of Large-Scale Adversaries

On the Spread Sets of Planar Dembowski-Ostrom Monomials BFA 2023, September 03 - 08, 2023

Christof Beierle and Patrick Felke

Dembowski-Ostrom and planar polynomials

Let p be an odd prime and n a positive integer.
Dembowski-Ostrom Polynomial
A polynomial $g \in \mathbb{F}_{p^{n}}[x]$ is called Dembowski-Ostrom (DO) if $g(x)=\sum_{0 \leq i \leq j \leq n-1} u_{i, j} \cdot x^{p^{i}+p^{j}}, \quad u_{i, j} \in \mathbb{F}_{p^{n}}$.

Planar Polynomial [Dembowski and Ostrom, '68]

$g \in \mathbb{F}_{p^{n}}[x]$ is called planar if $\Delta_{g, \alpha}(x):=g(x+\alpha)-g(x)-g(\alpha)$ is a permutation polynomial for all $\alpha \in \mathbb{F}_{p^{n}}^{*}$.

- Only a few infinite families of planar polynomials are known
- In this talk, we focus on planar DO monomials, i.e., $g=x^{e}$.

Equivalence relation between planar polynomials

CCZ-equivalence [Carlet, Charpin, Zinoviev, '98]

Two polynomials $g, g^{\prime} \in \mathbb{F}_{p^{n}}[x]$ are called equivalent if there is an affine permutation \mathcal{A} over $\mathbb{F}_{p^{n}}^{2}$ such that $\left\{\left(z, g^{\prime}(z)\right) \mid z \in \mathbb{F}_{p^{n}}\right\}=\mathcal{A}\left(\left\{(z, g(z)) \mid z \in \mathbb{F}_{p^{n}}\right\}\right)$.

- CCZ- equivalence preserves the planarity property
- [Budaghyan, Helleseth and Kyureghyan, Pott, '08]: Two planar DO polynomials g, g' are equivalent if and only if there exist linear permutations L_{1}, L_{2} over $\mathbb{F}_{p^{n}}$ such that

$$
g^{\prime}(z)=L_{2}\left(g\left(L_{1}(z)\right)\right), \forall z \in \mathbb{F}_{p^{n}}
$$

Problem

Efficiently decide the equivalence between two planar (DO) polynomials

Equivalence relation between planar polynomials

CCZ-equivalence [Carlet, Charpin, Zinoviev, '98]

Two polynomials $g, g^{\prime} \in \mathbb{F}_{p^{n}}[x]$ are called equivalent if there is an affine permutation \mathcal{A} over $\mathbb{F}_{p^{n}}^{2}$ such that $\left\{\left(z, g^{\prime}(z)\right) \mid z \in \mathbb{F}_{p^{n}}\right\}=\mathcal{A}\left(\left\{(z, g(z)) \mid z \in \mathbb{F}_{p^{n}}\right\}\right)$.

- CCZ- equivalence preserves the planarity property
- [Budaghyan, Helleseth and Kyureghyan, Pott, '08]: Two planar DO polynomials g, g' are equivalent if and only if there exist linear permutations L_{1}, L_{2} over $\mathbb{F}_{p^{n}}$ such that

$$
g^{\prime}(z)=L_{2}\left(g\left(L_{1}(z)\right)\right), \forall z \in \mathbb{F}_{p^{n}} .
$$

Problem

Efficiently decide the equivalence between two planar (DO) polynomials.

Theorem: Classification of planar DO monomials [Coulter, Matthews, '97]

A DO monomial $x^{e} \in \mathbb{F}_{p^{n}}[x]$ is planar if and only if $e=p^{\ell}\left(p^{k}+1\right)$ with $n / \operatorname{gcd}(k, n)$ being odd.

- The above description uses the characterization of CCZ-equivalent monomials from [Dempwolff, 2018]. Up to equivalence, w.l.o.g., we can assume $p^{\ell}=1$.
- For $k=0$, we get the planar monomial x^{2}.
- We know only one family of planar monomials that is not DO ([Coulter, Matthews, '97]). The general classification of planar monomials is open.

Planar DO polynomials and commutative semifields
[Coulter, Henderson, 2008]: Correspondence between commutative semifields (i.e., "fields without associativity") and planar DO polynomials.
\rightarrow If g is DO, $\Delta_{g, \alpha}(x):=g(x+\alpha)-g(x)-g(\alpha)$ is a linearized polynomial

- If g is planar and DO, $\Delta_{g, \alpha}(x)$ corresponds to the mapping $x \mapsto \alpha \star x$ of left-
multiplication with α in the corresponding commutative presemifield \mathcal{R}_{g}
\Rightarrow The set $\left\{x \mapsto \alpha \star x \mid \alpha \in \mathbb{F}_{p^{n}}\right\}$ is called the spread set of \mathcal{R}_{g}

Definition (Spread set of g)

For a planar $D O$ polynomial $g \in \mathbb{F}_{p^{n}}[x]$, let us denote by $M_{g, \alpha}$ the $n \times n$ matrix over \mathbb{F}_{p}

 associated to the evaluation map of $\Delta_{g, \alpha^{*}}$. We define the spread set of g asPlanar DO polynomials and commutative semifields
[Coulter, Henderson, 2008]: Correspondence between commutative semifields (i.e., "fields without associativity") and planar DO polynomials.

