On derivatives of Balanced Boolean functions and quadratic APN functions

A. Musukwa, M. Sala and M. Zaninelli

Department of Mathematics, University of Trento

BFA 2019 Florence, Italy
1 Preliminaries

2 Linear space of Balanced Boolean functions

3 Linear space of components for APN functions

4 Quadratic APN functions

5 Quadratic power functions
Outline

1 Preliminaries

2 Linear space of Balanced Boolean functions

3 Linear space of components for APN functions

4 Quadratic APN functions

5 Quadratic power functions
Outline

1 Preliminaries

2 Linear space of Balanced Boolean functions

3 Linear space of components for APN functions

4 Quadratic APN functions

5 Quadratic power functions
1 Preliminaries

2 Linear space of Balanced Boolean functions

3 Linear space of components for APN functions

4 Quadratic APN functions

5 Quadratic power functions
Preliminaries

Definitions and notations

- A function from \mathbb{F}^n to \mathbb{F} ($= \mathbb{F}_2 = \{0, 1\}$) is a **Boolean function (Bf)**. A set of all functions is denoted by B_n.

- ANF for Bf: $f(x_1, \ldots, x_n) = \sum_{u \in \mathbb{F}^n} a_u \prod_{i=1}^{n} x_i^{u_i}$ where $a_u \in \mathbb{F}$

- A function from \mathbb{F}^n to \mathbb{F}^n is a **vectorial Boolean function (vBf)**.

- vBf: $F := (f_1, \ldots, f_n)$ where f_i (in B_n) are called **coordinate functions**.

- A **component** of vBf F is $F_\lambda = \lambda \cdot F$, with $\lambda \neq 0 \in \mathbb{F}^n$.

A. Musukwa et. al.

On derivatives of Balanced functions and APN functions
Definitions and notations

- A function from \mathbb{F}^n to \mathbb{F} ($= \mathbb{F}_2 = \{0, 1\}$) is a **Boolean function** (Bf). A set of all functions is denoted by B_n.

- ANF for Bf: $f(x_1, \ldots, x_n) = \sum_{u \in \mathbb{F}^n} a_u \prod_{i=1}^n x_i^{u_i}$ where $a_u \in \mathbb{F}$

- A function from \mathbb{F}^n to \mathbb{F}^n is a **vectorial Boolean function** (vBf).

- vBf: $F := (f_1, \ldots, f_n)$ where f_i (in B_n) are called **coordinate functions**.

- A component of vBf F is $F_\lambda = \lambda \cdot F$, with $\lambda \neq 0 \in \mathbb{F}^n$.

A. Musukwa et. al.
On derivatives of Balanced functions and APN functions

A. Musukwa et. al.
On derivatives of Balanced functions and APN functions
Definitions and notations

- A function from \mathbb{F}^n to \mathbb{F} ($= \mathbb{F}_2 = \{0, 1\}$) is a **Boolean function (Bf)**. A set of all functions is denoted by B_n

- ANF for Bf: $f(x_1, ..., x_n) = \sum_{u \in \mathbb{F}^n} a_u \prod_{i=1}^{n} x_i^{u_i}$ where $a_u \in \mathbb{F}$

- A function from \mathbb{F}^n to \mathbb{F}^n is a **vectorial Boolean function (vBf)**

- vBf: $F := (f_1, ..., f_n)$ where f_i (in B_n) are called **coordinate functions**

- A component of vBf F is $F_\lambda = \lambda \cdot F$, with $\lambda \neq 0 \in \mathbb{F}^n$
Definitions and notations

- A function from \mathbb{F}^n to \mathbb{F} ($= \mathbb{F}_2 = \{0, 1\}$) is a **Boolean function (Bf)**. A set of all functions is denoted by B_n

- ANF for Bf: $f(x_1, \ldots, x_n) = \sum_{u \in \mathbb{F}^n} a_u \prod_{i=1}^n x_i^{u_i}$ where $a_u \in \mathbb{F}$

- A function from \mathbb{F}^n to \mathbb{F}^n is a **vectorial Boolean function (vBf)**

- vBf: $F := (f_1, \ldots, f_n)$ where f_i (in B_n) are called **coordinate functions**

- A component of vBf F is $F_\lambda = \lambda \cdot F$, with $\lambda \neq 0 \in \mathbb{F}^n$
Preliminaries

Definitions and notations

- A function from \mathbb{F}^n to \mathbb{F} ($= \mathbb{F}_2 = \{0, 1\}$) is a **Boolean function (Bf)**. A set of all functions is denoted by B_n.

- ANF for Bf: $f(x_1, \ldots, x_n) = \sum_{u \in \mathbb{F}^n} a_u \prod_{i=1}^n x_i^{u_i}$ where $a_u \in \mathbb{F}$

- A function from \mathbb{F}^n to \mathbb{F}^n is a **vectorial Boolean function (vBf)**

- vBf: $F := (f_1, \ldots, f_n)$ where f_i (in B_n) are called **coordinate functions**

- A **component** of vBf F is $F_\lambda = \lambda \cdot F$, with $\lambda \neq 0 \in \mathbb{F}^n$
Definitions and notations

- $\deg(f) = \max_{a_u \neq 0} w(u)$ and $\deg(F) = \max_{\lambda \in \mathbb{F}^n} \deg(F_\lambda)$
- Weight of f: $w(f) = |\{x \in \mathbb{F}^n | f(x) = 1\}|$
- Balanced: $w(f) = 2^{n-1}$
- Affine functions: $A_n = \{g \in B_n | \deg(g) \leq 1\}$.

