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@ Introduction

© A condition to have an APN function F : F} — FJ* using APN
functions f,g: Fy~! — Fp

© The case f is a quadratic APN function and
g(x) = f(x) + L'(x) with L' a linear mapping

Q@ F(z) + Tr(z)L(x) for a quadratic APN function F on Fan

© Examples
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A motivation

A switching

Let b:Fy — Fy. Let FE 3z (F(x),b(z)) € F} @ Fy = F4H! be
an APN (n,n + 1) function. Then F + ub : Fy — F7 is an APN
(n,n)-function for some u € (F%)* if and onIy if
o if F(x +a)+ F(z)+ F(t+a) + F(t) = u, then
b(z + a) + b(x) + bt + a) + b(t) =
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A motivation

A switching

Let b:Fy — Fy. Let FE 3z (F(x),b(z)) € F} @ Fy = F4H! be
an APN (n,n + 1) function. Then F + ub : Fy — F7 is an APN
(n,n)-function for some u € (F%)* if and only if
o if F(z+a)+ F(x)+ F(t +a)+ F(t) = u, then
b(z + a) + b(x) + b(t + a) + b(t) = 0.

on

The Inverse function F(z) = 22" =2 on Fan for n even

There are many b : Fon — [y such that

Fon 3 2+ (F(2),b(z)) € Forn @ Fy = F3*! are APN (n,n + 1)
functions. Howevere it seems no u € (Fon )™ satisfying the above
condition for F(z) = 22" =2 on Fan, n even.
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A motivation

A switching

Let b:Fy — Fy. Let FE 3z (F(x),b(z)) € F} @ Fy = F4H! be
an APN (n,n + 1) function. Then F + ub : Fy — F7 is an APN
(n,n)-function for some u € (F%)* if and only if
o if F(z+a)+ F(x)+ F(t +a)+ F(t) = u, then
b(z + a) + b(x) + b(t + a) + b(t) = 0.

The Inverse function F(x) = 22" =2 on Fan for n even

There are many b : Fon — [y such that

Fon 3 2+ (F(2),b(z)) € Forn @ Fy = F3*! are APN (n,n + 1)
functions. Howevere it seems no u € (Fon )™ satisfying the above
condition for F(z) = 22" =2 on Fan, n even.

We consider how to use these APN (n,n + 1) functions.



Introduction
0e000

@ Introduction

© A condition to have an APN function F : F} — FJ* using APN
functions f,g: Fy~! — Fp
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g(x) = f(x) + L'(x) with L' a linear mapping

Q@ F(z) + Tr(z)L(x) for a quadratic APN function F on Fan

© Examples
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APN function, Quadratic function, CCZ equivalence

Let [F5 be a binary field.

APN function

A function F': F§ — 3" is called an APN function if

{z | F(x 4+ a)+ F(z) = b}| <2 for any a € (F})* and for any
b e Fy .

Quadratic function

We call a function F' quadratic if
Bp(z,y) = F(x +y)+ F(z)+ F(y) + F(0) is Fo-bilinear.

CCZ equivalence

Two functions F and F5 from F3 to 3" are called CCZ-equivalent
if the graphs G, := {(z, Fi(z)) | « € F§} and

Gp, = A{(z, Fa(x)) | x € F5} in Fy @ F3" are affine equivalent,
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Known APN functions F': Fon — Fon

Known APN power functions ¢ on Fan

Functions Exponents d Conditions Degree
Gold 20 +1 ged(i,n) =1 2
Kasami 2% _ 2 11 ged(i,n) =1 i+1
Welch -3 n=2t+1 3

Niho 2t + 24/2 — 1 (t even) n=2+1 t+1/2
Niho 2t 4 2BHD/2 _ 1 (todd) n=2t+1 t+1
Inverse 22t 1 n=2t+1 n—1
Dobbertin 24 4 2% £ 220 4 20 _ 1 =05 i+3

Known quadratic APN functions on Fan

There are more than 12 classes of known quadratic APN functions
inequivalent to power functions.

