr>
<tr>
<td>5.4</td>
<td>Indicators of flats</td>
<td>203</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Concatenations of sums of indicators of flats and affine functions</td>
<td>204</td>
</tr>
<tr>
<td>5.5</td>
<td>Normal functions</td>
<td>204</td>
</tr>
<tr>
<td>5.6</td>
<td>Functions admitting (partial) covering sequences</td>
<td>205</td>
</tr>
<tr>
<td>5.6.1</td>
<td>The case of Boolean functions</td>
<td>205</td>
</tr>
<tr>
<td>5.6.2</td>
<td>The case of vectorial functions</td>
<td>208</td>
</tr>
<tr>
<td>5.7</td>
<td>Functions with low univariate degree</td>
<td>211</td>
</tr>
</tbody>
</table>

6 Bent functions and plateaued functions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Bent Boolean functions</td>
<td>212</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Extended affine invariance of bentness and automorphism group of a function</td>
<td>213</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Characterization of bentness by the derivatives</td>
<td>215</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Characterization of bentness by power moments of the Walsh transform</td>
<td>215</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Characterization of bentness by the NNF</td>
<td>218</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>6.1.5 Characterization of bentness by codes</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>6.1.6 Characterization of bentness by difference sets, relative difference sets and structures of finite geometries</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>6.1.7 Bent Boolean functions and designs</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>6.1.8 The dual of a bent Boolean function</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>6.1.9 Bound on algebraic degree and related properties</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>6.1.10 Bent Boolean functions and affine subspaces</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>6.1.11 Affine spaces of bent Boolean functions</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>6.1.12 The graph of bent functions</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>6.1.13 Bent Boolean functions of low algebraic degrees</td>
<td>229</td>
<td></td>
</tr>
<tr>
<td>6.1.14 Bent Boolean functions in few variables</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>6.1.15 Primary constructions of bent Boolean functions</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>6.1.16 Secondary constructions of bent Boolean functions</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>6.1.17 Decompositions of bent functions</td>
<td>267</td>
<td></td>
</tr>
<tr>
<td>6.1.18 Class GPS and a geometric characterization of bent Boolean functions</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>6.1.19 On the number of bent Boolean functions</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>6.1.20 Hyper-bent, homogeneous, symmetric and rotation symmetric bent Boolean functions</td>
<td>271</td>
<td></td>
</tr>
<tr>
<td>6.1.21 Normal and non-normal bent Boolean functions</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>6.1.22 Kerdock codes</td>
<td>281</td>
<td></td>
</tr>
<tr>
<td>6.2 Partially-bent and plateaued Boolean functions</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>6.2.1 Partially-bent functions</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>6.2.2 Plateaued Boolean functions</td>
<td>286</td>
<td></td>
</tr>
<tr>
<td>6.2.3 Characterizations of plateaued Boolean functions</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td>6.2.4 The subclasses of semi-bent and near-bent functions</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>6.2.5 Primary constructions of plateaued Boolean functions</td>
<td>291</td>
<td></td>
</tr>
<tr>
<td>6.2.6 Secondary constructions of plateaued Boolean functions</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>6.3 Bent4 and partially-bent4 functions</td>
<td>294</td>
<td></td>
</tr>
<tr>
<td>6.4 Bent vectorial functions</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>6.4.1 Primary constructions of bent vectorial functions</td>
<td>297</td>
<td></td>
</tr>
<tr>
<td>6.4.2 Secondary constructions of bent vectorial functions</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>6.5 Plateaued vectorial functions</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>6.5.1 Characterizations of plateaued vectorial functions</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td>6.5.2 CCZ and EA equivalence of plateaued functions</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>6.5.3 Constructions of plateaued vectorial functions</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>7 Correlation immune and resilient functions</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>7.1 Correlation immune and resilient Boolean functions</td>
<td>311</td>
<td></td>
</tr>
<tr>
<td>7.1.1 Bound on the correlation immunity order</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>7.1.2 Bounds on algebraic degree</td>
<td>312</td>
<td></td>
</tr>
<tr>
<td>7.1.3 Bounds on the nonlinearity</td>
<td>314</td>
<td></td>
</tr>
<tr>
<td>7.1.4 Bound on the maximum correlation with index subsets</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>7.1.5 Relationship with other criteria</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>7.1.6</td>
<td>Relationship with covering sequences</td>
<td>318</td>
</tr>
<tr>
<td>7.1.7</td>
<td>Primary constructions of correlation immune and resilient functions</td>
<td>318</td>
</tr>
<tr>
<td>7.1.8</td>
<td>Secondary constructions of correlation immune and resilient functions</td>
<td>325</td>
</tr>
<tr>
<td>7.1.9</td>
<td>On the number of correlation immune and resilient functions</td>
<td>339</td>
</tr>
<tr>
<td>7.2</td>
<td>Resilient vectorial Boolean functions</td>
<td>341</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Constructions of resilient vectorial Boolean functions</td>
<td>342</td>
</tr>
<tr>
<td>8</td>
<td>Functions satisfying SAC, PC, EPC, or having good GAC</td>
<td>347</td>
</tr>
<tr>
<td>8.1</td>
<td>PC(l) criterion</td>
<td>347</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Characterizations</td>
<td>348</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Constructions</td>
<td>348</td>
</tr>
<tr>
<td>8.2</td>
<td>PC(l) of order k and EPC(l) of order k criteria</td>
<td>349</td>
</tr>
<tr>
<td>8.3</td>
<td>Functions having good sum-of-squares indicator and/or good absolute indicator</td>
<td>350</td>
</tr>
<tr>
<td>9</td>
<td>Algebraic immune functions</td>
<td>351</td>
</tr>
<tr>
<td>9.1</td>
<td>Algebraic immune Boolean functions</td>
<td>351</td>
</tr>
<tr>
<td>9.1.1</td>
<td>General properties of the algebraic immunity and its relationship with some other criteria</td>
<td>354</td>
</tr>
<tr>
<td>9.1.2</td>
<td>The problem of finding functions achieving high algebraic immunity and high nonlinearity</td>
<td>365</td>
</tr>
<tr>
<td>9.1.3</td>
<td>The functions with high algebraic immunity found so far and their parameters</td>
<td>366</td>
</tr>
<tr>
<td>9.1.4</td>
<td>Secondary constructions of algebraic immune functions</td>
<td>373</td>
</tr>
<tr>
<td>9.1.5</td>
<td>Another direction of research of Boolean functions suitable for stream ciphers</td>
<td>376</td>
</tr>
<tr>
<td>9.1.6</td>
<td>An additional condition modifying the study of Boolean functions for stream ciphers</td>
<td>377</td>
</tr>
<tr>
<td>9.2</td>
<td>Algebraic immune vectorial functions</td>
<td>377</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Known bounds on algebraic immunities</td>
<td>379</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Bounds on the numbers $d_{n,m}$ and $D_{n,m}$</td>
<td>379</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Consequences on the number of output bits and on the tightness of the bounds</td>
<td>381</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Nonlinearity and higher order nonlinearity</td>
<td>382</td>
</tr>
<tr>
<td>9.2.5</td>
<td>Constructions of algebraic immune vectorial functions</td>
<td>383</td>
</tr>
<tr>
<td>10</td>
<td>Particular classes of Boolean functions</td>
<td>385</td>
</tr>
<tr>
<td>10.1</td>
<td>Symmetric functions</td>
<td>385</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Representation</td>
<td>385</td>
</tr>
<tr>
<td>10.1.2</td>
<td>Fourier-Hadamard and Walsh transforms</td>
<td>387</td>
</tr>
<tr>
<td>10.1.3</td>
<td>Nonlinearity</td>
<td>388</td>
</tr>
<tr>
<td>10.1.4</td>
<td>Resiliency</td>
<td>390</td>
</tr>
</tbody>
</table>
10.1.5 Algebraic immunity and fast algebraic immunity
10.1.6 The subclass of threshold functions
10.2 Rotation symmetric, idempotent and other similar functions
10.3 Direct sums of monomials
10.4 Monotone functions