- If g is DO, $\Delta_{g, \alpha}(x):=g(x+\alpha)-g(x)-g(\alpha)$ is a linearized polynomial
- If g is planar and DO, $\Delta_{g, \alpha}(x)$ corresponds to the mapping $x \mapsto \alpha \star x$ of leftmultiplication with α in the corresponding commutative presemifield \mathcal{R}_{g}
- The set $\left\{x \mapsto \alpha \star x \mid \alpha \in \mathbb{F}_{p^{n}}\right\}$ is called the spread set of \mathcal{R}_{g}

Definition (Spread set of g)

For a planar $D O$ polynomial $g \in \mathbb{F}_{p^{n}}[x]$, let us denote by $M_{g, \alpha}$ the $n \times n$ matrix over \mathbb{F}_{p} associated to the evaluation map of $\Delta_{g . \alpha}$. We define the spread set of g as

Planar DO polynomials and commutative semifields
[Coulter, Henderson, 2008]: Correspondence between commutative semifields (i.e., "fields without associativity") and planar DO polynomials.

- If g is DO, $\Delta_{g, \alpha}(x):=g(x+\alpha)-g(x)-g(\alpha)$ is a linearized polynomial
- If g is planar and DO, $\Delta_{g, \alpha}(x)$ corresponds to the mapping $x \mapsto \alpha \star x$ of leftmultiplication with α in the corresponding commutative presemifield \mathcal{R}_{g}
- The set $\left\{x \mapsto \alpha \star x \mid \alpha \in \mathbb{F}_{p^{n}}\right\}$ is called the spread set of \mathcal{R}_{g}

Definition (Spread set of g)

For a planar DO polynomial $g \in \mathbb{F}_{p^{n}}[x]$, let us denote by $M_{g, \alpha}$ the $n \times n$ matrix over \mathbb{F}_{p} associated to the evaluation map of $\Delta_{g, \alpha}$. We define the spread set of g as

$$
\mathcal{D}_{g}:=\left\{M_{g, \alpha} \mid \alpha \in \mathbb{F}_{p^{n}}\right\} \subseteq \operatorname{GL}\left(n, \mathbb{F}_{p}\right) \cup\{0\}
$$

Quotient of the spread set

$$
\mathcal{D}_{g}:=\left\{M_{g, \alpha} \mid \alpha \in \mathbb{F}_{p^{n}}\right\} \subseteq \mathrm{GL}\left(n, \mathbb{F}_{p}\right) \cup\{0\}
$$

Question

Can we exploit some structure in the spread sets to efficiently decide (in)equivalence between planar DO polynomials?
\rightarrow Problem: The spread set is not invariant under equivalence. If g, g^{\prime} are equivalent, we have $\mathcal{D}_{g^{\prime}}=A^{-1} \cdot \mathcal{D}_{g} \cdot B$ for some $A, B \in G L\left(n, \mathbb{F}_{p}\right)$ (see [Dempwolff, 2008])

Definition (Quotients in the spread set)

For a planar DO polynomial g, we define

Quotient of the spread set

$$
\mathcal{D}_{g}:=\left\{M_{g, \alpha} \mid \alpha \in \mathbb{F}_{p^{n}}\right\} \subseteq \operatorname{GL}\left(n, \mathbb{F}_{p}\right) \cup\{0\}
$$

Question

Can we exploit some structure in the spread sets to efficiently decide (in)equivalence between planar DO polynomials?

- Problem: The spread set is not invariant under equivalence. If g, g^{\prime} are equivalent, we have $\mathcal{D}_{g^{\prime}}=A^{-1} \cdot \mathcal{D}_{g} \cdot B$ for some $A, B \in \mathrm{GL}\left(n, \mathbb{F}_{p}\right)$ (see [Dempwolff, 2008])

Definition (Quotients in the spread set)

For a planar DO polynomial g, we define
Quot $\left(\mathcal{D}_{g}\right):=\left\{X Y^{-1} \mid X, Y \in \mathcal{D}_{g}\right.$ and $\left.Y \neq 0\right\}$

Quotient of the spread set

$$
\mathcal{D}_{g}:=\left\{M_{g, \alpha} \mid \alpha \in \mathbb{F}_{p^{n}}\right\} \subseteq \operatorname{GL}\left(n, \mathbb{F}_{p}\right) \cup\{0\}
$$

Question

Can we exploit some structure in the spread sets to efficiently decide (in)equivalence between planar DO polynomials?