There are no known infinite families of non-power, non-quadratic
APN functions.
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I'-rank, Walsh transformation, Walsh spectrum

I-rank

The I'-rank of a function F': Fjy — F3" is the rank of the incidence
matrix over Fy of the incidence structure {P, B, I}, where

P =Fy o Fy, B=F) ®FS and (a,b)I(u,v) for (a,b) € P and
(u,v) € B if and only if Fl(a +u) =b+v.

We know that if two functions F} and F5 from 5 to 5" are
CCZ-equivalent, then they have the same I'-rank.
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I'-rank, Walsh transformation, Walsh spectrum

Walsh coefficient

For a function F on [Fan, the Walsh coefficient of F' at a € Fon
and b € FJ, is defined by

Wp(a, b) _ Z (_l)Tr(bF(w)-i-ax)'

zE€Fon
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I'-rank, Walsh transformation, Walsh spectrum

Walsh coefficient

For a function F on [Fan, the Walsh coefficient of F' at a € Fon
and b € FJ, is defined by

Wp(a, b) _ Z (_1)Tr(bF(x)+ax)'

zE€Fon

Walsh spectrum

The Walsh spectrum of F is W = {Wg(a,b) | a € Fan, b € FJ, }.
For a quadratic APN function F' on Fon, if n is odd, it is known
that Wr(a,b) € {0,£2"+1/2},

If n is even, it is said that a quadratic APN function F' has the
classical Walsh spectrum if Wp = {0, £2%/2, £2("+2)/2} "and F
has the non-classical Walsh spectrum if otherwise.




A condition to have an APN function F' : F§' — F3" using APN functions f, g : Fy
0

A condition to have an APN function F' from I} to 5’

using functions f, g from Fy~! to FY'

Let f,g: Fg’_l — F3'. We regard Fg_l C F2.
Let e € F% with eg € F5 ! and Fy ! 4-eg := {x +eo | z € FF~1}
Then F} = F3~ 1 U (F5 ! 4 ¢).



A condition to have an APN function F' : F5} — F5" using APN functions f, g : F5
e0

A condition to have an APN function F' from Fj to FY’

using functions f, g from Fy~! to FY'

We want to have an APN function
F:Fy =Fy U (F5! + ep) — FY defined by F(z) = f(x) and
F(x +eg) = g(z) for z € Ty~ L.



A condition to have an APN function F : F — F3" using APN functions f, g : Fy ~ = — F3"
e0

A condition to have an APN function F' from I} to 5’

using functions f, g from ]Fgr—l to F

We want to have an APN function

F:Fy =Fy U (F5! + ep) — FY defined by F(z) = f(x) and
F(x +eg) = g(z) for z € Ty~ L.

Proposition 1

F defined above is an APN function if and only if

(1) f and g are APN functions from F5~! to FJ,

(2) flx+a)+ f(z) # gly+a)+ g(y) for any z,y € ]Fg_1 and
for any non-zero a € 3™, and

(3) Go:Fy > 2 f(x + a) + g(x) € F are one-to-one
mappings for any a € Fg_l.




A condition to have an APN function F : F — F3" using APN functions f, g : Fy ~ = — F3"
ce

Proof of Proposition 1, F'(x) = f(z) and F(z+eg) = g(x)

Proof 1

Firstly assume that F'is an APN function. For A # 0, let
FIX+A)+FX)=FY+A)+F(Y), then X =Y or
X=Y+A.

Let A=ac (F3 1), Forany Y =y € Fi~!, we must have
X=yecFytorX=y+acFy ' Since X € Fi~ ', we have
f(X+a)+ f(X)=f(y+a)+ f(y). Thus f must be an APN
function.

Let A=a € (Fy 1> and Y =y + e with y € F5 ™%, then we
must have X =y +egor X =y +a+ eg. Since X ¢ IE‘;L_I, if we
put X =z + eg. we have g(z +a) + g(z) = g(y + a) + g(y) from
F(X4+a)+F(X)=F(y+ey+a)+ F(y+eo). Hence g must be
an APN function. Thus the condition (1) must be satisfied.