11 Highly nonlinear vectorial functions with low differential uniformity
11.1 The covering radius bound; bent/perfect nonlinear functions
11.2 The Sidelnikov-Chabaud-Vaudenay bound
11.3 Almost perfect nonlinear and almost bent functions
11.3.1 Characterizations of AB and APN functions
11.3.2 The particular case of power functions
11.3.3 Componentwise APNness (CAPNness)
11.3.4 Plateaued APN functions
11.4 The known infinite classes of AB functions
11.4.1 Power AB functions
11.4.2 Non-power AB functions
11.5 The known infinite classes of APN functions
11.5.1 Sporadic APN (and AB) functions
11.5.2 Power APN functions
11.5.3 Non-power APN functions
11.5.4 The extended Walsh spectra of known APN functions
11.5.5 Conclusion on known APN functions
11.6 Differentially uniform functions
11.6.1 Characterizations by the Walsh transform
11.6.2 Componentwise Walsh uniformity (CWU)
11.6.3 Cyclic difference sets, cyclic-additive difference sets and
the CWU property
11.6.4 The known differentially 4-uniform \((n, n)\)-permutations,
n even
11.6.5 Other differentially 4-uniform \((n, n)\)-functions
11.6.6 Other Differentially uniform \((n, n)\)-functions
11.6.7 On the best differential uniformity of \((n, m)\)-functions

