Let \(N_a \) be the number of solutions to the equation \(x^{2k+1} + x + a = 0 \) in \(\mathbb{F}_{2^n} \) where \(\gcd(k, n) = 1 \). In 2004, by Bluher it was known that possible values of \(N_a \) are only 0, 1 and 3. In 2008, Helleseth and Kholosha have got criteria for \(N_a = 1 \) and an explicit expression of the unique solution when \(\gcd(k, n) = 1 \). In 2014, Bracken, Tan and Tan presented a criterion for \(N_a = 0 \) when \(n \) is even and \(\gcd(k, n) = 1 \). In this talk, we review some equations over \(\mathbb{F}_{2^n} \) and present the solution of the equation \(x^{2k+1} + x + a = 0 \) in \(\mathbb{F}_{2^n} \) with \(\gcd(n, k) = 1 \). We explicitly calculate all possible zeros in \(\mathbb{F}_{2^n} \) of \(P_a(x) \). New criterion for which \(a, N_a \) is equal to 0, 1 or 3 is a by-product of our result.