- Problem: The spread set is not invariant under equivalence. If g, g^{\prime} are equivalent, we have $\mathcal{D}_{g^{\prime}}=A^{-1} \cdot \mathcal{D}_{g} \cdot B$ for some $A, B \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$ (see [Dempwolff, 2008])

Definition (Quotients in the spread set)

For a planar DO polynomial g, we define

$$
\operatorname{Quot}\left(\mathcal{D}_{g}\right):=\left\{X Y^{-1} \mid X, Y \in \mathcal{D}_{g} \text { and } Y \neq 0\right\}
$$

Properties of $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$

$$
\operatorname{Quot}\left(\mathcal{D}_{g}\right):=\left\{X Y^{-1} \mid X, Y \in \mathcal{D}_{g} \text { and } Y \neq 0\right\}
$$

- Invariant (up to a choice of basis) under equivalence of g, i.e., for equivalent DO planar polynomials g, g^{\prime}, we have $\operatorname{Quot}\left(\mathcal{D}_{g^{\prime}}\right)=A^{-1} \cdot \operatorname{Quot}\left(\mathcal{D}_{g}\right) \cdot A$ for $A \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$.
- Since the evaluation map of $\Delta_{g, \alpha}$ is \mathbb{F}_{p}-linear, $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ contains the field \mathbb{F}_{p} viz., $\left\{M_{g, c} M_{g, 1}^{-1} \mid c \in \mathbb{F}_{p}\right\}=\left\{c \cdot M_{g, 1} M_{g, 1}^{-1} \mid c \in \mathbb{F}_{p}\right\}=\mathbb{F}_{p}$

Question

Can we identify some non-trivial algebraic structure in $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$?

The structure of $\operatorname{Quot}\left(\mathcal{D}_{x^{2}}\right)$

- We have $\Delta_{g, \alpha}(x)=g(x+\alpha)-g(x)-g(\alpha)=2 \alpha x$
- $g(x)=x^{2}$ corresponds (as a commutative semifield) to a finite field

Theorem (B., 2022, see invited talk BFA 2022 and our preprint)
Let $g \in \mathbb{F}_{p^{n}}[x]$ be planar and DO . Then, $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ is a field isomorphic to $\mathbb{F}_{p^{n}}$ if and only if g is equivalent to x^{2}.

- In particular, $\left|\operatorname{Quot}\left(\mathcal{D}_{x^{2}}\right)\right|=p^{n}$
\rightarrow Can be used to decide equivalence to x^{2} very fast (see our preprint)

Theorem (B., Felke, 2022)

Quot $\left(\mathcal{D}_{g}\right)$ being a field of order p^{n} can be decided using $O\left(n^{7} \log (p)\right)$ elementary
operations in \mathbb{F}_{p} and $\mathcal{O}\left(n^{2}\right)$ evaluations of g

The structure of $\operatorname{Quot}\left(\mathcal{D}_{x^{2}}\right)$

- We have $\Delta_{g, \alpha}(x)=g(x+\alpha)-g(x)-g(\alpha)=2 \alpha x$
- $g(x)=x^{2}$ corresponds (as a commutative semifield) to a finite field

Theorem (B., 2022, see invited talk BFA 2022 and our preprint)
Let $g \in \mathbb{F}_{p^{n}}[x]$ be planar and DO . Then, $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ is a field isomorphic to $\mathbb{F}_{p^{n}}$ if and only if g is equivalent to x^{2}.

- In particular, $\left|\operatorname{Quot}\left(\mathcal{D}_{x^{2}}\right)\right|=p^{n}$
- Can be used to decide equivalence to x^{2} very fast (see our preprint):

Theorem (B., Felke, 2022)

Quot $\left(\mathcal{D}_{g}\right)$ being a field of order p^{n} can be decided using $\mathcal{O}\left(n^{7} \log (p)\right)$ elementary operations in \mathbb{F}_{p} and $\mathcal{O}\left(n^{2}\right)$ evaluations of g.

- For $A \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$, let $\mathbb{F}_{p}[A]:=\left\{\sum_{i} a_{i} A^{i} \mid a_{i} \in \mathbb{F}_{p}\right\}$ denote the matrix algebra generated by A
- $\mathbb{F}_{p}[A]$ is a field isomorphic to $\mathbb{F}_{p}(\gamma)$ if and only if $A=B^{-1} T_{\gamma} B$ for $B \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$ and T_{γ} corresponding to the linear map $x \mapsto \gamma x$

Main Theorem

Let $g=x^{p^{n}+1} \in \mathbb{F}_{p^{n}}[x]$ be a planar DO monomial. For any $\alpha, \beta \in \mathbb{F}_{p^{n}}$, the element
 $A:=M_{g, \beta} M_{g, \alpha}^{-1} \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$ generates a field isomorphic to $\mathbb{F}_{p}\left(\alpha^{-1} \beta\right)$ viz. $\mathbb{F}_{p}[A]$, and
 \square
 \rightarrow In particular, $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ contains $\left(p^{n}-1\right) /\left(p^{\operatorname{gcd}(k, n)-1}\right)$ copies of fields isomorphic to $\mathbb{F}_{D^{n}}$, all intersecting in $\mathbb{F}_{n \operatorname{gcd}(k, n)}$