12 Recent uses and problems on Boolean and vectorial functions
12.1 Physical attacks and related problems on functions and codes
12.1.1 A new role of correlation immunity and of the dual
distance of codes related to side channel attack countermeasures
12.1.2 Vectorial functions in univariate form: minimizing the
number of nonlinear multiplications for reducing the cost
of countermeasures
12.1.3 Vectorial functions and algebraic side channel attacks
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1.4 Vectorial functions and threshold implementation</td>
<td>470</td>
</tr>
<tr>
<td>12.1.5 Linear complementary dual codes and complementary pairs of codes used for direct sum masking</td>
<td>479</td>
</tr>
<tr>
<td>12.1.6 Robust codes, algebraic manipulation detection (AMD) codes and vectorial functions</td>
<td>482</td>
</tr>
<tr>
<td>12.2 Fully homomorphic encryption and related questions on Boolean functions</td>
<td>489</td>
</tr>
<tr>
<td>12.2.1 The FLIP cipher</td>
<td>490</td>
</tr>
<tr>
<td>12.2.2 Boolean functions with restricted inputs</td>
<td>492</td>
</tr>
<tr>
<td>12.3 Local pseudorandom generators and related criteria on Boolean functions</td>
<td>504</td>
</tr>
<tr>
<td>12.3.1 The Goldreich pseudorandom generator</td>
<td>504</td>
</tr>
<tr>
<td>12.4 The Gowers norm on pseudo-Boolean functions</td>
<td>506</td>
</tr>
<tr>
<td>13 Open questions</td>
<td>512</td>
</tr>
<tr>
<td>13.1 Questions of general cryptography dealing with functions</td>
<td>512</td>
</tr>
<tr>
<td>13.2 General questions on Boolean functions and vectorial functions</td>
<td>512</td>
</tr>
<tr>
<td>13.3 Bent functions and plateaued functions</td>
<td>513</td>
</tr>
<tr>
<td>13.4 Correlation immune and resilient functions</td>
<td>514</td>
</tr>
<tr>
<td>13.5 Algebraic immune functions</td>
<td>514</td>
</tr>
<tr>
<td>13.6 Highly nonlinear vectorial functions with low differential uniformity</td>
<td>515</td>
</tr>
<tr>
<td>13.7 Recent uses and problems on Boolean and vectorial functions</td>
<td>516</td>
</tr>
<tr>
<td>References</td>
<td>517</td>
</tr>
<tr>
<td>14 Appendix: finite fields</td>
<td>588</td>
</tr>
<tr>
<td>14.1 Prime fields and fields with 4, 8 and 9 elements</td>
<td>588</td>
</tr>
<tr>
<td>14.1.1 Characteristic of a finite field</td>
<td>588</td>
</tr>
<tr>
<td>14.1.2 Prime fields</td>
<td>589</td>
</tr>
<tr>
<td>14.1.3 Possible size of a finite field</td>
<td>589</td>
</tr>
<tr>
<td>14.1.4 Extending prime fields; fields with 4, 8 and 9 elements</td>
<td>590</td>
</tr>
<tr>
<td>14.2 General finite fields. Construction of finite fields, primitive element</td>
<td>591</td>
</tr>
<tr>
<td>14.2.1 The fundamental equation over finite fields</td>
<td>592</td>
</tr>
<tr>
<td>14.2.2 Existence of finite fields</td>
<td>593</td>
</tr>
<tr>
<td>14.2.3 Uniqueness of finite fields</td>
<td>594</td>
</tr>
<tr>
<td>14.2.4 Frobenius automorphism</td>
<td>595</td>
</tr>
<tr>
<td>14.2.5 Primitive element</td>
<td>595</td>
</tr>
<tr>
<td>14.3 Representation (additive and multiplicative) ; trace function</td>
<td>596</td>
</tr>
<tr>
<td>14.3.1 Trace function</td>
<td>597</td>
</tr>
<tr>
<td>14.3.2 Subfields and other trace functions</td>
<td>598</td>
</tr>
<tr>
<td>14.4 Permutations on a finite field</td>
<td>599</td>
</tr>
<tr>
<td>14.4.1 Examples of permutation polynomials</td>
<td>599</td>
</tr>
<tr>
<td>14.4.2 General results on permutation polynomials</td>
<td>601</td>
</tr>
<tr>
<td>14.5 Equations over finite fields</td>
<td>602</td>
</tr>
<tr>
<td>Index</td>
<td>606</td>
</tr>
</tbody>
</table>
Physical attacks and related problems on functions and codes

The implementation of cryptographic algorithms in embedded devices leaks information on the data manipulated by the algorithm, leading to side channel attacks (SCA).

The attacker model is then not a black box but a grey box.

This information can be traces of electromagnetic emanations, power consumption, photonic emission...
SCA are very powerful on block ciphers if countermeasures are not included in the implementation of the cryptosystems.

A *sensitive variable* Z is chosen in the algorithm, whose value is stored in a *register* and depends on the plaintext and a few key bits.

The register *leaks*.

The emanations from the register are measured. They disclose a noisy version of a real-valued function L of the sensitive variable, for instance the Hamming weight of Z.

A statistical method finds then the value of the key bits which optimizes the correlation between the traces and a *modeled leakage*.
The original implementation of the AES can be attacked this way in a few seconds with a few traces.

Counter-measures exist.

Most common: mask each sensitive variable Z by splitting it.