A. Musukwa et. al.
On derivatives of Balanced functions and APN functions
Definitions and notations

- \(\deg(f) = \max_{a_u \neq 0} w(u) \) and \(\deg(F) = \max_{\lambda \in \mathbb{F}^n} \deg(F_{\lambda}) \)

- **Weight of** \(f \): \(w(f) = |\{x \in \mathbb{F}^n | f(x) = 1\}| \)

- **Balanced**: \(w(f) = 2^{n-1} \)

- **Affine functions**: \(A_n = \{g \in B_n | \deg(g) \leq 1\} \).
Preliminaries

Definitions and notations

- \(\deg(f) = \max_{a_u \neq 0} w(u) \) and \(\deg(F) = \max_{\lambda \in \mathbb{F}^n} \deg(F_\lambda) \)

- **Weight of** \(f \): \(w(f) = |\{x \in \mathbb{F}^n | f(x) = 1\}| \)

- **Balanced**: \(w(f) = 2^{n-1} \)

- **Affine functions**: \(A_n = \{g \in B_n | \deg(g) \leq 1\} \).
Definitions and notations

- \(\deg(f) = \max_{a_u \neq 0} w(u) \) and \(\deg(F) = \max_{\lambda \in \mathbb{F}^n} \deg(F_\lambda) \)

- **Weight of** \(f \): \(w(f) = |\{x \in \mathbb{F}^n | f(x) = 1\}| \)

- **Balanced**: \(w(f) = 2^{n-1} \)

- **Affine functions**: \(A_n = \{g \in B_n | \deg(g) \leq 1\} \)
Definitions and notations

- **Walsh Transform** of f: \(\mathcal{W}_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x) + a \cdot x}, \) with $a \in \mathbb{F}^n$

- **Walsh Spectrum** of f: \{ $\mathcal{W}_f(a)$ | $a \in \mathbb{F}^n$ \}

- **Walsh Spectrum** of vBf F: \{ $\mathcal{W}_{F,\lambda}(a)$ | $a, \lambda \in \mathbb{F}^n$ \}

- **Bent**: \(\mathcal{W}_f(a) = \pm 2^{n/2}, \) for all $a \in \mathbb{F}^n$ and n even

- **Semi-bent** f: $\mathcal{W}_f(a) \in \{0, \pm 2^{(n+1)/2}\}$, for all $a \in \mathbb{F}^n$ and n odd, $\mathcal{W}_f(a) \in \{0, \pm 2^{(n+2)/2}\}$, for all $a \in \mathbb{F}^n$ and n even

- **Plateaued**: $\mathcal{W}_f(a) \in \{0, \pm \mu\}$, for some integer μ.
Preliminaries

Definitions and notations

- **Walsh Transform** of f: $W_f(a) = \sum_{x \in \mathbb{F}_n} (-1)^{f(x) + a \cdot x}$, with $a \in \mathbb{F}_n$

- **Walsh Spectrum** of Bf f: $\{W_f(a) \mid a \in \mathbb{F}_n\}$

- **Walsh Spectrum** of vBf F: $\{W_{F,\lambda}(a) \mid a, \lambda \in \mathbb{F}_n\}$

- **Bent**: $W_f(a) = \pm 2^{n/2}$, for all $a \in \mathbb{F}_n$ and n even

- **Semi-bent** f: $W_f(a) \in \{0, \pm 2^{(n+1)/2}\}$, for all $a \in \mathbb{F}_n$ and n odd, $W_f(a) \in \{0, \pm 2^{(n+2)/2}\}$, for all $a \in \mathbb{F}_n$ and n even

- **Plateaued**: $W_f(a) \in \{0, \pm \mu\}$, for some integer μ.
Preliminaries

Definitions and notations

- **Walsh Transform** of \(f \): \(\mathcal{W}_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x) + a \cdot x} \), with \(a \in \mathbb{F}^n \)

- **Walsh Spectrum** of \(Bf \): \(\{ \mathcal{W}_f(a) \mid a \in \mathbb{F}^n \} \)

- **Walsh Spectrum** of \(vBf \): \(\{ \mathcal{W}_{F,\lambda}(a) \mid a, \lambda \in \mathbb{F}^n \} \)

- **Bent**: \(\mathcal{W}_f(a) = \pm 2^{n/2} \), for all \(a \in \mathbb{F}^n \) and \(n \) even

- **Semi-bent** \(f \): \(\mathcal{W}_f(a) \in \{0, \pm 2^{(n+1)/2}\} \), for all \(a \in \mathbb{F}^n \) and \(n \) odd, \(\mathcal{W}_f(a) \in \{0, \pm 2^{(n+2)/2}\} \), for all \(a \in \mathbb{F}^n \) and \(n \) even

- **Plateaued**: \(\mathcal{W}_f(a) \in \{0, \pm \mu\} \), for some integer \(\mu \).
Definitions and notations

- **Walsh Transform** of f: $W_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x)+a \cdot x}$, with $a \in \mathbb{F}^n$

- **Walsh Spectrum** of Bf f: \{ $W_f(a) \mid a \in \mathbb{F}^n$ \}

- **Walsh Spectrum** of vBf F: \{ $W_{F,\lambda}(a) \mid a, \lambda \in \mathbb{F}^n$ \}

- **Bent**: $W_f(a) = \pm 2^{n/2}$, for all $a \in \mathbb{F}^n$ and n even

- **Semi-bent** f: $W_f(a) \in \{0, \pm 2^{(n+1)/2}\}$, for all $a \in \mathbb{F}^n$ and n odd, $W_f(a) \in \{0, \pm 2^{(n+2)/2}\}$, for all $a \in \mathbb{F}^n$ and n even

- **Plateaued**: $W_f(a) \in \{0, \pm \mu\}$, for some integer μ.
Preliminaries

Definitions and notations

- **Walsh Transform** of f: $W_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x) + a \cdot x}$, with $a \in \mathbb{F}^n$

- **Walsh Spectrum** of Bf f: $\{ W_f(a) | a \in \mathbb{F}^n \}$

- **Walsh Spectrum** of vBf F: $\{ W_{F,\lambda}(a) | a, \lambda \in \mathbb{F}^n \}$

- **Bent:** $W_f(a) = \pm 2^{n/2}$, for all $a \in \mathbb{F}^n$ and n even

- **Semi-bent f:** $W_f(a) \in \{0, \pm 2^{(n+1)/2}\}$, for all $a \in \mathbb{F}^n$ and n odd, $W_f(a) \in \{0, \pm 2^{(n+2)/2}\}$, for all $a \in \mathbb{F}^n$ and n even

- **Plateaued:** $W_f(a) \in \{0, \pm \mu\}$, for some integer μ.

