Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of f and f is a quantum occorrection of f of f is a quantum occorrection of f is a quantum occorrection of f of f is a quantum occorrection occorrection of f is a quantum occorrection occorrec

On quadratic APN functions F(x) + Tr(x)L(x)– BFA2023 –

Hiroaki Taniguchi

Yamato University

2023 September 3-8

Introduction A condition to have an APN function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a que occorrection of $g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a que occorrection of $g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a que occorrection of $g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a que occorrection of $g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a que occorrection of $g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a que occorrection of $g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a que occorrection of $g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a que occorrection of $g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a que occorrection of g of g occorrection of g and g occorrection of g occorrection of

Introduction

2 A condition to have an APN function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$

- 3 The case f is a quadratic APN function and g(x) = f(x) + L'(x) with L' a linear mapping
- 4 $F(x) + \operatorname{Tr}(x)L(x)$ for a quadratic APN function F on \mathbb{F}_{2^n}

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quation of 0 = 0.

A motivation

A switching

Let $b: \mathbb{F}_2^n \to \mathbb{F}_2$. Let $\mathbb{F}_2^n \ni x \mapsto (F(x), b(x)) \in \mathbb{F}_2^n \oplus \mathbb{F}_2 = \mathbb{F}_2^{n+1}$ be an APN (n, n+1) function. Then $F + ub: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is an APN (n, n)-function for some $u \in (\mathbb{F}_2^n)^{\times}$ if and only if

• if F(x+a) + F(x) + F(t+a) + F(t) = u, then b(x+a) + b(x) + b(t+a) + b(t) = 0.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quation of 0 = 0.

A motivation

A switching

Let $b: \mathbb{F}_2^n \to \mathbb{F}_2$. Let $\mathbb{F}_2^n \ni x \mapsto (F(x), b(x)) \in \mathbb{F}_2^n \oplus \mathbb{F}_2 = \mathbb{F}_2^{n+1}$ be an APN (n, n+1) function. Then $F + ub: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is an APN (n, n)-function for some $u \in (\mathbb{F}_2^n)^{\times}$ if and only if

• if F(x+a) + F(x) + F(t+a) + F(t) = u, then b(x+a) + b(x) + b(t+a) + b(t) = 0.

The Inverse function $F(x) = x^{2^n-2}$ on \mathbb{F}_{2^n} for n even

There are many $b: \mathbb{F}_{2^n} \to \mathbb{F}_2$ such that $\mathbb{F}_{2^n} \ni x \mapsto (F(x), b(x)) \in \mathbb{F}_{2^n} \oplus \mathbb{F}_2 = \mathbb{F}_2^{n+1}$ are APN (n, n+1)functions. Howevere it seems no $u \in (\mathbb{F}_{2^n})^{\times}$ satisfying the above condition for $F(x) = x^{2^n-2}$ on \mathbb{F}_{2^n} , n even. Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quation of 0 = 0.

A motivation

A switching

Let $b: \mathbb{F}_2^n \to \mathbb{F}_2$. Let $\mathbb{F}_2^n \ni x \mapsto (F(x), b(x)) \in \mathbb{F}_2^n \oplus \mathbb{F}_2 = \mathbb{F}_2^{n+1}$ be an APN (n, n+1) function. Then $F + ub: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is an APN (n, n)-function for some $u \in (\mathbb{F}_2^n)^{\times}$ if and only if

• if
$$F(x+a) + F(x) + F(t+a) + F(t) = u$$
, then
 $b(x+a) + b(x) + b(t+a) + b(t) = 0$.

The Inverse function $F(x) = x^{2^n-2}$ on \mathbb{F}_{2^n} for n even

There are many $b: \mathbb{F}_{2^n} \to \mathbb{F}_2$ such that $\mathbb{F}_{2^n} \ni x \mapsto (F(x), b(x)) \in \mathbb{F}_{2^n} \oplus \mathbb{F}_2 = \mathbb{F}_2^{n+1}$ are APN (n, n+1)functions. Howevere it seems no $u \in (\mathbb{F}_{2^n})^{\times}$ satisfying the above condition for $F(x) = x^{2^n-2}$ on \mathbb{F}_{2^n} , n even.