- 2 shares: $Z \oplus M \parallel M$, where M is drawn at random.
For going through boxes:

In hardware (FPGA, ASIC, ...) : use memory avoiding leak.

In software (smart cards) : transform every function \(x \mapsto F(x) \) in the algorithm into a function \(F' : (m_0, m_1) \mapsto (m'_0, m'_1) \) such that:

\[
m'_0 + m'_1 = F(m_0 + m_1)
\]

and the knowledge of one intermediate variable does not give any information on \(x \).

Such \(F' \) is called a masked version of \(F \).
Masking linear functions is costless but masking S-boxes has a cost.

In software applications (smart cards), masking the algorithm can multiply by more than 20 the execution time.

In hardware applications (ASIC, FPGA), the implementation area is roughly tripled.

- The counter-measure of masking with a single mask (i.e. two shares) cannot resist *Higher order SCA (HO-SCA)*.
Higher order masking:

\(d + 1\) shares: \(M_1, \ldots, M_d\) are chosen at random and

\[M_{d+1} = Z \oplus M_1, \cdots \oplus M_d. \]

The complexity of the HO-SCA attack (in time and in the number of traces) is exponential in the order: \(O(V^d)\), where \(V\) is the variance of the noise.

The cost in running time and memory is quadratic in \(d\).

Hence, theoretically, the designer can take advantage over the attacker.
But the implementation must be efficient today while the SCA can be performed in the future (→ advantage for the attacker).

Hence it is important to be able to implement high order masking and therefore to reduce the cost of counter-measures against SCA.

▶ A new role of correlation immunity and of the dual distance of codes related to side channel attack (SCA) countermeasures

Rotating S-boxes Masking (RSM, hardware):

to avoid leakage, the mask M is not processed at all.

Instead, the computation for the next S-box is done with a Look-Up-Table (LUT) of the masked S-box $S'(x) = S(x \oplus M) \oplus M'$.

18
This allows a perfect protection against SCA.

But having a LUT for each masked version of each S-box is not possible for reasons of memory.

A small number of S-boxes are then embedded already masked in the implementation.

At every encryption, the allocation of the S-box is random.
The countermeasure resists the d-th order attack if and only if the indicator f of the mask set satisfies

$$\forall a \in \mathbb{F}_2^n, 1 \leq w_H(a) \leq d \Rightarrow \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x)+a \cdot x} = 0.$$

Equivalently, the indicator of \mathcal{M} is a d-CI function, that is, \mathcal{M} is a code of dual distance at least $d + 1$.

For d as large as possible, we look for such functions of minimum nonzero Hamming weight, since the lower the weight of this function, the cheaper the countermeasure.
Vectorial functions in univariate form: minimizing the number of nonlinear multiplications for reducing the cost of countermeasures

The complexity of *masking* additions and linear multiplications (like $x \times x$) is negligible compared to that of masking nonlinear multiplications.

We need to minimize the *masking complexity* of each S-box: the number of nonlinear multiplications needed to implement it.

For power functions $F(x) = x^d$, minimizing the number of nonlinear multiplications results in minimizing addition chains in a group.
The inverse function $x \rightarrow x^{254} = x^{-1}$ in \mathbb{F}_{2^8} can be implemented with 4 nonlinear multiplications.

Most recent methods for general functions:

— The Coron-Roy-Vivek (CRV) method:
 - starts with a union C of cyclotomic classes C_i in $\mathbb{Z}/(2^n - 1)\mathbb{Z}$,
 - the set of corresponding monomials x^j spans a subspace \mathcal{P} of $\mathbb{F}_{2^n}[x]$.
 - r polynomials $P_1(x), \ldots, P_r(x)$ are chosen in \mathcal{P} and $r + 1$ polynomials $P_{r+1}(x), \ldots, P_{2r+1}(x)$ are searched in \mathcal{P} such that:
 \[
P(x) = \sum_{i=1}^{r} P_i(x) \times P_{r+i}(x) + P_{2r+1}(x) .
 \]
This method works heuristically.

— The CPRR method:
- starts by deriving a family of generators:
 \[
 \begin{align*}
 G_1(x) &= F_1(x) \\
 G_i(x) &= F_i(G_{i-1}(x))
 \end{align*}
 \]
 where the F_i are random polynomials of algebraic degree s.
- randomly generates t polynomials $Q_i = \sum_{j=1}^{r} L_j \circ G_j$, where the L_j are linearized polynomials.
- searches for t polynomials P_i of algebraic degree s and for $r + 1$ linearized polynomials L_i such that:
 \[
P(x) = \sum_{i=1}^{t} P_i(Q_i(x)) + \sum_{i=1}^{r} L_i(G_i(x)) + L_0(x).
 \]
For masking $P(x)$, we use that for any function F of algebraic degree at most s:

$$F\left(\sum_{i=1}^{d} a_i\right) = \sum_{j=0}^{s} \mu_{d,s}(j) \sum_{|I|=j, I \subseteq \{1, \ldots, d\}} F\left(\sum_{i \in I} a_i\right),$$

where $\mu_{d,s}(j) = \left(\frac{d-j-1}{s-j}\right) \mod 2$ for every $j \leq s$.
Vectorial functions and threshold implementation

Masking is efficient only if the leakage has some regularity.