A condition to have an APN function F : F — F3" using APN functions f, g : Fy ~ = — F3"
ce

Proof of Proposition 1, F'(x) = f(z) and F(z+eg) = g(x)

Proof 2, F(X + A) + F(X) = F(Y + A) + F(Y), A #0.

let A=ac (Fy )X, Y =ycFy ' Since X =yor X =y+a,
F(X +a)+ F(X)=F(y+a)+ F(y) does not have a solution
X =z +eg for z € F3~L. Thus

F(z+eo+a)+ F(x+ep) # F(y+a) + F(y) for any z,y € T3~ 1,
therefore we must have g(z + a) + g(z) # f(y + a) + f(y) for any
z,y € F3~'. Thus the condition (2) must be satisfied.

Let A=a+eg witha € Fg_l and Y =y € Fg_l. We have
X=yecFltorX=y+a+e withy+acFy ' from

F(X +a+ey)+F(X)=F(y+a+eo)+ F(y). For X ¢ F3~1,
we have g(X +a) + f(X) =gy +a) + f(y), hence

g(X +a)+ f(X) =g(y +a) + f(y) must have only one solution
X =y forany y,a € 31 Hence F5 ' 5 X = g(X +a) + f(X)
are one-to-one mappings. Thus the condition (3) must be satisfied.




A condition to have an APN function F : F — F3" using APN functions f, g : Fy ~ = — F3"
ce

Proof of Proposition 1, F'(x) = f(z) and F(z+eg) = g(x)

(1) f and g are APN functions from ]Fg_1 to F?,

(2) flz+a)+ f(z) # gy + a) + g(y) for any =,y € F5~" and
for any non-zero a € ]Fg“l, and

(3) Go:Fy ' > 20 f(z+ a) + g(x) € F are one-to-one
mappings for any a € Fg_l

Proof 3

Conversely, let us assume the conditions (1), (2) and (3). Assume
FX4+A)+FX)=FY+A)+F(), A#0. We will prove
X =Y or X =Y + A. We divide the case into four cases
A=aec (Fy H*and Y =y Fy 1,

(i) A=a € (Fy )% and Y =y + ¢p with y € F3 1,

(iii) A =a+eo with a € Fy~' and Y = y with y € F3~*, and
(iv) A=a+ep WlthaEIF” Land Y =y + e W|thyEIF” L




A condition to have an APN function F : F — F3" using APN functions f, g : Fy ~ = — F3"
ce

Proof of Proposition 1, F'(x) = f(z) and F(z+eg) = g(x)

Proof 4, F(X + A) + F(X) = F(Y + A) + F(Y), A #0.

YA=ac (FyH*andY =ycFy ' If X =2 cFy ! then
we have f(z +a)+ f(z) = f(y+a)+ f(y) hence X =z =y or
X=z=y+aby(1). Let X =z + ep with x € F !, then we
have g(z + a) + g(z) = f(y + a) + f(y) which has no solution by
(2). Therefore, X =Y or X =Y + A.

(i A=ac (F3 ) and Y = y + eo with y € F3 1. Assume

X =2z € Fi7!, then we have f(z +a) + f(z) = g(y + a) + g(y)
which has no solution by (2). If X =z + eg with 2 € F3 ™1, then
we have g(x +a) + g(x) = g(y + a) + g(y) hence
X=x+4+e=y+eorX=x+ey=y+ey+aby(l). Thus we
have X =Y or X =Y + A.




A condition to have an APN function F : F — F3" using APN functions f, g : Fy ~ = — F3"
ce

Proof of Proposition 1, F'(x) = f(z) and F(z+eg) = g(x)

Proof 5, F(X + A) + F(X) = F(Y + A) + F(Y), A# 0.

(i) A=a+eowitha € Fy ' and Y = y with y € Fy 1.
fX=x¢c Fgfl, then we have

g(x+a)+ f(z) = g(y+a)+ f(y). Since x — f(z)+ g(z +a) are
one-to-one mappings by (3), we have X =z =y. f X =z + ¢
with z € F3~!, then we have f(z + a) + g(z) = g(y + a) + f(v).
Since  — f(x + a) + g(z) are one-to-one mappings, we have
X=x+4+e=y+(a+ep). Thuswe have X =Y or X =Y + A.
(iv) A=a+eg witha € F3 ' and YV = y + ep with y € F5 1.
If X =2 € F3~!, then we have g(z +a) + f(2) = f(y+a) +g(y).
Since x — f(z + a) + g(x) are one-to-one mappings by (3), we
have X =z = (y +eg) + (a+eg). If X =2+ e with z € F3 1,
then we have f(x +a) + g(z) = f(y + a) + g(y). Since