We consider how to use these APN (n, n+1) functions.

Introduction

2 A condition to have an APN function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$

- 3 The case f is a quadratic APN function and g(x) = f(x) + L'(x) with L' a linear mapping
- 4 $F(x) + \operatorname{Tr}(x)L(x)$ for a quadratic APN function F on \mathbb{F}_{2^n}

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum operator of f of f of f is a quantum operator of f of

APN function, Quadratic function, CCZ equivalence

Let \mathbb{F}_2 be a binary field.

APN function

A function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is called an APN function if $|\{x \mid F(x+a) + F(x) = b\}| \leq 2$ for any $a \in (\mathbb{F}_2^n)^{\times}$ and for any $b \in \mathbb{F}_2^m$.

Quadratic function

We call a function F quadratic if $B_F(x,y) := F(x+y) + F(x) + F(y) + F(0)$ is \mathbb{F}_2 -bilinear.

CCZ equivalence

Two functions F_1 and F_2 from \mathbb{F}_2^n to \mathbb{F}_2^m are called *CCZ-equivalent* if the graphs $G_{F_1} := \{(x, F_1(x)) \mid x \in \mathbb{F}_2^n\}$ and $G_{F_2} := \{(x, F_2(x)) \mid x \in \mathbb{F}_2^n\}$ in $\mathbb{F}_2^n \oplus \mathbb{F}_2^m$ are affine equivalent,

Introduction A condition to have an APN function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum ocooot of the conduction of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum ocooot of the conduction of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum ocooot of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum ocooot of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum ocooot of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum ocooot of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum ocooot of f of f and f of f

Known APN functions $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$

Known APN power functions x^d on \mathbb{F}_{2^n}			
Functions	Exponents d	Conditions	Degree
Gold	$2^{i} + 1$	gcd(i,n) = 1	2
Kasami	$2^{2i} - 2^i + 1$	gcd(i, n) = 1	i+1
Welch	$2^t + 3$	n = 2t + 1	3
Niho	$2^t + 2^{t/2} - 1$ (t even)	n = 2t + 1	t + 1/2
Niho	$2^t + 2^{(3t+1)/2} - 1$ (t odd)	n = 2t + 1	t+1
Inverse	$2^{2t} - 1$	n = 2t + 1	n-1
Dobbertin	$2^{4i} + 2^{3i} + 2^{2i} + 2^i - 1$	n = 5i	i + 3

Known quadratic APN functions on \mathbb{F}_{2^n}

There are more than 12 classes of known quadratic APN functions inequivalent to power functions.

There are no known infinite families of non-power, non-quadratic APN functions.

Introduction A condition to have an APN function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of f of f is a quantum occorrection of f of f of f is a quantum occorrection of f of f of f of f occorrection occorrection

Γ -rank, Walsh transformation, Walsh spectrum

Γ -rank

The Γ -rank of a function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is the rank of the incidence matrix over \mathbb{F}_2 of the incidence structure $\{\mathcal{P}, \mathcal{B}, I\}$, where $\mathcal{P} = \mathbb{F}_2^n \oplus \mathbb{F}_2^m$, $\mathcal{B} = \mathbb{F}_2^n \oplus \mathbb{F}_2^m$ and (a, b)I(u, v) for $(a, b) \in \mathcal{P}$ and $(u, v) \in \mathcal{B}$ if and only if F(a + u) = b + v. We know that if two functions F_1 and F_2 from \mathbb{F}_2^n to \mathbb{F}_2^m are CCZ-equivalent, then they have the same Γ -rank. Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$.