In particular, hardware *glitches*, common in CMOS technology, change the leaking into functions \mathcal{L} having numerical degree larger than 1, because of the interactions between bits that they cause.

Glitch-free hardware is very expensive.

- A way of addressing glitches is the so-called *polynomial masking*, based on *multiparty computation*.

The masking operation is based on Shamir’s secret sharing.

Not quite practical.
• Another S-box masking method, also based on ideas of multiparty computation, is *threshold implementation (TI)*:
— each input variable x_i is masked into

$$x_i = (x_{i,1}, \ldots, x_{i,t+1}) \in \mathbb{F}_2^{t+1}.$$

We have $s(x_i) = x_{i,1} \oplus \cdots \oplus x_{i,t+1} = x_i$.

Extending s to a function over $\mathbb{F}_2^{(t+1)n}$, we have then

$$s(x) = x, \forall x = (x_1, \ldots, x_n).$$

A *t-realization* of F is

$$F = (F_1, \ldots, F_{t+1}) : \mathbb{F}_2^{(t+1)n} \mapsto \mathbb{F}_2^{(t+1)m}$$ such that:
— **Correctness**: if \(x = s(x) \), then \(F(x) = s(F(x)) \).

— **Non-completeness**: every \(F_j \) is independent of the \(j \)-th coordinate of each \(x_i \).

— **Uniformity**: for every \(b = (b_1, b_2, \ldots, b_{t+1}) \) in \(\mathbb{F}_2^{(t+1)m} \), we have:

\[
|\{x \in \mathbb{F}_2^{(t+1)n}; F(x) = b\}| = 2^{t(n-m)} \times |\{x \in \mathbb{F}_2^n; F(x) = s(b)\}|
\]

(if \(F \) is a permutation then \(F \) is a permutation).

This property is needed to compose several TI’s. It is the difficult one to achieve!
Indeed, if $d_{\text{alg}}(F) \leq t$, then replacing each x_i in $F(x)$ by the sum $x_{i,1} \oplus \cdots \oplus x_{i,t+1}$ and storing in F_j all those monomials with indices different from j, we ensure correctness and non-completeness.

Conversely:

Proposition 1. Let F be any (n,m)-function admitting a t-mask (i.e. a $(t + 1)$-share) TI with or without uniformity. Then the algebraic degree of F is at most t.

For instance, the inverse function $F(x) = x^{2n-2}$ cannot have an $(n - 1)$-share (with $(n - 2)$-masks) TI.

Even for *quadratic functions*, there does not always exist a TI with uniformity of minimum number of masks (that is, with 2 masks).
The TI cost of a function increases exponentially with its degree.

This drawback can be bypassed by expressing functions as the compositions of lower algebraic degree functions.

Uniformity is ensured by introducing fresh randomness.

But randomness is costly too. So more work on TI is needed.
Linear complementary dual codes and complementary pairs of codes used for direct sum masking

Direct sum masking consists in:

— encoding the sensitive data, say $x \in \mathbb{F}_2^k$, into a codeword of a k-dimensional linear subcode C of \mathbb{F}_2^n,

— encoding the mask y drawn at random in \mathbb{F}_2^{n-k} into a codeword of an $(n-k)$-dimensional linear subcode D of \mathbb{F}_2^n.

The masked version of x equals then the sum of these two codewords. If G is a generator matrix of C and G' a generator matrix of D, we take then:

$$z = x \times G + y \times G'.$$
For allowing the final demasking at the end of the computation, C and D must have trivial intersection, that is, be supplementary:

$$\mathbb{F}_2^n = C \oplus D.$$

Every vector $z \in \mathbb{F}_2^n$ can then be written in a unique way as

$$z = x \times G + y \times G'; \ x \in \mathbb{F}_2^k, \ y \in \mathbb{F}_2^{n-k}.$$

d-th order masking and another known method called inner product masking are particular cases of DSM.

Contrary to these other methods, it can be also a countermeasure against FIA.
A pair \((C, D)\) of supplementary codes is called a *linear complementary pair* \((LCP)\) of codes.

If the leak \(L\) as a *pseudo-Boolean* function has numerical degree 1, the encoding with an LCP of codes \((C, D)\) protects against:

- \(d\)-th order HO-SCA if and only if the dual distance of \(D\) satisfies \(d(D^\perp) > d\),
- the injection of \(d\) errors if and only if \(d(C) > d\).

If \(D = C^\perp\), then \(C\) and \(D\) are so-called *linear complementary dual* \((LCD)\) codes.

The security parameter of an LCD code \(C\) when used in so-called *orthogonal direct sum masking* \((ODSM)\) is then simply \(d(C) - 1\).
The notion of LCD code is anterior to DSM, due to Yang and Massey.