- For $A \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$, let $\mathbb{F}_{p}[A]:=\left\{\sum_{i} a_{i} A^{i} \mid a_{i} \in \mathbb{F}_{p}\right\}$ denote the matrix algebra generated by A
- $\mathbb{F}_{p}[A]$ is a field isomorphic to $\mathbb{F}_{p}(\gamma)$ if and only if $A=B^{-1} T_{\gamma} B$ for $B \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$ and T_{γ} corresponding to the linear map $x \mapsto \gamma x$

Main Theorem

Let $g=x^{p^{k}+1} \in \mathbb{F}_{p^{n}}[x]$ be a planar DO monomial. For any $\alpha, \beta \in \mathbb{F}_{p^{n}}^{*}$, the element $A:=M_{g, \beta} M_{g, \alpha}^{-1} \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$ generates a field isomorphic to $\mathbb{F}_{p}\left(\alpha^{-1} \beta\right)$ viz. $\mathbb{F}_{p}[A]$, and $\mathbb{F}_{p}[A] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$.

- In particular, $\mathrm{Quot}\left(\mathcal{D}_{g}\right)$ contains $\left(p^{n}-1\right) /\left(p^{\operatorname{gcd}(k, n)-1}\right)$ copies of fields isomorphic to $\mathbb{F}_{p^{n}}$, all intersecting in $\mathbb{F}_{p^{\operatorname{gcd}(k, n)}}$.

Let $g=x^{p^{k}+1} \in \mathbb{F}_{p^{n}}[x]$ be planar and $\alpha, \beta \in \mathbb{F}_{p}^{*}$. Let $A:=M_{g, \beta} M_{g, \alpha}^{-1}$. We need to show the following:

1. $\mathbb{F}_{p}[A]$ is isomorphic to $\mathbb{F}_{p}\left(\alpha^{-1} \beta\right)$, i.e., $A=B^{-1} T_{\alpha^{-1} \beta} B$ for some $B \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$
2. $\mathbb{F}_{p}[A] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$
(Note: We will use matrices and their corresponding linear maps over $\mathbb{F}_{p^{n}}$ interchangeably)

Lemma

[^0]Let $g=x^{p^{k}+1} \in \mathbb{F}_{p^{n}}[x]$ be planar and $\alpha, \beta \in \mathbb{F}_{p}^{*}$. Let $A:=M_{g, \beta} M_{g, \alpha}^{-1}$. We need to show the following:

1. $\mathbb{F}_{p}[A]$ is isomorphic to $\mathbb{F}_{p}\left(\alpha^{-1} \beta\right)$, i.e., $A=B^{-1} T_{\alpha^{-1} \beta} B$ for some $B \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$
2. $\mathbb{F}_{p}[A] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$
(Note: We will use matrices and their corresponding linear maps over $\mathbb{F}_{p^{n}}$ interchangeably)

Lemma

- This implies that, if $\alpha^{-1} \beta \in \mathbb{F}_{p^{\operatorname{sgd}(k, n)}}$, we have $A(x)=\alpha^{-1} \beta \cdot x$, i.e., $A=T_{\alpha^{-1} \beta}$.

Lemma

Let $\alpha^{-1} \beta \notin \mathbb{F}_{p \operatorname{gcd}(k, n)}$, then there is a linear mapping $\psi_{\alpha, \beta}$ such that $x \mapsto \psi_{\alpha, \beta} \circ A \circ \psi_{\alpha, \beta}^{-1}(x)$ equals $x \mapsto\left(\alpha^{-1} \beta\right)^{p^{k}} x$. More precisely,

$$
\psi_{\alpha, \beta}: x \mapsto \alpha^{p^{k}} \cdot M_{g, \alpha}\left(\frac{1}{\beta^{p^{k}}-\alpha^{p^{k}-1} \beta} \cdot x\right) .
$$

\Rightarrow Hence, for $\alpha^{-1} \beta \notin \mathbb{F}_{p^{\operatorname{gcd}(k, n)}}$, we have $A=B^{-1} T_{\left(\alpha^{-1} \beta\right) p^{k}} B$ for some $B \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$. Since a Frobenius automorphism corresponds to a change of basis, we have $A=$ $C^{-1} T_{\alpha^{-1}}$ C

- This completes the proof of 1

Lemma

Let $\alpha^{-1} \beta \notin \mathbb{F}_{p \operatorname{gcd}(k, n)}$, then there is a linear mapping $\psi_{\alpha, \beta}$ such that $x \mapsto \psi_{\alpha, \beta} \circ A \circ \psi_{\alpha, \beta}^{-1}(x)$ equals $x \mapsto\left(\alpha^{-1} \beta\right)^{p^{k}} x$. More precisely,

$$
\psi_{\alpha, \beta}: x \mapsto \alpha^{p^{k}} \cdot M_{g, \alpha}\left(\frac{1}{\beta^{p^{k}}-\alpha^{p^{k}-1} \beta} \cdot x\right) .
$$

