ļ	n	It	r	0	d	u	С	ti	0	r
1	С	C)	0						

Definitions o Modular affine equivalence (MAE)

Experimental result

Summary 00

Linear and Differential Properties of S-boxes with Respect to Modular Addition

Matúš Jókay Peter Špaček Pavol Zajac¹

Institute of Computer Science and Mathematics Slovak University of Technology

pavol.zajac@stuba.sk

Central European Conference on Cryptology 2019

¹ Supported by grant VEGA 1/0159/17.

Summary 00

Outline

Introduction

Definitions D-spectrum

L-spectrum

Modular affine equivalence (MAE)

Experimental results All MAE classes Optimal S-boxes

Summary

Introduction •oo

Summary 00

Introduction

S-boxes are typically studied in the context of Boolean functions:

- $S: \mathbb{F}_2^n \to \mathbb{F}_2^m$,
- Linear profile: $Pr(a^T \cdot x = b^T \cdot S(x))$.
- Differential profile: $Pr(S(x) \oplus S(x \oplus \delta_x) = \delta_y)$.
- Small S-boxes can be easily characterised using affine equivalence² (302 classes):

$$S_2(x) = \mathbf{A}_1 \cdot S_1(\mathbf{A}_2 \cdot x \oplus b_2) \oplus b_1$$

²Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. 2007

Modular S-box properties

Research question

What properties have small bijective S-boxes with respect to modular addition?

Research question refinement

Do the modular properties depend on the quality of S-box w.r.t. standard S-box criteria?

Introd	uction
000	

Summary 00

Motivation

- Alternative cipher designs:
 - Rotor machines: clocking can be expressed as S(x + t), with + over some Z_n
 - GOST, Kalyna (and others): Key addition or linear layer with + over some \mathbb{Z}_{2^n}
- Theoretical generalizations of non-linearity properties³
- Attacks based on alternative⁴ operations⁵

³O Grošek, K Nemoga, L Satko: Generalized perfectly nonlinear functions.2000

⁴Calderini M., Sala M.: Elementary abelian regular subgroups as hidden sums for cryptographic trapdoors. 2017

⁵Civino R, Blondeau C, Sala M. Differential attacks: using alternative operations. 2019

00

Summary 00

Notation

- We work in ring $\mathbb{Z}_{2^n} = (\mathbb{Z}/2^n\mathbb{Z})$
- Addition/subtraction: +/-
- Multiplication: ax
- Division: $x/a = a^{-1}x$, for a with gcd(a, 2) = 1
- Affine permutations:

$$A(x) = ax + b$$
, with $gcd(a, 2) = 1$

Definitions ○ Modular affine equivalence (MAE)

Experimental result

Summary 00

Differential properties

Table of differences:

$$D_{(d_x,d_y)} = \left| \{x, \mathcal{S}(x+d_x) - \mathcal{S}(x) = d_y\} \right|$$

- D-spectrum: multiset {D_{(dx,dy})}
- D-criterium: $D(S) = \max\{D_{(d_x, d_y)}\}$
- Affine function: $D(f) = 2^n$

Definitions

.

Modular affine equivalence (MAE)

Experimental results

Summary 00

Linear properties

Linear approximation:

$$L_{(a,b)} = \big| \{x, S(x) = ax + b\} \big|$$

- L-spectrum: multiset {L_(a,b)}
- L-criterium: *L*(*S*) = max{*L*_(*a*,*b*)}
- Affine function: $L(f) = 2^n$

Summary 00

Modular affine equivalence

To explore (modular) S-box properties, we can use (modular) affine equivalence (MAE):

$$S_1 \equiv S_2 ext{ iff } A_1 \circ S_1 = S_2 \circ A_2$$

Explicitly:

$$\forall x: S_2(x) = a_1 \cdot S_1(a_2 \cdot x + b_2) + b_1$$

S-box criteria L(S) and D(S) are invariant under MAE.

Modular affine equivalence

- Class size: at most 2⁴ⁿ⁻²
 - n = 3: 58 classes
 - n = 4: 1277100855 classes (≈ 2³⁰)
- Representatives:
 - can always normalize to S(0) = 0, S(1) = 1
 - representative is the first S-box in lex order

Modular S-box properties and affine equivalence

Research question reformulation

What is the statistical distribution of L- and D-criterium in MAE classes of small S-boxes?