We denote G' by H and

$$z = x \times G + y \times H$$ implies:

$$z \times H^t = y \times H \times H^t$$ and $$z \times G^t = x \times G \times G^t.$$

The matrices $H \times H^t$ and $G \times G^t$ are invertible.

Since the introduction of DSM, a hundred papers have proposed constructions.
Robust codes, algebraic manipulation detection (AMD) codes and vectorial functions

In many cases of error detection, the assumption that the most probable errors have low Hamming weight cannot be guaranteed.

It is even often almost impossible to predict the error patterns.

This situation of unpredictability is similar to FIA where the error distribution within a device is controlled by an adversary.

A large enough minimum distance is then not efficient for a code.
Definition 2. A code $C \subset \mathbb{F}_q^n$ (linear or not) is called R-robust if:

$$R_C = \max_{0 \neq e \in \mathbb{F}_q^n} |C \cap (e + C)| \leq R.$$

A binary R-robust code C of length n with $M = |C|$ is denoted by a triple (n, M, R).

The code can be systematic, i.e. we can have, up to permutation:

$$C = \{(x, F(x)); x \in \mathbb{F}_q^I\}.$$

This is more practical for error detection in computer hardware thanks to the separation between information bits and check bits.
The probability of error masking equals:

\[Q(e) = \frac{|C \cap (e + C)|}{|C|}. \]

(1)

The worst error masking probability \(\max_{e \neq 0} Q(e) \) equals then \(\frac{RC}{|C|} \). A code is called \textit{robust} if this value is strictly less than 1.

We have:

\[\max_{e \neq 0} Q(e) \geq \frac{|C| - 1}{q^n - 1}. \]

A code is called \textit{uniformly robust} or \textit{perfect robust} if there is equality, i.e. \(Q(e) \) is constant for \(e \neq 0 \), i.e. \(C \) is a \textit{difference set} in \((\mathbb{F}_q^n, +)\).

If \(q = 2 \), the \textit{indicator} function of \(C \) is bent.
Then \(d_C = 1 \) and the code cannot be systematic.

Proposition 3. (Kulikowski, Karpovsky, Taubin)

Let \(C = \{(x, F(x)), x \in \mathbb{F}_2^k\} \), where \(F : \mathbb{F}_2^k \rightarrow \mathbb{F}_2^r \). The worst error masking probability of \(C \) equals the differential uniformity of \(F \) divided by \(2^k \), and is then bounded below by \(2^{-r} \) and equals this optimum if and only if \(F \) is perfect nonlinear.

Indeed, denoting \(e = (a, b) \), we have:

\[
|C \cap (e + C)| = \left| \left\{ (x, y) \in (\mathbb{F}_2^k)^2; \begin{array}{l} x = y + a \\ F(x) = F(y) + b \end{array} \right\} \right| \\
= \left| (D_a F)^{-1}(b) \right| .
\]
The efficiency of these codes depends on the fact that the data be uniformly distributed. This limitation can be overcome by (strong) algebraic manipulation detection (AMD) codes.

Algebraic manipulation: the attacker is able to modify the value of some abstract data storage device denoted by $\sum(G)$, without having read-access to the data.

The attacker is not able to obtain information about the element g stored in $\sum(G)$.

However, he can add an error $e \in G$ of his choice.
This models the situation with *linear secret sharing schemes* with dishonest players, who can cause the reconstruction of a modified secret \(s' \neq s \), and can control \(s - s' \), thanks to the linearity of the secret sharing.

Algebraic manipulation detection (AMD) codes encode an original information \(s \in S \) as an element of \(g \in G \) in such way that any algebraic manipulation is detected with high probability.

No secret key is needed.
Definition 4. An AMD code is a pair of two functions:
- a probabilistic encoding function $E : S \rightarrow G$,
- a deterministic decoding function $D : G \rightarrow S \cup \{\perp\}$, where $\perp \notin S$ symbolizes that algebraic manipulation has been detected, satisfying that $D(E(s)) = s$ with probability 1 for every $s \in S$.

The AMD code is called ϵ-secure for $\epsilon > 0$ if, for every $s \in S$ and for every $e \in G$, the probability that $D(E(s) + e) \notin \{s, \perp\}$ is at most ϵ.

A systematic AMD code is an AMD code in which set S is a group and the encoding function E has the form

$$E : S \rightarrow G = S \times G_1 \times G_2$$
$$s \rightarrow (s, x, F(x, s)).$$
Fully homomorphic encryption and related questions on Boolean functions

Recent years:
1. Proliferation of small embedded devices with limited computing facilities,
2. Apparition of cloud services with extensive storage and computing facilities.

The outsourcing of data processing raises new privacy concerns. Users want to prevent the server from learning about their data.
Gentry’s Fully Homomorphic Encryption (FHE) scheme brings a perfect conceptual answer:

\[C^H(m + m') = C^H(m) + C^H(m'); \quad C^H(mm') = C^H(m) C^H(m'). \]

If Alice wants to compute \(f(m) \), she can send \(C^H(m) \) to Claude, who computes \(f(C^H(m)) = C^H(f(m)) \).