A. Musukwa et al.

On derivatives of Balanced functions and APN functions
Preliminaries

Definitions and notations

- **Walsh Transform** of f: $\mathcal{W}_f(a) = \sum_{x \in \mathbb{F}^n} (-1)^{f(x)+a \cdot x}$, with $a \in \mathbb{F}^n$

- **Walsh Spectrum** of Bf f: $\{ \mathcal{W}_f(a) \mid a \in \mathbb{F}^n \}$

- **Walsh Spectrum** of vBf F: $\{ \mathcal{W}_{F,\lambda}(a) \mid a, \lambda \in \mathbb{F}^n \}$

- **Bent**: $\mathcal{W}_f(a) = \pm 2^{n/2}$, for all $a \in \mathbb{F}^n$ and n even

- **Semi-bent f**: $\mathcal{W}_f(a) \in \{0, \pm 2^{(n+1)/2}\}$, for all $a \in \mathbb{F}^n$ and n odd, $\mathcal{W}_f(a) \in \{0, \pm 2^{(n+2)/2}\}$, for all $a \in \mathbb{F}^n$ and n even

- **Plateaued**: $\mathcal{W}_f(a) \in \{0, \pm \mu\}$, for some integer μ.
Preliminaries

Affine Equivalence

- \(f \) and \(g \) are **affine equivalent** if there is an affinity \(\varphi : \mathbb{F}^n \to \mathbb{F}^n \) such that \(f = g \circ \varphi \). Write \(f \sim_A g \).

Proposition

Let \(f, g \in B_n \) be such that \(f \sim_A g \). Then \(w(f) = w(g) \).
Preliminaries

Affine Equivalence

- f and g are **affine equivalent** if there is an affinity $\varphi : \mathbb{F}^n \to \mathbb{F}^n$ such that $f = g \circ \varphi$. Write $f \sim_A g$.

Proposition

Let $f, g \in B_n$ be such that $f \sim_A g$. Then $w(f) = w(g)$.

Theorem

Let $f \in B_n$ be a quadratic Boolean function. Then

(i) $f \sim_A x_1x_2 + \cdots + x_{2i-1}x_{2i} + x_{2i+1}$ with $i \leq \lfloor \frac{n-1}{2} \rfloor$, if f is balanced,

(ii) $f \sim_A x_1x_2 + \cdots + x_{2i-1}x_{2i} + c$, with $c \in \mathbb{F}$ and $i \leq \lfloor \frac{n}{2} \rfloor$, if f is unbalanced.

Lemma

Two (unbalanced) quadratic Bf’s g and h on \mathbb{F}^n are affine equivalent if and only if $w(g) = w(h)$.
Theorem

Let $f \in B_n$ be a quadratic Boolean function. Then

(i) $f \sim_A x_1x_2 + \cdots + x_{2i-1}x_{2i} + x_{2i+1}$ with $i \leq \lfloor \frac{n-1}{2} \rfloor$, if f is balanced,

(ii) $f \sim_A x_1x_2 + \cdots + x_{2i-1}x_{2i} + c$, with $c \in \mathbb{F}$ and $i \leq \lfloor \frac{n}{2} \rfloor$, if f is unbalanced.

Lemma

Two (unbalanced) quadratic Bf’s g and h on \mathbb{F}^n are affine equivalent if and only if $\mathbf{w}(g) = \mathbf{w}(h)$.
Theorem

Let $f \in B_n$ be a quadratic Boolean function. Then

(i) $f \sim_A x_1x_2 + \cdots + x_{2i-1}x_{2i} + x_{2i+1}$ with $i \leq \left\lfloor \frac{n-1}{2} \right\rfloor$, if f is balanced,

(ii) $f \sim_A x_1x_2 + \cdots + x_{2i-1}x_{2i} + c$, with $c \in \mathbb{F}$ and $i \leq \left\lfloor \frac{n}{2} \right\rfloor$, if f is unbalanced.

Lemma

Two (unbalanced) quadratic Bf's g and h on \mathbb{F}^n are affine equivalent if and only if $w(g) = w(h)$.
Theorem

Let $f \in B_n$ be a quadratic Boolean function. Then

(i) $f \sim_A x_1x_2 + \cdots + x_{2i-1}x_{2i} + x_{2i+1}$ with $i \leq \lfloor \frac{n-1}{2} \rfloor$, if f is balanced,

(ii) $f \sim_A x_1x_2 + \cdots + x_{2i-1}x_{2i} + c$, with $c \in \mathbb{F}$ and $i \leq \lfloor \frac{n}{2} \rfloor$, if f is unbalanced.

Lemma

Two (unbalanced) quadratic Bf’s g and h on \mathbb{F}^n are affine equivalent if and only if $w(g) = w(h)$.
Proposition

If \(g(x_1, ..., x_{n-1}) \) is an arbitrary Bf then \(f = g(x_1, ..., x_{n-1}) + x_n \) is balanced.

(First order) derivative of \(f \) at \(a \) in \(\mathbb{F}^n \):
\[
D_a f = f(x + a) + f(x)
\]

Theorem

\(f \in B_n \) is bent if and only if \(D_a f \) is balanced for any nonzero \(a \in \mathbb{F}^n \).
Preliminaries

Proposition
If \(g(x_1, ..., x_{n-1}) \) is an arbitrary Bf then \(f = g(x_1, ..., x_{n-1}) + x_n \) is balanced.

Theorem
\(f \in B_n \) is bent if and only if \(D_a f \) is balanced for any nonzero \(a \in \mathbb{F}^n \).

(First order) derivative of \(f \) at \(a \) in \(\mathbb{F}^n \): \(D_a f = f(x + a) + f(x) \)
Proposition

If \(g(x_1, ..., x_{n-1}) \) is an arbitrary Bf then \(f = g(x_1, ..., x_{n-1}) + x_n \) is balanced.