Modular affine equivalence (MAE)

Summary 00

All MAE classes

Statistics of class representatives based on exhaustive enumeration of 4-bit S-boxes:

	All 1277099568 classes															
DIL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1																
2			0.00%	0.00%	0.00%											
3		0.00%	0.78%	5.04%	2.10%	0.20%	0.00%									
4		0.00%	4.84%	30.44%	15.09%	2.77%	0.22%	0.00%								
5		0.00%	2.82%	15.92%	7.94%	1.89%	0.36%	0.03%	0.00%							
6		0.00%	0.70%	3.78%	2.44%	0.83%	0.24%	0.05%	0.00%							
7		0.00%	0.12%	0.53%	0.28%	0.10%	0.04%	0.02%	0.00%	0.00%						
8		0.00%	0.02%	0.10%	0.13%	0.07%	0.03%	0.01%	0.00%	0.00%	0.00%					
9		0.00%	0.00%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%				
10		0.00%	0.00%	0.00%	0.01%	0.01%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%				
11		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%			
12		0.00%		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%							
13						0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
14		0.00%														
15																
16				0.00%		0.00%		0.00%		0.00%		0.00%		0.00%		0.00%

Modular affine equivalence (MAE)

Experimental	l results
0	
000	
00000	

Summary 00

All MAE classes

Modular S-box criteria in numbers:

- 30% of S-boxes: *D* = 4, *L* = 4
- 95% of S-boxes: *D*, *L* ∈ {4, 5}
- 0.5% of S-boxes: D ≥ 8 or L ≥ 8
- *L* = 2, *D* = 3: 170 classes
- *L* = 3, *D* = 2: 411 classes

Definitions o Modular affine equivalence (MAE)

Summary 00

Selected S-boxes

Selected 4-bit S-boxes from (Saarinen, 2011)⁶:

- $D, L \in \{3, 4, 5, 6, 7\}$, most of them: L = 4, D = 4
- DES S5-1: *D* = 7, *L* = 4 (0.53%):

$$Pr(S(x+3) - S(x) = 8) = 7/16$$

$$Pr(S(x) = 5x + 1) = 7/16$$

• HAMSI, Serpent S2 (G1): *D* = 7, *L* = 3 (0.12%)

 6 Saarinen MJ. Cryptographic analysis of all 4 imes 4-bit S-boxes. SAC 2011.

Modular affine equivalence (MAE)

Experimen	tal resu
0	
000	
00000	

lts

Summary 00

Modular S-box properties and optimal S-box classes

Research question reformulation

What is the statistical distribution of L- and D-criterium in MAE classes of small S-boxes?

Additional question

What is the statistical distribution of L- and D-criterium in case of optimal S-boxes (in 16 optimal LA classes)?

Intr	od				
11111	ou	uu	20	U	
00	0				

Summary 00

Technical note

- To explore all S-boxes in 16 optimal classes would take 1303× more time than to explore all class representatives.
- Our computation:
 - Let $Aff = \{\mathcal{A}; \mathcal{A}(x) = \mathbf{A} \cdot x \oplus c\},\$
 - Aff_L contains reps. of aA(x) + b 20160 permutations
 - Aff_R contains reps. of A(ax + b) 20160 permutations
 - compute $Aff_L \circ S \circ Aff_R$

Definitions

Modular affine equivalence (MAE)

Experimental results

Summary

All optimal classes

- Best S-boxes have always (D, L) = (2, 3), or (D, L) = (3, 2)
- Maximum L is 11 (G7, G9, G10, G13), or 12
- Maximum D is 12 (G1, G3, G7, G9, G10, G11, G15), or 13

Int	ro					
	10	u	u	U	U	
0	20					

Definitions

Modular affine equivalence (MAE)

Class G3 (finite field inverse)

DIL	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1																
2			0.00%	0.00%	0.00%											
3		0.00%	0.83%	5.64%	2.46%	0.24%	0.00%									
4		0.00%	4.69%	31.31%	16.08%	2.96%	0.23%	0.00%								
5		0.00%	2.50%	15.19%	7.85%	1.86%	0.35%	0.03%	0.00%							
6			0.55%	3.22%	1.99%	0.65%	0.19%	0.04%	0.00%							
7		0.00%	0.09%	0.44%	0.23%	0.08%	0.03%	0.01%	0.00%	0.00%						
8		0.00%	0.01%	0.07%	0.08%	0.05%	0.02%	0.01%	0.00%	0.00%	0.00%					
9			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%					
10			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%				
11																
12			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%							
13																
14																
15																
16																

- D and L in range 2 to 12
- 95.75% of S-boxes with *D*, *L* ∈ {4,5}
- 0.34% of S-boxes with *D* ≥ 8 or *L* ≥ 8

Modular affine equivalence (MAE)

Experimental results

Summary

S-box distribution within classes

Introd	uction	

Summary •0

Experimental results summary:

- 1. Optimal S-boxes w.r.t. standard linear and differential cryptanalysis have similar properties w.r.t. modular addition (with all classes and between them).
- 2. A small fraction of S-boxes optimal w.r.t. standard linear and differential cryptanalysis have very bad properties w.r.t. modular addition.

In	tr	0	d	u	С	ti	0	n
0	0	0						

Open questions

- General theoretical analysis and good algebraic constructions?
- What about other operations, are there S-boxes good against every approximation?
- Can we break standard SL designs with bad modular S-boxes?
- Can weak modular S-boxes be used to backdoor⁷ cipher designs?

⁷A Biryukov, L Perrin, A Udovenko: Reverse-Engineering the S-Box of Streebog, Kuznyechik and STRIBOBr1, 2016

