Linear and Differential Properties of S-boxes with Respect to Modular Addition

Matúš Jókay Peter Špaček Pavol Zajac ${ }^{1}$

Institute of Computer Science and Mathematics Slovak University of Technology

```
pavol.zajac@stuba.sk
```

Central European Conference on Cryptology 2019

[^0]
Outline

Introduction
Definitions
D-spectrum
L-spectrum
Modular affine equivalence (MAE)
Experimental results
All MAE classes
Optimal S-boxes
Summary

Introduction

S-boxes are typically studied in the context of Boolean functions:

- $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{m}$,
- Linear profile: $\operatorname{Pr}\left(a^{T} \cdot x=b^{T} \cdot S(x)\right)$.
- Differential profile: $\operatorname{Pr}\left(S(x) \oplus S\left(x \oplus \delta_{x}\right)=\delta_{y}\right)$.
- Small S-boxes can be easily characterised using affine equivalence ${ }^{2}$ (302 classes):

$$
S_{2}(x)=\mathbf{A}_{1} \cdot S_{1}\left(\mathbf{A}_{2} \cdot x \oplus b_{2}\right) \oplus b_{1}
$$

${ }^{2}$ Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. 2007

Modular S-box properties

Research question
What properties have small bijective S-boxes with respect to modular addition?

Research question refinement
Do the modular properties depend on the quality of S-box w.r.t. standard S-box criteria?

Motivation

- Alternative cipher designs:
- Rotor machines: clocking can be expressed as $S(x+t)$, with + over some \mathbb{Z}_{n}
- GOST, Kalyna (and others): Key addition or linear layer with + over some $\mathbb{Z}_{2^{n}}$
- Theoretical generalizations of non-linearity properties ${ }^{3}$
- Attacks based on alternative ${ }^{4}$ operations ${ }^{5}$

[^1]
Notation

- We work in ring $\mathbb{Z}_{2^{n}}=\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$
- Addition/subtraction: +/-
- Multiplication: ax
- Division: $x / a=a^{-1} x$, for a with $\operatorname{gcd}(a, 2)=1$
- Affine permutations:

$$
A(x)=a x+b, \text { with } \operatorname{gcd}(a, 2)=1
$$

Differential properties

- Table of differences:

$$
D_{\left(d_{x}, d_{y}\right)}=\left|\left\{x, S\left(x+d_{x}\right)-S(x)=d_{y}\right\}\right|
$$

- D-spectrum: multiset $\left\{D_{\left(d_{x}, d_{y}\right)}\right\}$
- D-criterium: $D(S)=\max \left\{D_{\left(d_{x}, d_{y}\right)}\right\}$
- Affine function: $D(f)=2^{n}$

Linear properties

- Linear approximation:

$$
L_{(a, b)}=|\{x, S(x)=a x+b\}|
$$

- L-spectrum: multiset $\left\{L_{(a, b)}\right\}$
- L-criterium: $L(S)=\max \left\{L_{(a, b)}\right\}$
- Affine function: $L(f)=2^{n}$

Modular affine equivalence

To explore (modular) S-box properties, we can use (modular) affine equivalence (MAE):

$$
S_{1} \equiv S_{2} \text { iff } A_{1} \circ S_{1}=S_{2} \circ A_{2}
$$

Explicitly:

$$
\forall x: S_{2}(x)=a_{1} \cdot S_{1}\left(a_{2} \cdot x+b_{2}\right)+b_{1}
$$

S-box criteria $L(S)$ and $D(S)$ are invariant under MAE.

Modular affine equivalence

- Class size: at most $2^{4 n-2}$
- $n=3$: 58 classes
- $n=4$: 1277100855 classes $\left(\approx 2^{30}\right)$
- Representatives:
- can always normalize to $S(0)=0, S(1)=1$
- representative is the first S-box in lex order

Modular S-box properties and affine equivalence

Research question reformulation
What is the statistical distribution of L- and D-criterium in MAE classes of small S-boxes?

All MAE classes

Statistics of class representatives based on exhaustive enumeration of 4 -bit S-boxes:

DIL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1																
2			0.00\%	0.00\%	0.00\%											
3		0.00\%	0.78\%	5.04\%	2.10\%	0.20\%	0.00\%									
4		0.00\%	4.84\%	30.44\%	15.09\%	2.77\%	0.22\%	0.00\%								
5		0.00\%	2.82\%	15.92\%	7.94\%	1.89\%	0.36\%	0.03\%	0.00\%							
6		0.00\%	0.70\%	3.78\%	2.44\%	0.83\%	0.24\%	0.05\%	0.00\%							
7		0.00\%	0.12\%	0.53\%	0.28\%	0.10\%	0.04\%	0.02\%	0.00\%	0.00\%						
8		0.00\%	0.02\%	0.10\%	0.13\%	0.07\%	0.03\%	0.01\%	0.00\%	0.00\%	0.00\%					
9		0.00\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%				
10		0.00\%	0.00\%	0.00\%	0.01\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%				
11		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%			
12		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.009\%			
13						0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%		
14		0.00\%														
15																
16				0.00\%		0.00\%		0.00\%		0.00\%		0.00\%		0.00\%		0.00\%