- Hence, for $\alpha^{-1} \beta \notin \mathbb{F}_{p^{\operatorname{gcd}(k, n)}}$, we have $A=B^{-1} T_{\left(\alpha^{-1} \beta\right)^{\rho^{k}}} B$ for some $B \in \operatorname{GL}\left(n, \mathbb{F}_{p}\right)$. Since a Frobenius automorphism corresponds to a change of basis, we have $A=$ $C^{-1} T_{\alpha^{-1}} C$
- This completes the proof of 1 . of LaRge-Scale Adversaries
- Left to show: $\mathbb{F}_{p}[A] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$
\Rightarrow Proof idea: Focus on $\alpha=1, \beta \notin \mathbb{F}_{p \operatorname{sdd}(k, n)}$. Show that $\left(M_{g, \beta} M_{g, 1}^{-1}\right)^{r} \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$.
- From the previous lemma, on can deduce

- In case $\beta^{r} \in \mathbb{F}_{p}{ }_{p c d(k, n)}$, we get the left-hand side equal to $M_{g, \beta^{r}} \circ M_{g, 1}^{-1}$ from the

- Left to show: $\mathbb{F}_{p}[A] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$
- Proof idea: Focus on $\alpha=1, \beta \notin \mathbb{F}_{p \mathrm{gdd}(k, n)}$. Show that $\left(M_{g, \beta} M_{g, 1}^{-1}\right)^{r} \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$.
- From the previous lemma, on can deduce

 \rightarrow In case $\beta^{r} \notin \mathbb{F}_{p}{ }_{p \operatorname{gcd}(k, n),}$, the mapping $\psi_{1, \beta}^{-1} \circ \psi_{1, \beta^{r}}$ is equal to $x \mapsto \lambda x$ for $\lambda \in \mathbb{F}_{p^{n}}^{*}$
- Left to show: $\mathbb{F}_{p}[A] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$
- Proof idea: Focus on $\alpha=1, \beta \notin \mathbb{F}_{p^{g \operatorname{cd}(k, n)}}$. Show that $\left(M_{g, \beta} M_{g, 1}^{-1}\right)^{r} \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$.
- From the previous lemma, on can deduce

$$
\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}= \begin{cases}\psi_{1, \beta}^{-1} \circ \psi_{1, \beta^{r}} \circ M_{g, \beta^{r}} \circ M_{g, 1}^{-1} \circ \psi_{1, \beta^{r}}^{-1} \circ \psi_{1, \beta} & \text { if } \beta^{r} \notin \mathbb{F}_{p_{g \mathrm{gd}(k, n)}} \\ \psi_{1, \beta}^{-1} \circ M_{g, \beta^{r}} \circ M_{g, 1}^{-1} \circ \psi_{1, \beta} & \text { otherwise }\end{cases}
$$

\Rightarrow In case $\beta^{r} \in \mathbb{F}_{p \operatorname{scd}(k, n)}$, we get the left-hand side equal to $M_{g, \beta r} \circ M_{g, 1}^{-1}$ from the
\rightarrow In case $\beta^{r} \notin \mathbb{F}_{p} \operatorname{gcd}(k, n)$, the mapping $\psi_{1, \beta}^{-1} \circ \psi_{1, \beta r}$ is equal to $x \mapsto \lambda x$ for $\lambda \in \mathbb{F}_{p^{n}}^{*}$

- Left to show: $\mathbb{F}_{p}[A] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$
- Proof idea: Focus on $\alpha=1, \beta \notin \mathbb{F}_{p^{g \operatorname{cd}(k, n)}}$. Show that $\left(M_{g, \beta} M_{g, 1}^{-1}\right)^{r} \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$.
- From the previous lemma, on can deduce

$$
\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}= \begin{cases}\psi_{1, \beta}^{-1} \circ \psi_{1, \beta^{r}} \circ M_{g, \beta^{r}} \circ M_{g, 1}^{-1} \circ \psi_{1, \beta^{r}}^{-1} \circ \psi_{1, \beta} & \text { if } \beta^{r} \notin \mathbb{F}_{p^{g c d}(k, n)} \\ \psi_{1, \beta}^{-1} \circ M_{g, \beta^{r}} \circ M_{g, 1}^{-1} \circ \psi_{1, \beta} & \text { otherwise }\end{cases}
$$