Theorem

\(f \in B_n \) is bent if and only if \(D_a f \) is balanced for any nonzero \(a \in F^n \).
Definitions

- \(a \in \mathbb{F}^n \) is a **linear structure** of \(f \) if \(D_a f \) is a constant.
- We call the set of all linear structures of \(f \) the **linear space** of \(f \) and its denoted by \(V(f) \).
- If the only linear structure of \(f \) is \(a = 0 \), we say the linear space is **trivial**.
- Let \(\Gamma(f) = \{ a \in \mathbb{F}^n \mid D_a f \text{ is balanced} \} \).
- **Almost Perfect Nonlinear (APN):** a \(\nu \)BF \(F \) with \(\delta(F) = 2 \) where

\[
\delta(F) = \max_{a \neq 0, b \in \mathbb{F}^n} |\{ x \in \mathbb{F}^n \mid D_a F(x) = b \}|.
\]
 Definitions

- \(a \in \mathbb{F}^n \) is a **linear structure** of \(f \) if \(D_a f \) is a constant.
- We call the set of all linear structures of \(f \) the **linear space** of \(f \) and its denoted by \(V(f) \).
- If the only linear structure of \(f \) is \(a = 0 \), we say the linear space is **trivial**.
- Let \(\Gamma(f) = \{ a \in \mathbb{F}^n \mid D_a f \text{ is balanced} \} \).
- **Almost Perfect Nonlinear (APN):** a vBf \(F \) with \(\delta(F) = 2 \) where

\[
\delta(F) = \max_{a \neq 0, b \in \mathbb{F}^n} |\{ x \in \mathbb{F}^n \mid D_a F(x) = b \}|.
\]
Preliminary

Definitions

- \(a \in \mathbb{F}^n \) is a **linear structure** of \(f \) if \(D_a f \) is a constant.
- We call the set of all linear structures of \(f \) the **linear space** of \(f \) and its denoted by \(V(f) \).
- If the only linear structure of \(f \) is \(a = 0 \), we say the linear space is **trivial**.
- Let \(\Gamma(f) = \{ a \in \mathbb{F}^n \mid D_a f \text{ is balanced} \} \).
- **Almost Perfect Nonlinear (APN)**: a \(\nu \mathcal{B} f \) \(F \) with \(\delta(F) = 2 \) where

\[
\delta(F) = \max_{a \neq 0, b \in \mathbb{F}^n} \left| \{ x \in \mathbb{F}^n \mid D_a F(x) = b \} \right|.
\]
Definitions

- $a \in \mathbb{F}^n$ is a **linear structure** of f if $Da f$ is a constant.
- We call the set of all linear structures of f the **linear space** of f and its denoted by $V(f)$.
- If the only linear structure of f is $a = 0$, we say the linear space is **trivial**.
- Let $\Gamma(f) = \{ a \in \mathbb{F}^n \mid Da f \text{ is balanced} \}$.
- **Almost Perfect Nonlinear (APN):** a vBf F with $\delta(F) = 2$ where
 $$\delta(F) = \max_{a \neq 0, b \in \mathbb{F}^n} |\{ x \in \mathbb{F}^n \mid Da F(x) = b \}|.$$
Definitions

- $a \in \mathbb{F}^n$ is a **linear structure** of f if $D_a f$ is a constant.
- We call the set of all linear structures of f the **linear space** of f and its denoted by $V(f)$.
- If the only linear structure of f is $a = 0$, we say the linear space is **trivial**.
- Let $\Gamma(f) = \{ a \in \mathbb{F}^n \mid D_a f \text{ is balanced} \}$.
- **Almost Perfect Nonlinear (APN):** a vBf F with $\delta(F) = 2$ where
 \[
 \delta(F) = \max_{a \neq 0, b \in \mathbb{F}^n} |\{ x \in \mathbb{F}^n \mid D_a F(x) = b \}|.
 \]
Another vBf representation

Univariate polynomial over \mathbb{F}_{2^n}:

$$F(x) = \sum_{i=0}^{2^n-1} \delta_i x^i,$$

where $\delta_i \in \mathbb{F}_{2^n}$ and the degree of F is at most $2^n - 1$.

Power function: $F(x) = x^d$, for some positive integer d.

Quadratic power function: is a power function with $d = 2^i + 2^j$ with $i, j \geq 0$, $i \neq j$.

Quadratic power functions
Quadratic power functions

Another vBf representation

Univariate polynomial over \mathbb{F}_{2^n}:

$$F(x) = \sum_{i=0}^{2^n-1} \delta_i x^i,$$

where $\delta_i \in \mathbb{F}_{2^n}$ and the degree of F is at most $2^n - 1$.

Power function: $F(x) = x^d$, for some positive integer d.

Quadratic power function: is a power function with $d = 2^i + 2^j$ with $i, j \geq 0, i \neq j$.

A. Musukwa et. al. On derivatives of Balanced functions and APN functions
Another vBf representation

Univariate polynomial over \mathbb{F}_{2^n}:

$$F(x) = \sum_{i=0}^{2^n-1} \delta_i x^i,$$

where $\delta_i \in \mathbb{F}_{2^n}$ and the degree of F is at most $2^n - 1$.

Power function: $F(x) = x^d$, for some positive integer d.

Quadratic power function: is a power function with $d = 2^i + 2^j$ with $i, j \geq 0$, $i \neq j$.
Observation

- Any Bf can be expressed as:
 \[f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n). \]
- If \(f \) in \(B_n \) only depends on \(m \) variables \((m < n) \), then \(f|_{\mathbb{F}^m} \) denotes its restriction to these \(m \) variables.

Theorem

If \(f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n) \), then

1. \(w(f) = w((g + h)|_{\mathbb{F}^n}) + w(g|_{\mathbb{F}^n}) \),
2. \(f \) is balanced if \(g + h \) and \(h \) are both balanced,
3. \(f \) is unbalanced if one in \(\{g + h, h\} \) is balanced and another one not.
Observation

- Any Bf can be expressed as:
 \[f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n). \]
- If f in B_n only depends on m variables ($m < n$), then $f\mid_{F^m}$ denotes its restriction to these m variables.

Theorem

If $f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n)$, then

1. $w(f) = w((g + h)\mid_{F^n}) + w(g\mid_{F^n})$,
2. f is balanced if $g + h$ and h are both balanced,
3. f is unbalanced if one in $\{g + h, h\}$ is balanced and another one not.
Linear space of Balanced functions

Observation
- Any Bf can be expressed as:
 \[f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n). \]
- If \(f \) in \(B_n \) only depends on \(m \) variables \((m < n) \), then \(f|_{\mathbb{F}_m} \) denotes its restriction to these \(m \) variables.