After decryption, Alice gets \(f(m) \), but Claude has not learned anything about \(m \) nor about \(f(m) \) (but he knows \(f \)).

But in practice, \(C^H(m) \) is too large for Alice.

Alice needs then to use a hybrid Symmetric Encryption-FHE protocol.
Typical Framework:

1. **Initialization.** Alice sends to Claude:
 - her homomorphic public key pk^H,
 - the homomorphic ciphertext of her symmetric key $\text{C}^H(\text{sk}^S)$.

2. **Storage.** Alice encrypts her data m with the symmetric encryption scheme C^S, and sends $\text{C}^S(m)$ to Claude.

3. **Evaluation.** Claude calculates $\text{C}^H(\text{C}^S(m))$ and homomorphically evaluates the decryption of the symmetric scheme on Alice’s data and gets $\text{C}^H(m)$.

4. **Computation.** Claude homomorphically executes the treatment f on Alice’s data, and gets $\text{C}^H(f(m))$.
5. **Result.** Claude sends $C^H(f(m))$ and Alice gets $f(m)$.

Bottleneck:
2nd and 3rd generations of FHE are noise-based (LWE) and need expensive “bootstrapping” when the noise grows too much.

The choice of the symmetric cipher C^S is central for reducing cost.

The multiplicative depth of AES being too large, other symmetric encryption schemes have been investigated:

— a stream cipher: *Kreyvium* (FSE 2016),

The stream cipher FLIP (Méaux, Journault, Standaert, C.C., EUROCRYPT 2016) is based on a cipher model called the *filter permutator*.

Figure 1: Filter permutator construction.
Function F has $N = n_1 + n_2 + n_3 \geq 500$ variables, where n_2 is even and $n_3 = \frac{k(k+1)}{2}t$. It is defined as:

$$F(x_0, \ldots, x_{n_1-1}, y_0, \ldots, y_{n_2-1}, z_0, \ldots, z_{n_3-1}) =$$

$$\sum_{i=0}^{n_1-1} x_i + \sum_{i=0}^{n_2/2-1} y_{2i} y_{2i+1} +$$

$$\sum_{j=1}^{t} T_k\left(\frac{z_{(j-1)k(k+1)}}{2}, \frac{z_{(j-1)k(k+1)}}{2} + 1, \ldots, \frac{z_{(j-1)k(k+1)}}{2} + \frac{k(k+1)}{2} - 1\right),$$

where the so-called *triangular* function T_k is defined as:

$$T_k(z_0, \ldots, z_{j-1}) = z_0 + z_1z_2 + z_3z_4z_5 + \cdots + z_{\frac{k(k-1)}{2}} \cdots z_{\frac{k(k+1)}{2}} - 1.$$
FLIP : 4 filtering functions proposed :

<table>
<thead>
<tr>
<th>Name</th>
<th>N</th>
<th>n_1</th>
<th>n_2</th>
<th>t</th>
<th>k</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLIP-530</td>
<td>530</td>
<td>42</td>
<td>128</td>
<td>8</td>
<td>9</td>
<td>80</td>
</tr>
<tr>
<td>FLIP-662</td>
<td>662</td>
<td>46</td>
<td>136</td>
<td>4</td>
<td>15</td>
<td>80</td>
</tr>
<tr>
<td>FLIP-1394</td>
<td>1394</td>
<td>82</td>
<td>224</td>
<td>8</td>
<td>16</td>
<td>128</td>
</tr>
<tr>
<td>FLIP-1704</td>
<td>1704</td>
<td>86</td>
<td>238</td>
<td>5</td>
<td>23</td>
<td>128</td>
</tr>
</tbody>
</table>

Table 1: N: total number of variables, n_1: linear part, n_2: quadratic part, t: number of triangular functions, k: degree of the triangular functions; λ: resulting security parameter.
There exists a Guess and Determine attack on a preliminary version of FLIP, by Sébastien Duval, Virginie Lallemand and Yann Rotella (CRYPTO 2015).

It is not efficient on the regular version of FLIP.

But, by definition, in the filter permutator, the input to F has constant Hamming weight (equal to the weight of the secret key).

The study of Boolean functions on such restricted sets of inputs have been made (C.C., P. Méaux, Y. Rotella, S. Mesnager et al.).
Local pseudorandom generators and related criteria on Boolean functions

Principle: allow expanding short random strings (like private keys), called seeds, into pseudorandom strings, whose length is significantly larger, say, $O(n^s)$ where n is the length of the seed.

Called *local* if each output bit depends on a constant number d of input bits.

Only known example: Goldreich’s PRG, which applies a simple d-variable Boolean function (Goldreich calls it a d-ary predicate) to public random subsets of size d of the seed.
Let \((S_1, \ldots, S_m)\) be a list of \(m\) subsets of \(\{1, \ldots, n\}\) of size \(d\), and let \(f\) be a Boolean function in \(d\) variables (the so-called predicate).