- In case $\beta^{r} \in \mathbb{F}_{p^{g c d}(k, n)}$, we get the left-hand side equal to $M_{g, \beta^{r}} \circ M_{g, 1}^{-1}$ from the $\mathbb{F}_{p \operatorname{gcd}(k, n) \text {-linearity of }} \psi_{1, \beta}$.
\Rightarrow In case $\beta^{r} \notin \mathbb{F}_{p \operatorname{gcd}(k, n),}$ the mapping $\psi_{1 . \beta}^{-1} \circ \psi_{1, \beta r}$ is equal to $x \mapsto \lambda x$ for $\lambda \in \mathbb{F}_{p^{n}}^{*}$
- Left to show: $\mathbb{F}_{p}[A] \subseteq \operatorname{Quot}\left(\mathcal{D}_{g}\right)$
- Proof idea: Focus on $\alpha=1, \beta \notin \mathbb{F}_{p^{g \operatorname{cd}(k, n)}}$. Show that $\left(M_{g, \beta} M_{g, 1}^{-1}\right)^{r} \in \operatorname{Quot}\left(\mathcal{D}_{g}\right)$.
- From the previous lemma, on can deduce

$$
\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}= \begin{cases}\psi_{1, \beta}^{-1} \circ \psi_{1, \beta^{r}} \circ M_{g, \beta^{r}} \circ M_{g, 1}^{-1} \circ \psi_{1, \beta^{r}}^{-1} \circ \psi_{1, \beta} & \text { if } \beta^{r} \notin \mathbb{F}_{p_{g \mathrm{gd}(k, n)}} \\ \psi_{1, \beta}^{-1} \circ M_{g, \beta^{r}} \circ M_{g, 1}^{-1} \circ \psi_{1, \beta} & \text { otherwise }\end{cases}
$$

- In case $\beta^{r} \in \mathbb{F}_{p^{g c d}(k, n)}$, we get the left-hand side equal to $M_{g, \beta^{r}} \circ M_{g, 1}^{-1}$ from the $\mathbb{F}_{p \operatorname{gcd}(k, n) \text {-linearity of }} \psi_{1, \beta}$.
- In case $\beta^{r} \notin \mathbb{F}_{p^{\operatorname{gcd}(k, n)}}$, the mapping $\psi_{1, \beta}^{-1} \circ \psi_{1, \beta^{r}}$ is equal to $x \mapsto \lambda x$ for $\lambda \in \mathbb{F}_{p^{n}}^{*}$.
- Hence, in this case, $\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}=\lambda \cdot\left(M_{g, \beta^{r}} \circ M_{g, 1}^{-1}\right)\left(\lambda^{-1} \times\right)$

Lemma

If $n / \operatorname{gcd}(k, n)$ is odd, $\lambda \in \mathbb{F}_{p^{n}}$ can be written as $u \gamma^{p^{k}+1}$ for .
\Rightarrow Hence, in this case, $\left(M_{g, \beta} \circ M_{g .1}^{-1}\right)^{\prime}=\gamma^{p^{k}+1} \cdot\left(M_{g, \beta r} \circ M_{g .1}^{-1}\right)\left(\gamma^{-\left(p^{k}+1\right)} x\right)$ from the $\mathbb{F}_{p \operatorname{gcd}(k, n)}$-linearity of $M_{g, \beta r}$ and $M_{g, 1}$

Lemma

For any $\gamma \in \mathbb{F}_{p^{n}}^{*}$, we have $M_{g, \beta} M_{\rho, \beta}^{-1}(x)$

- This comes from the fact that $g(\gamma x)=\gamma^{p^{k}+1} g(x)$
- Hence. $\left(M_{r \beta} \circ M_{-1}^{-1}\right)^{r}=M_{r \sim \beta r} \circ M_{\sim}^{-1}$

The structure of $\operatorname{Quot}\left(\mathcal{D}_{x^{k}+1}\right)$ (cont.)

- Hence, in this case, $\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}=\lambda \cdot\left(M_{g, \beta^{r}} \circ M_{g, 1}^{-1}\right)\left(\lambda^{-1} \times\right)$

Lemma

If $n / \operatorname{gcd}(k, n)$ is odd, $\lambda \in \mathbb{F}_{p^{n}}^{*}$ can be written as $u \gamma^{p^{k}+1}$ for $\gamma \in \mathbb{F}_{p^{n}}^{*}, u \in \mathbb{F}_{p_{\operatorname{gcd}(k, n)}^{*}}$.
\triangleright Hence, in this case, $\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{\prime}=\gamma^{p^{k}+1} \cdot\left(M_{g, \beta r} \circ M_{g, 1}^{-1}\right)\left(\gamma^{-\left(p^{k}+1\right)} x\right)$ from the $\mathbb{F}_{p \operatorname{gcd}(k, n)}$-linearity of $M_{g, \beta r}$ and $M_{g, 1}$

Lemma

\square

- This comes from the fact that $g(\gamma x)=\gamma^{p^{\kappa}+1} g(x)$

- Hence, in this case, $\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}=\lambda \cdot\left(M_{g, \beta^{r}} \circ M_{g, 1}^{-1}\right)\left(\lambda^{-1} x\right)$

Lemma

If $n / \operatorname{gcd}(k, n)$ is odd, $\lambda \in \mathbb{F}_{p^{n}}^{*}$ can be written as $u \gamma^{p^{k}+1}$ for $\gamma \in \mathbb{F}_{p^{n}}^{*}, u \in \mathbb{F}_{p_{\operatorname{gcd}(k, n)}^{*}}^{\ln }$.