Theorem
If \(f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n) \), then

1. \(w(f) = w((g + h)|_{\mathbb{F}_n}) + w(g|_{\mathbb{F}_n}) \),
2. \(f \) is balanced if \(g + h \) and \(h \) are both balanced,
3. \(f \) is unbalanced if one in \(\{g + h, h\} \) is balanced and another one not.
Observation

• Any Bf can be expressed as:
 \[f = x_{n+1}g(x_1, \ldots, x_n) + h(x_1, \ldots, x_n). \]

• If \(f \) in \(B_n \) only depends on \(m \) variables (\(m < n \)), then \(f|_{\mathbb{F}^m} \) denotes its restriction to these \(m \) variables.

Theorem

If \(f = x_{n+1}g(x_1, \ldots, x_n) + h(x_1, \ldots, x_n) \), then

1. \(w(f) = w((g + h)|_{\mathbb{F}^n}) + w(g|_{\mathbb{F}^n}) \),
2. \(f \) is balanced if \(g + h \) and \(h \) are both balanced,
3. \(f \) is unbalanced if one in \(\{g + h, h\} \) is balanced and another one not.
Observation

- Any Bf can be expressed as:
 \[f = x_{n+1}g(x_1, \ldots, x_n) + h(x_1, \ldots, x_n). \]
- If \(f \) in \(B_n \) only depends on \(m \) variables \((m < n) \), then \(f|_{\mathbb{F}^m} \) denotes its restriction to these \(m \) variables.

Theorem

If \(f = x_{n+1}g(x_1, \ldots, x_n) + h(x_1, \ldots, x_n) \), then

1. \(w(f) = w((g + h)|_{\mathbb{F}^n}) + w(g|_{\mathbb{F}^n}) \),
2. \(f \) is balanced if \(g + h \) and \(h \) are both balanced,
3. \(f \) is unbalanced if one in \(\{g + h, h\} \) is balanced and another one not.
Observation

- Any Bf can be expressed as:
 \[f = x_{n+1}g(x_1, \ldots, x_n) + h(x_1, \ldots, x_n). \]
- If \(f \) in \(B_n \) only depends on \(m \) variables \((m < n) \), then \(f|_{\mathbb{F}^m} \) denotes its restriction to these \(m \) variables.

Theorem

If \(f = x_{n+1}g(x_1, \ldots, x_n) + h(x_1, \ldots, x_n) \), then

1. \(w(f) = w((g + h)|_{\mathbb{F}^n}) + w(g|_{\mathbb{F}^n}) \),
2. \(f \) is balanced if \(g + h \) and \(h \) are both balanced,
3. \(f \) is unbalanced if one in \(\{g + h, h\} \) is balanced and another one not.
Lemma

Let \(f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n) \), with \(g, h \in B_n \) and let \(\alpha \in (a_{n+1}, a) \in \mathbb{F} \times \mathbb{F}^n \). Then

1. \(D_\alpha f \sim_A x_{n+1} Da g + a_{n+1}g + Da h \),

2. \(D_\alpha f \) is constant if and only if \(Da g = 0 \) and \(Da h = a_{n+1}g + c \), for some \(c \in \mathbb{F} \).

Proposition

If \(f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n) \), with \(n \) even, \(f \in B_{n+1} \), \(g, h \in B_n \) and \(g \) bent, then the linear space of \(f \) is trivial.
Lemma

Let $f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n)$, with $g, h \in B_n$ and let $\alpha \in (a_{n+1}, a) \in \mathbb{F} \times \mathbb{F}^n$. Then

1. $D_{\alpha}f \sim_A x_{n+1}Da g + a_{n+1}g + Da h$,

2. $D_{\alpha}f$ is constant if and only if $Da g = 0$ and $Da h = a_{n+1}g + c$, for some $c \in \mathbb{F}$.

Proposition

If $f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n)$, with n even, $f \in B_{n+1}$, $g, h \in B_n$ and g bent, then the linear space of f is trivial.
Lemma

Let \(f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n) \), with \(g, h \in B_n \) and let \(\alpha \in (a_{n+1}, a) \in \mathbb{F} \times \mathbb{F}^n \). Then

1. \(D_\alpha f \sim_A x_{n+1} Da g + a_{n+1}g + Da h \),
2. \(D_\alpha f \) is constant if and only if \(Da g = 0 \) and \(Da h = a_{n+1}g + c \), for some \(c \in \mathbb{F} \).

Proposition

If \(f = x_{n+1}g(x_1, ..., x_n) + h(x_1, ..., x_n) \), with \(n \) even, \(f \in B_{n+1} \), \(g, h \in B_n \) and \(g \) bent, then the linear space of \(f \) is trivial.
Linear space of Balanced functions

Lemma

Let $f = x_{n+1}g(x_1, \ldots, x_n) + h(x_1, \ldots, x_n)$, with $g, h \in B_n$ and let $\alpha \in (a_{n+1}, a) \in \mathbb{F} \times \mathbb{F}^n$. Then

1. $D_\alpha f \sim_A x_{n+1}D_ag + a_{n+1}g + D_ah$,
2. $D_\alpha f$ is constant if and only if $D_ag = 0$ and $D_ah = a_{n+1}g + c$, for some $c \in \mathbb{F}$.

Proposition

If $f = x_{n+1}g(x_1, \ldots, x_n) + h(x_1, \ldots, x_n)$, with n even, $f \in B_{n+1}$, $g, h \in B_n$ and g bent, then the linear space of f is trivial.
Proposition

Let $f = x_{n+1}g + h$ with $g = \tilde{g}(x_1, \ldots, x_{n-1}) + x_n$ and $h = \tilde{h}(x_1, \ldots, x_{n-2}) + x_{n-1}$. Then

- f is balanced and its linear space is trivial if n is odd and $\tilde{g}|_{\mathbb{F}^{n-1}}$ is bent.