Γ -rank, Walsh transformation, Walsh spectrum

Walsh coefficient

For a function F on \mathbb{F}_{2^n} , the Walsh coefficient of F at $a \in \mathbb{F}_{2^n}$ and $b \in \mathbb{F}_{2^n}^{\times}$ is defined by

$$W_F(a,b) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{Tr}(bF(x) + ax)}.$$

Γ -rank, Walsh transformation, Walsh spectrum

Walsh coefficient

For a function F on \mathbb{F}_{2^n} , the Walsh coefficient of F at $a \in \mathbb{F}_{2^n}$ and $b \in \mathbb{F}_{2^n}^{\times}$ is defined by

$$W_F(a,b) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{\operatorname{Tr}(bF(x) + ax)}.$$

Walsh spectrum

The Walsh spectrum of F is $\mathcal{W}_F = \{W_F(a, b) \mid a \in \mathbb{F}_{2^n}, b \in \mathbb{F}_{2^n}^{\times}\}$. For a quadratic APN function F on \mathbb{F}_{2^n} , if n is odd, it is known that $W_F(a, b) \in \{0, \pm 2^{(n+1)/2}\}$. If n is even, it is said that a quadratic APN function F has the classical Walsh spectrum if $\mathcal{W}_F = \{0, \pm 2^{n/2}, \pm 2^{(n+2)/2}\}$, and F has the non-classical Walsh spectrum if otherwise. Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of f or f and f is a second secon

A condition to have an APN function F from \mathbb{F}_2^n to \mathbb{F}_2^m using functions f, g from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m

Let
$$f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$$
. We regard $\mathbb{F}_2^{n-1} \subset \mathbb{F}_2^n$.
Let $e_0 \in \mathbb{F}_2^n$ with $e_0 \notin \mathbb{F}_2^{n-1}$ and $\mathbb{F}_2^{n-1} + e_0 := \{x + e_0 \mid x \in \mathbb{F}_2^{n-1}\}$.
Then $\mathbb{F}_2^n = \mathbb{F}_2^{n-1} \cup (\mathbb{F}_2^{n-1} + e_0)$.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of f and f is a set of the case f is a set of the

A condition to have an APN function F from \mathbb{F}_2^n to \mathbb{F}_2^m using functions f, g from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m

We want to have an APN function $F: \mathbb{F}_2^n = \mathbb{F}_2^{n-1} \cup (\mathbb{F}_2^{n-1} + e_0) \rightarrow \mathbb{F}_2^m$ defined by F(x) = f(x) and $F(x + e_0) = g(x)$ for $x \in \mathbb{F}_2^{n-1}$.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quation of 0.

A condition to have an APN function F from \mathbb{F}_2^n to \mathbb{F}_2^m using functions f, g from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m

We want to have an APN function $F: \mathbb{F}_2^n = \mathbb{F}_2^{n-1} \cup (\mathbb{F}_2^{n-1} + e_0) \rightarrow \mathbb{F}_2^m$ defined by F(x) = f(x) and $F(x + e_0) = g(x)$ for $x \in \mathbb{F}_2^{n-1}$.

Proposition 1

 ${\cal F}$ defined above is an APN function if and only if

(1) f and g are APN functions from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m ,

(2) $f(x+a) + f(x) \neq g(y+a) + g(y)$ for any $x, y \in \mathbb{F}_2^{n-1}$ and for any non-zero $a \in \mathbb{F}_2^{n-1}$, and

(3)
$$G_a: \mathbb{F}_2^{n-1} \ni x \mapsto f(x+a) + g(x) \in \mathbb{F}_2^m$$
 are one-to-one mappings for any $a \in \mathbb{F}_2^{n-1}$.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of \mathfrak{f}

