Equations over the finite field \mathbb{F}_{2^n}

Sihem Mesnager (joint work with K.H. Kim)

University of Paris VIII (department of mathematics) and university of Paris XIII (LAGA)

Let N_a be the number of solutions to the equation $x^{2^k+1} + x + a = 0$ in \mathbb{F}_{2^n} where $\gcd(k,n)=1$. In 2004, by Bluher it was known that possible values of N_a are only 0, 1 and 3. In 2008, Helleseth and Kholosha have got criteria for $N_a=1$ and an explicit expression of the unique solution when $\gcd(k,n)=1$. In 2014, Bracken, Tan and Tan presented a criterion for $N_a=0$ when n is even and $\gcd(k,n)=1$. In this talk, we review some equations over \mathbb{F}_{2^n} and present the solution of the equation $x^{2^k+1}+x+a=0$ in \mathbb{F}_{2^n} with $\gcd(n,k)=1$. We explicitly calculate all possible zeros in \mathbb{F}_{2^n} of $P_a(x)$. New criterion for which a, N_a is equal to 0, 1 or 3 is a by-product of our result.