x +— f(x + a) + g(x) are one-to-one mappings, we have

X =x+e =y-+ey. Thuswe alsohave X =Y or X =Y + A.
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The case f is a quadratic APN function and

g(x) = f(z)+ L'(x) with L’ a linear mapping

Let f be a function from F5~* to F%* and

B¢(z,a) := f(x +a)+ f(xz)+ f(a) + f(0). We consider the case
that f is a quadratic APN function from F3~! to FJ*, and

g(z) = f(z) + L'(z) for z € F3~ with L’ an Fa-linear mapping
from Fy ! to Fy.
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The case f is a quadratic APN function and

g(x) = f(x) + L'(x) with L’ a linear mapping

Let f be a function from F5~* to F%* and

B¢(z,a) := f(x +a)+ f(xz)+ f(a) + f(0). We consider the case
that f is a quadratic APN function from F3~! to FJ*, and

g(z) = f(z) + L'(z) for z € F3~ with L’ an Fa-linear mapping
from Fy ! to Fy.

Proposition 2

Let F(z) := f(z) and F(z + eg) := f(2) + L'(x) for x € F3~1,
Then F : Fy — F5" is a quadratic APN function if and only if
F3~' 52— L'(z) + By(z,a) € FJ are one-to-one mappings for
any a € Ty~ 1.
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Proof of Proposition 2

Proof.

Since f and g = f + L' are quadratic APN functions, the condition
(1) is satisfied.

The condition (2) implies

f@+a)+ f(z) # f(y+a)+ f(y) + L'(a) for any z,y € Ty~ if
a0, that is, I'(a) + (f(w +a) + f(2)) + (f(y +a) + f(y)) #0
for any x,y € ]Fg“1 if @ # 0, which means

L'(a) + By(a,z +y) #0 forany z,y € Fy L if a # 0, a € Fy 1,
The condition (3) implies

Go T3yl sz e f(xta)t+glx) = L'(x)+(f(z+a)+ f(z)) € FP
are one-to-one mappings for any a € ngl, that is,

Fy~' > 2+ L'(z) + Bf(z,a) + f(a) + f(0) € FJ are one-to-one
mappings for any a € Fgfl.

Thus we see that the conditions (1), (2) and (3) in Proposition 1
are satisfied if and only if F3 ™! 5 2+ L/(z) + By(z,a) € FJ are
one-to-one mappings for any a € Fg_l. O
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The case f is a quadratic APN function and

g(x) = f(x) + L'(x) with L’ a linear mapping

Proposition 2

Let F(z) := f(z) and F(z + eg) := f(2) + L'(x) for x € Fy~1,
Then F : Fy — F5" is a quadratic APN function if and only if
F3~' 52— L'(z) + By(z,a) € FJ are one-to-one mappings for
any a € Ty~ 1.

Similar conditions as in Proposition 2 are obtained in the case
n=m and f has an (n — 1,n — 1)-APN subfunction in the papers
(personal communication with Christof on 22 August 2023).
[ 1] Christof Beierle, Gregor Leander and Léo Perrin, Trim and
extensions of quadratic APN functions, 2022.
[ 2] Christof Beierle and Claude Carlet, Gold functions and
switched cube functions are not 0-extendable in dimension
n > 5, 2022.



F(z) + Tr(x)L(x) for a quadratic APN function F' on Fan

Let Ty := {x € Fan | Tr(x) = 0} and e € Fan with Tr(ep) = 1.
Let F' be a quadratic APN function on Fa» and

Bp(z,a) == F(x+a)+ F(x) 4+ F(a) + F(0) for x,a € Fon. Let L
be an Fa-linear mapping on Fon.



F(z) + Tr(x)L(x) for a quadratic APN function F' on Fan

Let Ty := {x € Fan | Tr(x) = 0} and e € Fan with Tr(ep) = 1.
Let F' be a quadratic APN function on Fa» and

Bp(z,a) == F(x+a)+ F(x) 4+ F(a) + F(0) for x,a € Fon. Let L
be an Fa-linear mapping on Fon.