The corresponding Goldreich's function \(G : \mathbb{F}_2^n \mapsto \mathbb{F}_2^m\) is defined as

\[
G(x) = f(S_1(x)), f(S_2(x)), \ldots, f(S_m(x))
\]

for every \(x \in \mathbb{F}_2^n\), where \(S_i(x)\) is a vector made of those bits of \(x\) indexed by \(S_i\).

- To avoid an attack by Gaussian elimination, the predicate \(f\) must not be linear.
- The higher the algebraic degree, the better (a predicate of algebraic degree \(s\) cannot be pseudorandom for a stretch \(s\)).
• The predicate must be such that, when fixing some number r of input bits to f, its algebraic degree remains large.
• The algebraic immunity $AI(f)$ plays also a direct role and should be large enough (larger than s).
• There is also an attack when the output to the function is correlated with a number of its input bits smaller than or equal to $\frac{s}{2}$, and f should then be resilient with a sufficient order. At least 2-resilient.

Example of a 5-variable function: $f(x) = x_1 \oplus x_2 \oplus x_3 \oplus x_4 x_5$.
A general structure has been proposed for predicates: the direct sum of $\bigoplus_{i=1}^{k} x_i$ and of the majority function in $n - k$ variables.

No attack is known on such functions when $k \geq 2s$ and $\lceil \frac{n-k}{2} \rceil \geq s$.

Open question by Applebaum and Lovett: given e and k, what is the smallest number of variables of a Boolean function of algebraic immunity at least e and of resiliency order at least k?
The Gowers norm on pseudo-Boolean functions

The Gowers uniformity norm has been introduced in 2001 in relation with arithmetic progressions in partitions of \(\{1, 2, \ldots, M\} \).

Intensively studied (by several Field medal winners) since 2001 and applied in additive combinatorics and in the probabilistic testing of specific properties of Boolean functions (knowing only a few of their values).
Definition 5. Let k, n be positive integers such that $k < n$. Let $\varphi : \mathbb{F}_2^n \mapsto \mathbb{R}$. The kth-order Gowers uniformity norm of φ equals:

$$
||\varphi||_{U_k} = \left(\mathbb{E}_{x,x_1,\ldots,x_k \in \mathbb{F}_2^n} \left[\prod_{S \subseteq \{1,\ldots,k\}} \varphi \left(x + \sum_{i \in S} x_i \right) \right] \right)^{\frac{1}{2k}}
$$

where $\mathbb{E}_{x,x_1,\ldots,x_k \in \mathbb{F}_2^n}$ is the notation for arithmetic mean (i.e. for expectation in uniform probability).

When φ is the sign function of a Boolean function f, this results in a measure related to the higher order nonlinearity.
For every \(\varphi \), the sequence \((\| \varphi \|_{U_k})_{k \geq 1} \) is non-decreasing:

\[
\| \varphi \|_{U_1} \leq \| \varphi \|_{U_2} \leq \cdots \leq \| \varphi \|_{U_k} \leq \cdots
\]

For every \(k \geq 2 \), \(\| \cdot \|_{U_k} \) is a norm:

\[
\| \varphi \|_{U_k} = 0 \text{ iff } \varphi = 0 \text{ and } \| \varphi + \psi \|_{U_k} \leq \| \varphi \|_{U_k} + \| \psi \|_{U_k}.
\]

For \(\varphi = f_{\chi} = (-1)^f \), \(\| f_{\chi} \|_{U_k} \) equals the \(2^k \)-th root of the average value of \(2^{-n} \mathcal{F}(D_{a_1} D_{a_2} \cdots D_{a_k} f) \), where \(\mathcal{F}(g) = \sum_{x \in \mathbb{F}_2^n} (-1)^g(x) \), when \(a_1, a_2, \ldots, a_k \) range independently over \(\mathbb{F}_2^n \).

We have \(\| f_{\chi} \|_{U_k} \leq 1 \), with equality if and only if \(f \) has algebraic degree at most \(k - 1 \).
\[\|f_\chi\|_{U_2} \] is related to the second moment \(\mathcal{V}(f) \) of the autocorrelation coefficients by:

\[(\|f_\chi\|_{U_2})^4 = 2^{-3n} \mathcal{V}(f). \] (3)

We have:

\[nl(f) \leq 2^{n-1} - 2^{n-1}(\|f_\chi\|_{U_2})^2 \leq 2^{n-1} - 2^{\frac{3n}{4}-1}\|f_\chi\|_{U_2}, \]

and these two inequalities are equalities if and only if \(f \) is bent.
We have also:

\[\|f_\chi\|_{U_2} = 2^{-n} \left(\sum_{b \in \mathbb{F}_2^n} W_f^4(b) \right)^{\frac{1}{4}}, \quad (4) \]

that is, up to a multiplicative coefficient, \(\|f_\chi\|_{U_2} \) equals the quartic mean of the Walsh transform of \(f \).