Proof of Proposition 1, F(x) = f(x) and $F(x+e_0) = g(x)$

Proof 1

Firstly assume that F is an APN function. For $A \neq 0$, let F(X+A) + F(X) = F(Y+A) + F(Y), then X = Y or X = Y + ALet $A = a \in (\mathbb{F}_2^{n-1})^{\times}$. For any $Y = y \in \mathbb{F}_2^{n-1}$, we must have $X = y \in \mathbb{F}_2^{n-1}$ or $X = y + a \in \mathbb{F}_2^{n-1}$. Since $X \in \mathbb{F}_2^{n-1}$, we have f(X+a) + f(X) = f(y+a) + f(y). Thus f must be an APN function. Let $A = a \in (\mathbb{F}_2^{n-1})^{\times}$ and $Y = y + e_0$ with $y \in \mathbb{F}_2^{n-1}$, then we must have $X = y + e_0$ or $X = y + a + e_0$. Since $X \notin \mathbb{F}_2^{n-1}$, if we put $X = x + e_0$, we have g(x + a) + g(x) = g(y + a) + g(y) from $F(X + a) + F(X) = F(y + e_0 + a) + F(y + e_0)$. Hence *q* must be an APN function. Thus the condition (1) must be satisfied.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of \mathfrak{f}

Proof of Proposition 1, F(x) = f(x) and $F(x+e_0) = g(x)$

Proof 2,
$$F(X + A) + F(X) = F(Y + A) + F(Y)$$
, $A \neq 0$.

Let $A = a \in (\mathbb{F}_2^{n-1})^{\times}$, $Y = y \in \mathbb{F}_2^{n-1}$. Since X = y or X = y + a, F(X + a) + F(X) = F(y + a) + F(y) does not have a solution $X = x + e_0$ for $x \in \mathbb{F}_2^{n-1}$. Thus $F(x+e_0+a)+F(x+e_0)\neq F(y+a)+F(y)$ for any $x,y\in\mathbb{F}_2^{n-1}$, therefore we must have $q(x+a) + q(x) \neq f(y+a) + f(y)$ for any $x, y \in \mathbb{F}_2^{n-1}$. Thus the condition (2) must be satisfied. Let $A = a + e_0$ with $a \in \mathbb{F}_2^{n-1}$ and $Y = y \in \mathbb{F}_2^{n-1}$. We have $X = y \in \mathbb{F}_2^{n-1}$ or $X = y + a + e_0$ with $y + a \in \mathbb{F}_2^{n-1}$ from $F(X + a + e_0) + F(X) = F(y + a + e_0) + F(y)$. For $X \in \mathbb{F}_2^{n-1}$, we have q(X + a) + f(X) = q(y + a) + f(y), hence q(X + a) + f(X) = q(y + a) + f(y) must have only one solution X = y for any $y, a \in \mathbb{F}_2^{n-1}$. Hence $\mathbb{F}_2^{n-1} \ni X \mapsto q(X+a) + f(X)$ are one-to-one mappings. Thus the condition (3) must be satisfied. Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of \mathfrak{o}

Proof of Proposition 1, F(x) = f(x) and $F(x+e_0) = g(x)$

(1) f and g are APN functions from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m ,

(2)
$$f(x+a) + f(x) \neq g(y+a) + g(y)$$
 for any $x, y \in \mathbb{F}_2^{n-1}$ and for any non-zero $a \in \mathbb{F}_2^{n-1}$, and

(3) $G_a: \mathbb{F}_2^{n-1} \ni x \mapsto f(x+a) + g(x) \in \mathbb{F}_2^m$ are one-to-one mappings for any $a \in \mathbb{F}_2^{n-1}$.

Proof 3

Conversely, let us assume the conditions (1), (2) and (3). Assume F(X + A) + F(X) = F(Y + A) + F(Y), $A \neq 0$. We will prove X = Y or X = Y + A. We divide the case into four cases (i) $A = a \in (\mathbb{F}_2^{n-1})^{\times}$ and $Y = y \in \mathbb{F}_2^{n-1}$, (ii) $A = a \in (\mathbb{F}_2^{n-1})^{\times}$ and $Y = y + e_0$ with $y \in \mathbb{F}_2^{n-1}$, (iii) $A = a + e_0$ with $a \in \mathbb{F}_2^{n-1}$ and Y = y with $y \in \mathbb{F}_2^{n-1}$, and (iv) $A = a + e_0$ with $a \in \mathbb{F}_2^{n-1}$ and $Y = y + e_0$ with $y \in \mathbb{F}_2^{n-1}$.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of \mathfrak{f} .