Corollary

Let $f = x_1g_1 + \cdots + x_{i-1}g_{i-1} + g_i$, with $g_i = \tilde{g}_i(x_{i+1}, \ldots, x_{n-i}) + x_{n-i+1}$, $g_i \in B_{n-2i+1}$ and $i \leq \lfloor n/2 \rfloor$. Then

- f is balanced and its linear space is trivial if n is even and $\tilde{g}_1|_{\mathbb{F}^{n-2}}$ is bent.
Proposition

Let $f = x_{n+1}g + h$ with $g = \tilde{g}(x_1, ..., x_{n-1}) + x_n$ and $h = \tilde{h}(x_1, ..., x_{n-2}) + x_{n-1}$. Then

- f is balanced and its linear space is trivial if n is odd and $\tilde{g}|_{\mathbb{F}^{n-1}}$ is bent.

Corollary

Let $f = x_1g_1 + \cdots + x_{i-1}g_{i-1} + g_i$, with $g_i = \tilde{g}_i(x_{i+1}, ..., x_{n-i}) + x_{n-i+1}$, $g_i \in B_{n-2i+1}$ and $i \leq \lfloor n/2 \rfloor$. Then

- f is balanced and its linear space is trivial if n is even and $\tilde{g}_1|_{\mathbb{F}^{n-2}}$ is bent.
Linear space of Balanced functions

Proposition

Let \(f = x_{n+1}g + h \) with \(g = \tilde{g}(x_1, \ldots, x_{n-1}) + x_n \) and \(h = \tilde{h}(x_1, \ldots, x_{n-2}) + x_{n-1} \). Then

- \(f \) is balanced and its linear space is trivial if \(n \) is odd and \(\tilde{g}|_{\mathbb{F}^{n-1}} \) is bent.

Corollary

Let \(f = x_1g_1 + \cdots + x_{i-1}g_{i-1} + g_i \), with \(g_i = \tilde{g}_i(x_{i+1}, \ldots, x_{n-i}) + x_{n-i+1}, \) \(g_i \in B_{n-2i+1} \) and \(i \leq \lfloor n/2 \rfloor \). Then

- \(f \) is balanced and its linear space is trivial if \(n \) is even and \(\tilde{g}_1|_{\mathbb{F}^{n-2}} \) is bent.
Observation

Any Bf can be represented in the form:

\[f = x_{n+1}g(x_1, \ldots, x_n) + (1 + x_{n+1})h(x_1, \ldots, x_{n+1}), \]

with \(g, h \in B_n \). We call this convolutional product of \(g \) and \(h \).

Proposition

Let \(f = x_{n+1}g(x_1, \ldots, x_n) + (1 + x_{n+1})h(x_1, \ldots, x_n) \), with \(g, h \in B_n \) and \(\deg(h), \deg(g) \leq 2 \), be cubic. Then

- \(f \) is balanced if and only if both \(g \) and \(h \) are balanced or \(g = h \circ \varphi + 1 \), for some affinity \(\varphi \).
Linear space of Balanced functions

Observation

Any Bf can be represented in the form:

\[f = x_{n+1}g(x_1, \ldots, x_n) + (1 + x_{n+1})h(x_1, \ldots, x_{n+1}), \]

with \(g, h \in B_n \). We call this convolutional product of \(g \) and \(h \).

Proposition

Let \(f = x_{n+1}g(x_1, \ldots, x_n) + (1 + x_{n+1})h(x_1, \ldots, x_n) \), with \(g, h \in B_n \) and \(\deg(h), \deg(g) \leq 2 \), be cubic. Then

- \(f \) is balanced if and only if both \(g \) and \(h \) are balanced or \(g = h \circ \varphi + 1 \), for some affinity \(\varphi \).
Observation

Any Bf can be represented in the form:

\[f = x_{n+1}g(x_1, \ldots, x_n) + (1 + x_{n+1})h(x_1, \ldots, x_{n+1}), \]

with \(g, h \in B_n \). We call this **convolutional product** of \(g \) and \(h \).

Proposition

Let \(f = x_{n+1}g(x_1, \ldots, x_n) + (1 + x_{n+1})h(x_1, \ldots, x_n) \), with \(g, h \in B_n \) and \(\deg(h), \deg(g) \leq 2 \), be cubic. Then

- \(f \) is balanced if and only if both \(g \) and \(h \) are balanced or \(g = h \circ \varphi + 1 \), for some affinity \(\varphi \).
Proposition

Let \(f = x_{n+1}g(x_1, \ldots, x_n) + (1 + x_{n+1})h(x_1, \ldots, x_n) \), with \(g, h \in B_n \).

Then

- \(f \) is balanced if \(g \) and \(h \) are both balanced or \(g = h \circ \varphi + 1 \), for some affinity \(\varphi \),
- \(f \) is balanced if \(n \) is even, \(g|_{F^n} \) and \(h|_{F^n} \) are both bent with \(w(g) \neq w(h) \),
- \(f \) is plateaued if \(n \) is even, \(g|_{F^n} \) and \(h|_{F^n} \) are both bent,
- the linear space of \(f \) is trivial if \(n \) is even, \(h|_{F^n} \) is bent and \(\deg(f) = \max\{\deg(g), \deg(h)\} + 1 \).
Proposition

Let $f = x_{n+1}g(x_1, \ldots, x_n) + (1 + x_{n+1})h(x_1, \ldots, x_n)$, with $g, h \in B_n$. Then

- f is balanced if g and h are both balanced or $g = h \circ \varphi + 1$, for some affinity φ,
- f is balanced if n is even, $g|_{\mathbb{F}^n}$ and $h|_{\mathbb{F}^n}$ are both bent with $w(g) \neq w(h)$,
- f is plateaued if n is even, $g|_{\mathbb{F}^n}$ and $h|_{\mathbb{F}^n}$ are both bent,
- the linear space of f is trivial if n is even, $h|_{\mathbb{F}^n}$ is bent and $\deg(f) = \max\{\deg(g), \deg(h)\} + 1$.