All MAE classes

Modular S-box criteria in numbers:

- 30% of S-boxes: $D=4, L=4$
- 95% of S-boxes: $D, L \in\{4,5\}$
- 0.5% of S-boxes: $D \geq 8$ or $L \geq 8$
- $L=2, D=3: 170$ classes
- $L=3, D=2: 411$ classes

Selected S-boxes

Selected 4-bit S-boxes from (Saarinen, 2011) ${ }^{6}$:

- $D, L \in\{3,4,5,6,7\}$, most of them: $L=4, D=4$
- DES S5-1: $D=7, L=4$ ($0.53 \%)$:

$$
\operatorname{Pr}(S(x+3)-S(x)=8)=7 / 16
$$

- GOST K8: $D=5, L=7$ (0.36\%):

$$
\operatorname{Pr}(S(x)=5 x+1)=7 / 16
$$

- HAMSI, Serpent S2 (G1): $D=7, L=3$ (0.12\%)
${ }^{6}$ Saarinen MJ. Cryptographic analysis of all 4×4-bit S-boxes. SAC 2011.

Modular S-box properties and optimal S-box classes

Research question reformulation
What is the statistical distribution of L- and D-criterium in MAE classes of small S-boxes?

Additional question
What is the statistical distribution of L - and D -criterium in case of optimal S-boxes (in 16 optimal LA classes)?

Technical note

- To explore all S-boxes in 16 optimal classes would take $1303 \times$ more time than to explore all class representatives.
- Our computation:
- Let Aff $=\{\mathcal{A} ; \mathcal{A}(x)=\mathbf{A} \cdot x \oplus c\}$,
- Aff \mathcal{L}_{L} contains reps. of $a \mathcal{A}(x)+b-20160$ permutations
- Aff $_{R}$ contains reps. of $\mathcal{A}(a x+b)-20160$ permutations
- compute $A f f_{L} \circ S \circ A f f_{R}$

All optimal classes

- Best S-boxes have always $(D, L)=(2,3)$, or $(D, L)=(3,2)$
- Maximum L is 11 (G7, G9, G10, G13), or 12
- Maximum D is 12 (G1, G3, G7, G9, G10, G11, G15), or 13

Class G3 (finite field inverse)

D I L	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1																
2			0.00\%	0.00\%	0.00\%											
3		0.00\%	0.83\%	5.64\%	2.46\%	0.24\%	0.00\%									
4		0.00\%	4.69\%	31.31\%	16.08\%	2.96\%	0.23\%	0.00\%								
5		0.00\%	2.50\%	15.19\%	7.85\%	1.86\%	0.35\%	0.03\%	0.00\%							
6		0.00\%	0.55\%	3.22\%	1.99\%	0.65\%	0.19\%	0.04\%	0.00\%							
7		0.00\%	0.09\%	0.44\%	0.23\%	0.08\%	0.03\%	0.01\%	0.00\%	0.00\%						
8		0.00\%	0.01\%	0.07\%	0.08\%	0.05\%	0.02\%	0.01\%	0.00\%	0.00\%	0.00\%					
9			0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.009\%					
10			0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%				
11			0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%		0.00\%				
12			0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%							
13																
14																
15																
16																

- D and L in range 2 to 12
- 95.75% of S -boxes with $D, L \in\{4,5\}$
- 0.34% of S-boxes with $D \geq 8$ or $L \geq 8$

S-box distribution within classes

Summary

Experimental results summary:

1. Optimal S-boxes w.r.t. standard linear and differential cryptanalysis have similar properties w.r.t. modular addition (with all classes and between them).
2. A small fraction of S-boxes optimal w.r.t. standard linear and differential cryptanalysis have very bad properties w.r.t. modular addition.

Open questions

- General theoretical analysis and good algebraic constructions?
- What about other operations, are there S-boxes good against every approximation?
- Can we break standard SL designs with bad modular S-boxes?
- Can weak modular S-boxes be used to backdoor ${ }^{7}$ cipher designs?

[^2]
[^0]: ${ }^{1}$ Supported by grant VEGA 1/0159/17.

[^1]: ${ }^{3}$ O Grošek, K Nemoga, L Satko: Generalized perfectly nonlinear functions. 2000
 ${ }^{4}$ Calderini M., Sala M.: Elementary abelian regular subgroups as hidden sums for cryptographic trapdoors. 2017
 ${ }^{5}$ Civino R, Blondeau C, Sala M. Differential attacks: using alternative operations. 2019

[^2]: ${ }^{7}$ A Biryukov, L Perrin, A Udovenko: Reverse-Engineering the S-Box of Streebog, Kuznyechik and STRIBOBr1, 2016