Proof of Proposition 1, F(x) = f(x) and $F(x+e_0) = g(x)$

Proof 4, F(X + A) + F(X) = F(Y + A) + F(Y), $A \neq 0$.

(i) $A = a \in (\mathbb{F}_2^{n-1})^{\times}$ and $Y = y \in \mathbb{F}_2^{n-1}$. If $X = x \in \mathbb{F}_2^{n-1}$, then we have f(x+a) + f(x) = f(y+a) + f(y) hence X = x = y or X = x = y + a by (1). Let $X = x + e_0$ with $x \in \mathbb{F}_2^{n-1}$, then we have q(x + a) + q(x) = f(y + a) + f(y) which has no solution by (2). Therefore, X = Y or X = Y + A. (ii) $A = a \in (\mathbb{F}_2^{n-1})^{\times}$ and $Y = y + e_0$ with $y \in \mathbb{F}_2^{n-1}$. Assume $X = x \in \mathbb{F}_2^{n-1}$, then we have f(x+a) + f(x) = g(y+a) + g(y)which has no solution by (2). If $X = x + e_0$ with $x \in \mathbb{F}_2^{n-1}$, then we have q(x+a) + q(x) = q(y+a) + q(y) hence $X = x + e_0 = y + e_0$ or $X = x + e_0 = y + e_0 + a$ by (1). Thus we have X = Y or X = Y + A.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of \mathfrak{f}

Proof of Proposition 1, F(x) = f(x) and $F(x+e_0) = g(x)$

Proof 5, $F(X + A) + F(X) = F(Y + A) + F(Y), A \neq 0$. (iii) $A = a + e_0$ with $a \in \mathbb{F}_2^{n-1}$ and Y = y with $y \in \mathbb{F}_2^{n-1}$. If $X = x \in \mathbb{F}_2^{n-1}$, then we have g(x+a) + f(x) = g(y+a) + f(y). Since $x \mapsto f(x) + g(x+a)$ are one-to-one mappings by (3), we have X = x = y. If $X = x + e_0$ with $x \in \mathbb{F}_2^{n-1}$, then we have f(x+a) + g(x) = g(y+a) + f(y). Since $x \mapsto f(x+a) + g(x)$ are one-to-one mappings, we have $X = x + e_0 = y + (a + e_0)$. Thus we have X = Y or X = Y + A. (iv) $A = a + e_0$ with $a \in \mathbb{F}_2^{n-1}$ and $Y = y + e_0$ with $y \in \mathbb{F}_2^{n-1}$. If $X = x \in \mathbb{F}_2^{n-1}$, then we have q(x+a) + f(x) = f(y+a) + q(y). Since $x \mapsto f(x+a) + g(x)$ are one-to-one mappings by (3), we have $X = x = (y + e_0) + (a + e_0)$. If $X = x + e_0$ with $x \in \mathbb{F}_2^{n-1}$, then we have f(x + a) + g(x) = f(y + a) + g(y). Since $x \mapsto f(x+a) + g(x)$ are one-to-one mappings, we have $X = x + e_0 = y + e_0$. Thus we also have X = Y or X = Y + A.