A. Musukwa et. al.
On derivatives of Balanced functions and APN functions
Proposition

Let $f = x_{n+1}g(x_1, ..., x_n) + (1 + x_{n+1})h(x_1, ..., x_n)$, with $g, h \in B_n$. Then

- f is balanced if g and h are both balanced or $g = h \circ \varphi + 1$, for some affinity φ,
- f is balanced if n is even, $g|_{F^n}$ and $h|_{F^n}$ are both bent with $w(g) \neq w(h)$,
- f is plateaued if n is even, $g|_{F^n}$ and $h|_{F^n}$ are both bent,
- the linear space of f is trivial if n is even, $h|_{F^n}$ is bent and $\deg(f) = \max\{\deg(g), \deg(h)\} + 1$.

A. Musukwa et. al.

On derivatives of Balanced functions and APN functions
Let $f = x_{n+1}g(x_1, ..., x_n) + (1 + x_{n+1})h(x_1, ..., x_n)$, with $g, h \in B_n$. Then

- f is balanced if g and h are both balanced or $g = h \circ \varphi + 1$, for some affinity φ,
- f is balanced if n is even, $g|_{\mathbb{F}^n}$ and $h|_{\mathbb{F}^n}$ are both bent with $w(g) \neq w(h)$,
- f is plateaued if n is even, $g|_{\mathbb{F}^n}$ and $h|_{\mathbb{F}^n}$ are both bent,
- the linear space of f is trivial if n is even, $h|_{\mathbb{F}^n}$ is bent and $\deg(f) = \max\{\deg(g), \deg(h)\} + 1$.
Proposition

Let \(f = x_{n+1}g(x_1, ..., x_n) + (1 + x_{n+1})h(x_1, ..., x_n) \), with \(g, h \in B_n \).
Then

- \(f \) is balanced if \(g \) and \(h \) are both balanced or \(g = h \circ \varphi + 1 \), for some affinity \(\varphi \),
- \(f \) is balanced if \(n \) is even, \(g|_{\mathbb{F}^n} \) and \(h|_{\mathbb{F}^n} \) are both bent with \(w(g) \neq w(h) \),
- \(f \) is plateaued if \(n \) is even, \(g|_{\mathbb{F}^n} \) and \(h|_{\mathbb{F}^n} \) are both bent,
- the linear space of \(f \) is trivial if \(n \) is even, \(h|_{\mathbb{F}^n} \) is bent and \(\deg(f) = \max\{\deg(g), \deg(h)\} + 1 \).
Theorem [Well-known]

Let F be vBf from \mathbb{F}^n into \mathbb{F}^n. Then

$$\sum_{\lambda \in \mathbb{F}^n \backslash \{0\}} \sum_{a \in \mathbb{F}^n} \mathcal{F}^2(D_a F_{\lambda}) \geq 2^{2n+1}(2^n - 1).$$

Moreover, F is APN if and only if equality holds.

Lemma

Let $f \in B_n$, with n even, be such that $\dim V(f) \geq 1$. Then

$$|\Gamma(f)| \leq 2^n - 4.$$
Theorem [Well-known]
Let F be a vectorial function from \mathbb{F}^n into \mathbb{F}^n. Then
\[\sum_{\lambda \in \mathbb{F}^n \setminus \{0\}} \sum_{a \in \mathbb{F}^n} \mathcal{F}^2(D_aF_\lambda) \geq 2^{2n+1}(2^n - 1). \]
Moreover, F is APN if and only if equality holds.

Lemma
Let $f \in B_n$, with n even, be such that $\dim V(f) \geq 1$. Then
\[|\Gamma(f)| \leq 2^n - 4. \]
Lemma

Let F be a vBf from \mathbb{F}^n into \mathbb{F}^n, with n even. If $\dim V(F_\lambda) \geq 1$, for all $\lambda \in \mathbb{F}^n$, then

$$\sum_{\lambda \in \mathbb{F}^n \setminus \{0\}} \sum_{a \in \mathbb{F}^n} F^2(D_a F_\lambda) > 2^{2n+1}(2^n - 1).$$

Theorem

Let F from \mathbb{F}^n to \mathbb{F}^n, with n even, be an APN. Then there is a $\lambda \in \mathbb{F}^n \setminus \{0\}$ such that the linear space of F_λ is trivial.
Lemma

Let F be a vBf from F^n into F^n, with n even. If $\dim V(F_\lambda) \geq 1$, for all $\lambda \in F^n$, then

$$\sum_{\lambda \in F^n \setminus \{0\}} \sum_{a \in F^n} \mathcal{F}^2(D_aF_\lambda) > 2^{2n+1}(2^n - 1).$$

Theorem

Let F from F^n to F^n, with n even, be an APN. Then there is a $\lambda \in F^n \setminus \{0\}$ such that the linear space of F_λ is trivial.
Proposition

For any \(Q : \mathbb{F}^n \rightarrow \mathbb{F}^n \), we have

\[
\sum_{\lambda \in \mathbb{F}^n \setminus \{0\}} (2^{\dim V(F_\lambda)} - 1) \geq 2^n - 1.
\]

(2)

Moreover, equality holds if and only if \(Q \) is APN.

Proposition

Let \(Q : \mathbb{F}^n \rightarrow \mathbb{F}^n \), with \(n \) even, be such that \(Q_\lambda \), with \(\lambda \neq 0 \), is bent or semi-bent. Then \(Q \) is APN if and only if there are exactly \(\frac{2}{3}(2^n - 1) \) bent components.
Proposition

For any $Q : \mathbb{F}^n \rightarrow \mathbb{F}^n$, we have

$$\sum_{\lambda \in \mathbb{F}^n \setminus \{0\}} (2^{\dim V(F_\lambda)} - 1) \geq 2^n - 1.$$ (2)

Moreover, equality holds if and only if Q is APN.

Proposition

Let $Q : \mathbb{F}^n \rightarrow \mathbb{F}^n$, with n even, be such that Q_λ, with $\lambda \neq 0$, is bent or semi-bent. Then Q is APN if and only if there are exactly $\frac{2}{3}(2^n - 1)$ bent components.
Remark

The maximum number of bent components of vBf $F : \mathbb{F}^n \rightarrow \mathbb{F}^n$ is $2^n - 2^{n/2}$ [Pott et al. 2018].

No plateaued APN functions can achieve the maximum number [Mesnager et al., 2018].