- Hence, in this case, $\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}=\gamma^{p^{k}+1} \cdot\left(M_{g, \beta^{r}} \circ M_{g, 1}^{-1}\right)\left(\gamma^{-\left(p^{k}+1\right)} x\right)$ from the $\mathbb{F}_{p \operatorname{gdd}(k, n)}$-linearity of $M_{g, \beta r}$ and $M_{g, 1}$.

Lemma

For any $\gamma \in \mathbb{F}_{p^{n}}^{*}$, we have $M_{g . \beta} M_{\sigma . \alpha}^{-1}(x)=\gamma^{-\left(p^{k}+1\right)} M_{g, \gamma \beta} M_{g, \gamma \alpha}^{-1}\left(\gamma^{p^{k}+1} x\right)$

- This comes from the fact that $g(\gamma x)=\gamma^{p^{k}+1} g(x)$
- Hence, $\left(M_{g, \beta} \circ M_{\sigma, 1}^{-1}\right)^{\prime}=M_{g, \gamma \beta^{r}} \circ M_{g, \gamma}^{-1}$
- Hence, in this case, $\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}=\lambda \cdot\left(M_{g, \beta^{r}} \circ M_{g, 1}^{-1}\right)\left(\lambda^{-1} x\right)$

Lemma

If $n / \operatorname{gcd}(k, n)$ is odd, $\lambda \in \mathbb{F}_{p^{n}}^{*}$ can be written as $u \gamma^{p^{k}+1}$ for $\gamma \in \mathbb{F}_{p^{n}}^{*}, u \in \mathbb{F}_{p_{\operatorname{gcd}(k, n)}^{*}}^{\ln }$.

- Hence, in this case, $\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}=\gamma^{p^{k}+1} \cdot\left(M_{g, \beta r} \circ M_{g, 1}^{-1}\right)\left(\gamma^{-\left(p^{k}+1\right)} x\right)$ from the $\mathbb{F}_{p^{g d d}(k, n)}$-linearity of $M_{g, \beta r}$ and $M_{g, 1}$.

Lemma

For any $\gamma \in \mathbb{F}_{p^{n}}^{*}$, we have $M_{g, \beta} M_{g, \alpha}^{-1}(x)=\gamma^{-\left(p^{k}+1\right)} M_{g, \gamma \beta} M_{g, \gamma \alpha}^{-1}\left(\gamma^{p^{k}+1} x\right)$

- This comes from the fact that $g(\gamma x)=\gamma^{p^{k}+1} g(x)$.
- Hence, in this case, $\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}=\lambda \cdot\left(M_{g, \beta^{r}} \circ M_{g, 1}^{-1}\right)\left(\lambda^{-1} x\right)$

Lemma

If $n / \operatorname{gcd}(k, n)$ is odd, $\lambda \in \mathbb{F}_{p^{n}}^{*}$ can be written as $u \gamma^{p^{k}+1}$ for $\gamma \in \mathbb{F}_{p^{n}}^{*}, u \in \mathbb{F}_{p^{\operatorname{gcd}(k, n)}}$.

- Hence, in this case, $\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}=\gamma^{p^{k}+1} \cdot\left(M_{g, \beta r} \circ M_{g, 1}^{-1}\right)\left(\gamma^{-\left(p^{k}+1\right)} x\right)$ from the $\mathbb{F}_{p^{g d d}(k, n)}$-linearity of $M_{g, \beta r}$ and $M_{g, 1}$.

Lemma

For any $\gamma \in \mathbb{F}_{p^{n}}^{*}$, we have $M_{g, \beta} M_{g, \alpha}^{-1}(x)=\gamma^{-\left(p^{k}+1\right)} M_{g, \gamma \beta} M_{g, \gamma \alpha}^{-1}\left(\gamma^{p^{k}+1} x\right)$

- This comes from the fact that $g(\gamma x)=\gamma^{p^{k}+1} g(x)$.
- Hence, $\left(M_{g, \beta} \circ M_{g, 1}^{-1}\right)^{r}=M_{g, \gamma \beta^{r}} \circ M_{g, \gamma}^{-1}$.

Conclusion

- Quot $\left(\mathcal{D}_{g}\right):=\left\{X Y^{-1} \mid X, Y \in \mathcal{D}_{g}\right.$ and $\left.Y \neq 0\right\}$ is an invariant (up to choice of basis) for (CCZ)-equivalence of planar DO polynomials
\rightarrow Quot $\left(\mathcal{D}_{g}\right)$ is the finite field $\mathbb{F}_{p^{n}}$ if and only if g is equivalent to x^{2} (can be used for a polynomial-time test against equivalence of g to x^{2})
- If g is equivalent to a planar DO monomial, Quot $\left(\mathcal{D}_{\rho}\right)$ contains copie(s) of the field $\mathbb{F}_{p^{n}}$ (can be used to quickly establish inequivalence to a monomial in some cases)

Corollary

If g is equivalent to a planar DO monomial, then each element $M_{g . \beta} M_{\rho-\alpha}^{-1}$ for $\alpha \neq 0$ has an irreducible minimal polynomial

Open Question

Can we develop an efficient test against equivalence to a planar DO monomial?