Introduction A condition to have an APN function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occord of f is a quantum o

The case f is a quadratic APN function and g(x) = f(x) + L'(x) with L' a linear mapping

Let f be a function from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m and $B_f(x,a) := f(x+a) + f(x) + f(a) + f(0)$. We consider the case that f is a quadratic APN function from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m , and g(x) = f(x) + L'(x) for $x \in \mathbb{F}_2^{n-1}$ with L' an \mathbb{F}_2 -linear mapping from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m . Introduction A condition to have an APN function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occord of the case

The case f is a quadratic APN function and g(x) = f(x) + L'(x) with L' a linear mapping

Let f be a function from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m and $B_f(x,a) := f(x+a) + f(x) + f(a) + f(0)$. We consider the case that f is a quadratic APN function from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m , and g(x) = f(x) + L'(x) for $x \in \mathbb{F}_2^{n-1}$ with L' an \mathbb{F}_2 -linear mapping from \mathbb{F}_2^{n-1} to \mathbb{F}_2^m .

Proposition 2

Let F(x) := f(x) and $F(x + e_0) := f(x) + L'(x)$ for $x \in \mathbb{F}_2^{n-1}$. Then $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is a quadratic APN function if and only if $\mathbb{F}_2^{n-1} \ni x \mapsto L'(x) + B_f(x, a) \in \mathbb{F}_2^m$ are one-to-one mappings for any $a \in \mathbb{F}_2^{n-1}$. Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occord of \mathfrak{o}

Proof of Proposition 2

Proof.

Since f and q = f + L' are quadratic APN functions, the condition (1) is satisfied. The condition (2) implies $f(x+a) + f(x) \neq f(y+a) + f(y) + L'(a)$ for any $x, y \in \mathbb{F}_2^{n-1}$ if $a \neq 0$, that is, $L'(a) + (f(x+a) + f(x)) + (f(y+a) + f(y)) \neq 0$ for any $x, y \in \mathbb{F}_2^{n-1}$ if $a \neq 0$, which means $L'(a) + B_f(a, x + y) \neq 0$ for any $x, y \in \mathbb{F}_2^{n-1}$ if $a \neq 0, a \in \mathbb{F}_2^{n-1}$. The condition (3) implies $G_a: \mathbb{F}_2^{n-1} \ni x \mapsto f(x+a) + g(x) = L'(x) + (f(x+a) + f(x)) \in \mathbb{F}_2^m$ are one-to-one mappings for any $a \in \mathbb{F}_2^{n-1}$, that is, $\mathbb{F}_2^{n-1} \ni x \mapsto L'(x) + B_f(x,a) + f(a) + f(0) \in \mathbb{F}_2^m$ are one-to-one mappings for any $a \in \mathbb{F}_2^{n-1}$. Thus we see that the conditions (1), (2) and (3) in Proposition 1 are satisfied if and only if $\mathbb{F}_2^{n-1} \ni x \mapsto L'(x) + B_f(x, a) \in \mathbb{F}_2^m$ are one-to-one mappings for any $a \in \mathbb{F}_2^{n-1}$.

The case f is a quadratic APN function and g(x) = f(x) + L'(x) with L' a linear mapping

Proposition 2

Let F(x) := f(x) and $F(x + e_0) := f(x) + L'(x)$ for $x \in \mathbb{F}_2^{n-1}$. Then $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is a quadratic APN function if and only if $\mathbb{F}_2^{n-1} \ni x \mapsto L'(x) + B_f(x, a) \in \mathbb{F}_2^m$ are one-to-one mappings for any $a \in \mathbb{F}_2^{n-1}$.

Similar conditions as in Proposition 2 are obtained in the case n = m and f has an (n - 1, n - 1)-APN subfunction in the papers (personal communication with Christof on 22 August 2023).

- [1] Christof Beierle, Gregor Leander and Léo Perrin, Trim and extensions of quadratic APN functions, 2022.
- [2] Christof Beierle and Claude Carlet, Gold functions and switched cube functions are not 0-extendable in dimension n>5, 2022.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$.