Let B denote the number of bent components.
Remark

The maximum number of bent components of \(vBF : \mathbb{F}^n \rightarrow \mathbb{F}^n \) is \(2^n - 2^{n/2} \) [Pott et al. 2018].
No plateaued APN functions can achieve the maximum number [Mesnager et al., 2018].

Let \(B \) denote the number of bent components.
Theorem

Let \(Q : \mathbb{F}^n \rightarrow \mathbb{F}^n \), with \(n \) even, be APN. Then

\[
2(2^n - 1)/3 \leq B \leq 2^n - 2^{n/2} - 2
\]

where \(B = 2(2^n - 1)/3 + 4t \), for some integer \(t \geq 0 \).

Remark

If \(t > 0 \), then there is a component which is not bent or semi-bent.

One known such quadratic APN with \(t > 0 \) is [Dillon, 2006]
\[
F(x) = x^3 + z^{11}x^5 + z^{13}x^9 + x^{17} + z^{11}x^{33} + x^{48}
\]
defined over \(\mathbb{F}_{2^6} \) and \(z \) is primitive. It has 46 bent components.
Quadratic APN functions in even dimension

Theorem
Let \(Q : \mathbb{F}^n \rightarrow \mathbb{F}^n \), with \(n \) even, be APN. Then

\[
2(2^n - 1)/3 \leq B \leq 2^n - 2^{n/2} - 2
\]

where \(B = 2(2^n - 1)/3 + 4t \), for some integer \(t \geq 0 \).

Remark
If \(t > 0 \), then there is a component which is not bent or semi-bent.

One known such quadratic APN with \(t > 0 \) is [Dillon, 2006]
\[
F(x) = x^3 + z^{11}x^5 + z^{13}x^9 + x^{17} + z^{11}x^{33} + x^{48}
\]
defined over \(\mathbb{F}_{2^6} \) and \(z \) is primitive. It has 46 bent components.
Theorem

Let $F(x) = x^d$ be a function in $\mathbb{F}_{2^n}[x]$ where n is even and $d = 2^j(2^k + 1)$ with integer $j \geq 0$, $k \geq 1$. Let $s = (n, 2k)$, $e = (2^n - 1, 2^k + 1)$. Then the

(i) number of bent components for $F(x)$ is $2^n - \frac{2^n-1}{e} - 1$,

(ii) Walsh spectrum of $F(x)$ is $\{0, \pm 2^{(n+s)/2}\}$ if $e = 1$ and $\{0, \pm 2^{(n+s)/2}, \pm 2^n/2\}$ if $e \geq 3$.

Remark

$F(x) = x^d$, with $d = 2^j(2^k + 1)$, has the maximum number of bent components if and only if $n = 2k$ (i.e. $e = 2^k + 1$). In this case F has only bent and affine components.
Quadratic power functions

Theorem
Let $F(x) = x^d$ be a function in $\mathbb{F}_{2^n}[x]$ where n is even and $d = 2^j(2^k + 1)$ with integer $j \geq 0$, $k \geq 1$. Let $s = (n, 2k)$, $e = (2^n - 1, 2^k + 1)$. Then the

(i) number of bent components for $F(x)$ is $2^n - \frac{2^n-1}{e} - 1$,

(ii) Walsh spectrum of $F(x)$ is $\{0, \pm 2^{(n+s)/2}\}$ if $e = 1$ and $\{0, \pm 2^{(n+s)/2}, \pm 2^n/2\}$ if $e \geq 3$.

Remark

$F(x) = x^d$, with $d = 2^j(2^k + 1)$, has the maximum number of bent components if and only if $n = 2k$ (i.e. $e = 2^k + 1$). In this case F has only bent and affine components.
Theorem

Let $F(x) = x^d$ be a function in $\mathbb{F}_{2^n}[x]$ where n is even and $d = 2^j(2^k + 1)$ with integer $j \geq 0$, $k \geq 1$. Let $s = (n, 2k)$, $e = (2^n - 1, 2^k + 1)$. Then the

(i) number of bent components for $F(x)$ is $2^n - \frac{2^n-1}{e} - 1$,

(ii) Walsh spectrum of $F(x)$ is $\{0, \pm 2^{(n+s)/2}\}$ if $e = 1$ and $\{0, \pm 2^{(n+s)/2}, \pm 2^{n/2}\}$ if $e \geq 3$.

Remark

$F(x) = x^d$, with $d = 2^j(2^k + 1)$, has the maximum number of bent components if and only if $n = 2k$ (i.e. $e = 2^k + 1$). In this case F has only bent and affine components.
Theorem

Let $F(x) = x^d$ be a function in $\mathbb{F}_{2^n}[x]$ where n is even and
\[d = 2^j(2^k + 1) \]
with integer $j \geq 0$, $k \geq 1$. Let $s = (n, 2k)$, $e = (2^n - 1, 2^k + 1)$. Then the

(i) number of bent components for $F(x)$ is $2^n - \frac{2^n-1}{e} - 1$,
(ii) Walsh spectrum of $F(x)$ is $\{0, \pm 2^{(n+s)/2}\}$ if $e = 1$ and
$\{0, \pm 2^{(n+s)/2}, \pm 2^{n/2}\}$ if $e \geq 3$.

Remark

$F(x) = x^d$, with $d = 2^j(2^k + 1)$, has the maximum number of bent components if and only if $n = 2k$ (i.e. $e = 2^k + 1$). In this case F has only bent and affine components.
Corollary

Let \(F(x) = x^d \) be a power polynomial in \(\mathbb{F}_{2^n}[x] \) where \(n \) is even and \(d = 2^j(2^k + 1) \) with integer \(j \geq 0, k \geq 1 \). Let \(s = (n, 2k) \), \(e = (2^n - 1, 2^k + 1) \). Then \(F(x) \) is APN if and only if \(e = 3 \) and \(s = 2 \). Equivalently, \(F(x) \) is APN if and only if there are exactly \(2(2^n - 1)/3 \) bent components and the rest semi-bent.

Corollary

If a quadratic power function, in even dimension, has some bent components, then they are at least \(2(2^n - 1)/3 \).
THANK YOU FOR YOUR ATTENTION!