Conclusion

- Quot $\left(\mathcal{D}_{g}\right):=\left\{X Y^{-1} \mid X, Y \in \mathcal{D}_{g}\right.$ and $\left.Y \neq 0\right\}$ is an invariant (up to choice of basis) for (CCZ)-equivalence of planar DO polynomials
- Quot $\left(\mathcal{D}_{g}\right)$ is the finite field $\mathbb{F}_{p^{n}}$ if and only if g is equivalent to x^{2} (can be used for a polynomial-time test against equivalence of g to x^{2})
- If g is equivalent to a planar DO monomial, Quot $\left(\mathcal{D}_{g}\right)$ contains copie(s) of the field $\mathbb{F}_{p^{n}}$ (can be used to quickly establish inequivalence to a monomial in some cases)

Corollary

If g is equivalent to a planar DO monomial, then each element $M_{g, \beta} M_{g}^{-1}$ for $\alpha \neq 0$ has an irreducible minimal polynomial

Open Question

Can we develop an efficient test against equivalence to a planar DO monomial?

- $\operatorname{Quot}\left(\mathcal{D}_{g}\right):=\left\{X Y^{-1} \mid X, Y \in \mathcal{D}_{g}\right.$ and $\left.Y \neq 0\right\}$ is an invariant (up to choice of basis) for (CCZ)-equivalence of planar DO polynomials
- Quot $\left(\mathcal{D}_{g}\right)$ is the finite field $\mathbb{F}_{p^{n}}$ if and only if g is equivalent to x^{2} (can be used for a polynomial-time test against equivalence of g to x^{2})
- If g is equivalent to a planar DO monomial, $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ contains copie(s) of the field $\mathbb{F}_{p^{n}}$ (can be used to quickly establish inequivalence to a monomial in some cases):

Corollary

If g is equivalent to a planar DO monomial, then each element $M_{g . \beta} M_{\rho \cdot \alpha}^{-1}$ for $\alpha \neq 0$ has an irreducible minimal polynomial

Open Question

Can we develop an efficient test against equivalence to a planar DO monomial?

Conclusion

- Quot $\left(\mathcal{D}_{g}\right):=\left\{X Y^{-1} \mid X, Y \in \mathcal{D}_{g}\right.$ and $\left.Y \neq 0\right\}$ is an invariant (up to choice of basis) for (CCZ)-equivalence of planar DO polynomials
- Quot $\left(\mathcal{D}_{g}\right)$ is the finite field $\mathbb{F}_{p^{n}}$ if and only if g is equivalent to x^{2} (can be used for a polynomial-time test against equivalence of g to x^{2})
- If g is equivalent to a planar DO monomial, $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ contains copie(s) of the field $\mathbb{F}_{p^{n}}$ (can be used to quickly establish inequivalence to a monomial in some cases):

Corollary

If g is equivalent to a planar DO monomial, then each element $M_{g, \beta} M_{g, \alpha}^{-1}$ for $\alpha \neq 0$ has an irreducible minimal polynomial.

Open Question

Can we develop an efficient test against equivalence to a planar DO monomial?

Conclusion

- Quot $\left(\mathcal{D}_{g}\right):=\left\{X Y^{-1} \mid X, Y \in \mathcal{D}_{g}\right.$ and $\left.Y \neq 0\right\}$ is an invariant (up to choice of basis) for (CCZ)-equivalence of planar DO polynomials
- Quot $\left(\mathcal{D}_{g}\right)$ is the finite field $\mathbb{F}_{p^{n}}$ if and only if g is equivalent to x^{2} (can be used for a polynomial-time test against equivalence of g to x^{2})
- If g is equivalent to a planar DO monomial, $\operatorname{Quot}\left(\mathcal{D}_{g}\right)$ contains copie(s) of the field $\mathbb{F}_{p^{n}}$ (can be used to quickly establish inequivalence to a monomial in some cases):

Corollary

If g is equivalent to a planar DO monomial, then each element $M_{g, \beta} M_{g, \alpha}^{-1}$ for $\alpha \neq 0$ has an irreducible minimal polynomial.

Open Question

Can we develop an efficient test against equivalence to a planar DO monomial?

[^0]: - This implies that, if $\alpha^{-1} \beta \in \mathbb{F}_{p^{\operatorname{gcd}(k, n)},}$, we have $A(x)=\alpha^{-1} \beta \cdot x$, i.e., $A=T_{\alpha^{-1} \beta}$