 $F(x) + \operatorname{Tr}(x)L(x)$ for a quadratic APN function F on \mathbb{F}_{2^n}

Let $T_0 := \{x \in \mathbb{F}_{2^n} \mid \operatorname{Tr}(x) = 0\}$ and $e_0 \in \mathbb{F}_{2^n}$ with $\operatorname{Tr}(e_0) = 1$. Let F be a quadratic APN function on \mathbb{F}_{2^n} and $B_F(x,a) := F(x+a) + F(x) + F(a) + F(0)$ for $x, a \in \mathbb{F}_{2^n}$. Let Lbe an \mathbb{F}_2 -linear mapping on \mathbb{F}_{2^n} . Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$.

$F(x) + \operatorname{Tr}(x)L(x)$ for a quadratic APN function F on \mathbb{F}_{2^n}

Let $T_0 := \{x \in \mathbb{F}_{2^n} \mid \operatorname{Tr}(x) = 0\}$ and $e_0 \in \mathbb{F}_{2^n}$ with $\operatorname{Tr}(e_0) = 1$. Let F be a quadratic APN function on \mathbb{F}_{2^n} and $B_F(x, a) := F(x + a) + F(x) + F(a) + F(0)$ for $x, a \in \mathbb{F}_{2^n}$. Let L be an \mathbb{F}_2 -linear mapping on \mathbb{F}_{2^n} .

Theorem

 $F(x) + \operatorname{Tr}(x)L(x)$ is a quadratic APN function on \mathbb{F}_{2^n} if and only if $L_a: T_0 \ni x \mapsto L(x) + B_F(x, a + e_0) \in \mathbb{F}_{2^n}$ are one-to-one mappings from T_0 to \mathbb{F}_{2^n} for any $a \in T_0$. Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$. The case f is a quantum occorrection of $g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$.

Proof of Theorem

Proof.

Let $f := F|_{T_0}$ be the restriction of F to T_0 ; f is a quadratic APN function from T_0 to \mathbb{F}_{2^n} . Let G be a function on \mathbb{F}_{2^n} defined by G(x) := f(x) for $x \in T_0$, $G(x + e_0) := f(x) + L(x) + B_F(e_0, x) = f(x) + L'(x)$ for $x \in T_0$. By Proposition 2, G is a quadratic APN function if and only if $T_0 \ni x \mapsto L(x) + B_F(x, e_0) + B_F(x, a) = L'(x) + B_F(x, a) \in \mathbb{F}_{2^n}$ are one-to-one mappings for any $a \in T_0$. Let $F(x) := F(x) + \operatorname{Tr}(x)L(x)$. Since $G(x) = F(x) + Tr(x)(L(x) + L(e_0) + F(e_0) + F(0))$ for $x \in \mathbb{F}_{2^n}, F(x) = G(x) + \operatorname{Tr}(x)(L(e_0) + F(e_0) + F(0)).$ Thus $\tilde{F}(x) = F(x) + \text{Tr}(x)L(x)$ is a quadratic APN function on \mathbb{F}_{2^n} if and only if $L_a: T_0 \ni x \mapsto L(x) + B_F(x, a + e_0) \in \mathbb{F}_{2^n}$ are one-to-one mappings from T_0 to \mathbb{F}_{2^n} for any $a \in T_0$.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quere occorrection of the condition of the condi

Examples

Example 1

Let e_0 be some fixed element of \mathbb{F}_{2^n} with $\operatorname{Tr}(e_0) = 1$. Let $F(x) = x^3$ on \mathbb{F}_{2^n} . Let L be a linear mapping which satisfies the conditions of the Theorem for the quadratic APN function $F(x) = x^3$, and $L(e_0) = 0$. Using a computer, we have 448 L's on \mathbb{F}_{2^4} , 4608 L's on \mathbb{F}_{2^5} , and many (about 40,000) L's on \mathbb{F}_{2^6} .

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$. The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$.

Examples

Example 2

Let $F(x) = x^3$ on \mathbb{F}_{2^6} . The Γ -rank of F is 1102. Using a computer, we see that there are linear mappings L satisfying the conditions of the Theorem such that the Γ -ranks of $\tilde{F}(x) := F(x) + \operatorname{Tr}(x)L(x)$ are 1144, 1146, 1158, 1166, 1168, 1170, 1172 and 1174.