Theorem

F(z) + Tr(x)L(z) is a quadratic APN function on Fan if and only
if Ly : To 2 x — L(xz) + Bp(z,a + ep) € Fan are one-to-one
mappings from T to Fon for any a € Tj.




Proof of Theorem

Proof.

Let f := F'|p, be the restriction of F' to Tp; f is a quadratic APN
function from 1y to Fon.

Let G be a function on Fan defined by G(z) := f(z) for x € T,
G(z + eo) := f(z) + L(x) + Br(eo, z) = f(z) + L' (x) for x € Tp.
By Proposition 2, G is a quadratic APN function if and only if

To > x +— L(z) + Bp(z,e0) + Br(xz,a) = L'(z) + Bp(x,a) € Fan
are one-to-one mappings for any a € Tj.

Let F(z) := F(z) 4 Tr(x)L(z).

Since G(z) = F(x) 4+ Tr(z)(L(x) + L(eg) + F(eo) + F(0)) for

x € Fon, F(z) = G(x) + Tr(z)(L(eo) + F(eo) + F(0)).

Thus F(z) = F(x) + Tr(x)L(x) is a quadratic APN function on
Fon if and only if Ly : Ty 3 2 +— L(z) + Bp(x,a + ep) € Fon are
one-to-one mappings from 1 to Fon for any a € T. O




Example 1

Let ey be some fixed element of Fon with Tr(ep) = 1. Let

F(z) = 23 on Fan. Let L be a linear mapping which satisfies the
conditions of the Theorem for the quadratic APN function

F(z) =23, and L(eg) = 0. Using a computer, we have 448 L's on
Fy4, 4608 L's on Fys, and many (about 40,000) L's on Fys.

v




Example 2

Let F(z) = 23 on Fys. The I-rank of F is 1102. Using a
computer, we see that there are linear mappings L satisfying the
conditions of the Theorem such that the I'-ranks of

F(z) := F(z) + Tr(z)L(x) are 1144, 1146, 1158, 1166, 1168,
1170, 1172 and 1174. )




Example 3

Let F(z) = o3 on Fys. Let

L(z) = oz + a2 + o™ 2% + 022 + o222 + 03822°, where
« is a primitive element of Fys. We see that

F(x) = F(z) + Tr(z)L(x) has non-classical Walsh spectrum
Wi = {0, +8,£16, +32} with the I-rank 1170.

Since F(z) = F(z) + Tr(z)L(z) with

L(z) = a2z + o422 4+ 352’ + a®tp2® + o232 + 2722° has
classical Walsh spectrum Wpg = {0, +8, £16} with the I'-rank
1170, we see that there are inequivalent APN functions

F(z) = F(x) + Tr(z)L(z) with the same T-rank.




Example 4

Let F(z) = 23 on Fyr. The I'-rank of F is 3610. Using a

computer, we see that the linear mapping
L(z) =2 + 2% + 2% + 2% satisfies the conditions of the
Theorem and the I'-rank of F'(z) = F(x) + Tr(x)L(z) is 4048.




Examples

Example 4

Let F(z) = 23 on Fyr. The I'-rank of F is 3610. Using a
computer, we see that the linear mapping

L(z) := z 4+ 22" 4+ 2% + 2% satisfies the conditions of the
Theorem and the I'-rank of F(z) = F(z) 4 Tr(x)L(z) is 4048.

To find the linear mappings L on Fan (n > 8) for F(z) = 23, we

need much time to check the conditions of the Theorem using a
computer. So, at present, we want to have some more theoretical
results concerning L.




Examples

Example 4

Let F(z) = 23 on Fyr. The I'-rank of F is 3610. Using a
computer, we see that the linear mapping

L(z) := z 4+ 22" 4+ 2% + 2% satisfies the conditions of the
Theorem and the I'-rank of F(z) = F(z) 4 Tr(x)L(z) is 4048.

To find the linear mappings L on Fan (n > 8) for F(z) = 23, we

need much time to check the conditions of the Theorem using a
computer. So, at present, we want to have some more theoretical
results concerning L.

The papers (personal communication with Christof on August '23)
will be helpful for more investigations on this subject.




Thank you for your cooporation!
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