Introduction A condition to have an APN function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$. The case f is a quantum occorrection of $f, g : \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$.

Examples

Example 3

Let $F(x) = x^3$ on \mathbb{F}_{2^6} . Let $L(x) = \alpha^{42}x + \alpha^{19}x^2 + \alpha^{51}x^{2^2} + \alpha^{59}x^{2^3} + \alpha^{26}x^{2^4} + \alpha^{38}x^{2^5}$, where α is a primitive element of \mathbb{F}_{2^6} . We see that $\tilde{F}(x) = F(x) + \operatorname{Tr}(x)L(x)$ has non-classical Walsh spectrum $\mathcal{W}_F = \{0, \pm 8, \pm 16, \pm 32\}$ with the Γ -rank 1170. Since $\tilde{F}(x) = F(x) + \operatorname{Tr}(x)L(x)$ with $L(x) = \alpha^{42}x + \alpha^{47}x^2 + \alpha^{35}x^{2^2} + \alpha^{54}x^{2^3} + \alpha^{23}x^{2^4} + \alpha^{27}x^{2^5}$ has classical Walsh spectrum $\mathcal{W}_F = \{0, \pm 8, \pm 16\}$ with the Γ -rank 1170, we see that there are inequivalent APN functions $\tilde{F}(x) = F(x) + \operatorname{Tr}(x)L(x)$ with the same Γ -rank. Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$. The case f is a quantum occorrection of $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$.

Examples

Example 4

Let $F(x) = x^3$ on \mathbb{F}_{2^7} . The Γ -rank of F is 3610. Using a computer, we see that the linear mapping $L(x) := x + x^{2^3} + x^{2^5} + x^{2^6}$ satisfies the conditions of the Theorem and the Γ -rank of $\tilde{F}(x) = F(x) + \operatorname{Tr}(x)L(x)$ is 4048.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of f and f is a quantum occorrection of f and f is a quantum occorrection of f of f is a quantum occorrection of f of f is a quantum occorrection of f of f is a quantum occorrection occorrection of f of f is a quantum occorrection occorrection of f is a quantum occorrection of f of f is a quantum occorrection occor

Examples

Example 4

Let $F(x) = x^3$ on \mathbb{F}_{2^7} . The Γ -rank of F is 3610. Using a computer, we see that the linear mapping $L(x) := x + x^{2^3} + x^{2^5} + x^{2^6}$ satisfies the conditions of the Theorem and the Γ -rank of $\tilde{F}(x) = F(x) + \operatorname{Tr}(x)L(x)$ is 4048.

To find the linear mappings L on \mathbb{F}_{2^n} $(n \ge 8)$ for $F(x) = x^3$, we need much time to check the conditions of the Theorem using a computer. So, at present, we want to have some more theoretical results concerning L.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of f occorrections $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of f occorrection.

Examples

Example 4

Let $F(x) = x^3$ on \mathbb{F}_{2^7} . The Γ -rank of F is 3610. Using a computer, we see that the linear mapping $L(x) := x + x^{2^3} + x^{2^5} + x^{2^6}$ satisfies the conditions of the Theorem and the Γ -rank of $\tilde{F}(x) = F(x) + \operatorname{Tr}(x)L(x)$ is 4048.

To find the linear mappings L on \mathbb{F}_{2^n} $(n \ge 8)$ for $F(x) = x^3$, we need much time to check the conditions of the Theorem using a computer. So, at present, we want to have some more theoretical results concerning L.

The papers (personal communication with Christof on August '23) will be helpful for more investigations on this subject.

Introduction A condition to have an APN function $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ using APN functions $f, g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$ The case f is a quantum occorrection of $g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$. The case f is a quantum occorrection of $g: \mathbb{F}_2^{n-1} \to \mathbb{F}_2^m$.

Thank you for your cooporation!