The second-order zero differential spectra of some functions over finite fields

Kirpa Garg

Department of Mathematics Indian Institute of Technology Jammu kirpa.garg@iitjammu.ac.in

Boolean Functions and their Applications (BFA)

Voss, Norway September 03-08, 2023

(Joint work with S.U. Hasan, C. Riera and P. Stănică)

< 日 > < 同 > < 回 > < 回 > .

Outline

- Notations and definitions
- Boomerang Connectivity Table (BCT)
- Feistel Boomerang Connectivity Table (FBCT)
- Second-order zero differential spectra
- Our results

A B + A B +

Notations and definitions

- We denote, by \mathbb{F}_q , the finite field with $q = p^n$ elements, where p is a prime number and n is a positive integer.
- By 𝔽^{*}_q = ⟨g⟩, we denote the multiplicative cyclic group of nonzero elements of 𝔽_q, where g is a primitive element of 𝔽_q.
- We let η be the quadratic character of \mathbb{F}_q defined by

$$\eta(X) := \begin{cases} 1 & \text{if } X \text{ is square of an element of } \mathbb{F}_q^*, \\ -1 & \text{otherwise.} \end{cases}$$

• We shall use Tr to denote the trace function from $\mathbb{F}_{2^n} \to \mathbb{F}_2$, i.e., $\operatorname{Tr}(X) = \sum_{i=0}^{n-1} X^{2^i}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Substitution boxes play a very crucial role in the design of secure cryptographic primitives, such as block ciphers.
- Differential attack, introduced by Biham and Shamir¹ is one of the most efficient attack on the substitution boxes used in the block cipher.
- To quantify the degree of security of a substitution box, against the differential attack, Nyberg² introduced the notion of differential uniformity (DU).

²K. Nyberg, *Differentially uniform mappings for cryptography.* In: Helleseth T. (eds.), Advances in Cryptology–EUROCRYPT 1993, LNCS 765, Springer, Berlin, Heidelberg, pp. 55–64, 1994.

Kirpa Garg (IIT Jammu)

¹E. Biham, A. Shamir, *Differential cryptanalysis of DES-like cryptosystems*, J. Cryptol. 4(1) (1991), 3–72.

Definition

For any function $f : \mathbb{F}_q \to \mathbb{F}_q$ and $a \in \mathbb{F}_q$, the derivative of f in the direction a, denoted by $D_f(X, a)$, is defined as

$$D_f(X,a) := f(X+a) - f(X)$$

for all $X \in \mathbb{F}_q$.

(1日) (1日) (1日)

Definition

For any function $f : \mathbb{F}_q \to \mathbb{F}_q$ and $a \in \mathbb{F}_q$, the derivative of f in the direction a, denoted by $D_f(X, a)$, is defined as

$$D_f(X,a) := f(X+a) - f(X)$$

for all $X \in \mathbb{F}_q$.

Definition

For any $a, b \in \mathbb{F}_q$, the Difference Distribution Table (DDT) entry at point (a, b), denoted by $\Delta_f(a, b)$, is defined as

$$\Delta_f(a,b) := |\{X \in \mathbb{F}_q \mid D_f(X,a) = b\}|.$$

A (1) < A (2) < A (2) </p>

Definition

The differential uniformity of f, denoted by Δ_f , is defined as

 $\Delta_f := \max\{\Delta_f(a, b) \mid a, b \in \mathbb{F}_q, a \neq 0\}.$

イロト 不得 トイヨト イヨト

Definition

The differential uniformity of f, denoted by Δ_f , is defined as

 $\Delta_f := \max\{\Delta_f(a, b) \mid a, b \in \mathbb{F}_q, a \neq 0\}.$

• When $\Delta_f = \delta$, we say that the function f is δ -uniform.

(本間) (本語) (本語) (二語

Definition

The differential uniformity of f, denoted by Δ_f , is defined as

 $\Delta_f := \max\{\Delta_f(a, b) \mid a, b \in \mathbb{F}_q, a \neq 0\}.$

- When $\Delta_f = \delta$, we say that the function f is δ -uniform.
- When $\delta = 1$, we say that the function f is perfect nonlinear (PN) function.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

The differential uniformity of f, denoted by Δ_f , is defined as

 $\Delta_f := \max\{\Delta_f(a, b) \mid a, b \in \mathbb{F}_q, a \neq 0\}.$

- When $\Delta_f = \delta$, we say that the function f is δ -uniform.
- When $\delta = 1$, we say that the function f is perfect nonlinear (PN) function.
- When $\delta = 2$, we say that the function f is almost perfect nonlinear (APN) function.

- 4 回 ト 4 三 ト - 4 三 ト - -

Boomerang attack

- In 1999, Wagner³ introduced a new attack on block ciphers, which is called the boomerang attack.
- The boomerang attack may be thought of as an extension to the differential attack.
- In Eurocrypt 2018, Cid et al.⁴ introduced the notion of Boomerang Connectivity Table (BCT), to analyze the boomerang attack.

 ³D. Wagner, *The boomerang attack*, In: L. R. Knudsen (ed.) Fast Software Encryption-FSE 1999. LNCS 1636, Springer, Berlin, Heidelberg, pp. 156–170, 1999.
 ⁴C. Cid, T. Huang, T. Peyrin, Y. Sasaki, and L. Song, *Boomerang connectivity table: a new cryptanalysis tool*. In: Nielsen J., Rijmen V. (eds.), Advances in Cryptology, EUROCRYPT 2018, LNCS 10821, Springer, Cham, pp. 683–714, 2018: * (E) = 2000

Boomerang Connectivity Table (BCT)

Definition (Cid et al., 2018)

For any $a, b \in \mathbb{F}_{2^n}$, the BCT entry of the invertible function f at point (a, b), denoted by $\mathcal{B}_f(a, b)$, is the number of solutions in \mathbb{F}_{2^n} of the following equation

$$f^{-1}(f(x) + b) + f^{-1}(f(x + a) + b) = a$$

⁵C. Boura, A. Canteaut, *On the boomerang uniformity of cryptographic Sboxes*, IACR Trans. Symmetric Cryptol., vol. 2018, no. 3, 290–310, 2018.

Boomerang Connectivity Table (BCT)

Definition (Cid et al., 2018)

For any $a, b \in \mathbb{F}_{2^n}$, the BCT entry of the invertible function f at point (a, b), denoted by $\mathcal{B}_f(a, b)$, is the number of solutions in \mathbb{F}_{2^n} of the following equation

$$f^{-1}(f(x) + b) + f^{-1}(f(x + a) + b) = a$$

To quantify the resistance of a function against the boomerang attack, Boura and Canteaut⁵ introduced the concept of boomerang uniformity.

Boomerang Uniformity

The Boomerang uniformity of function f, denoted by Γ_f is given by:

$$\Gamma_f = \max\{\beta_f(a, b) | a, b \in \mathbb{F}_q^*\}.$$

⁵C. Boura, A. Canteaut, *On the boomerang uniformity of cryptographic Sboxes*, IACR Trans. Symmetric Cryptol., vol. 2018, no. 3, 290–310, 2018.

This definition is only valid for a Substitution Permutation Network (SPN) cipher.

What about Feistel ciphers?

(B)

Feistel Boomerang Connectivity Table

- Recently, in 2020, Boukerrou, Huynh, Lallemand, Mandal, Minier⁶ extended this idea to Feistel ciphers.
- Feistel ciphers have the practical advantage that decryption is performed by executing the same function as for encryption, here the S-boxes may not be bijective.

⁶H. Boukerrou, P. Huynh, V. Lallemand, B. Mandal and M. Minier, *On the Feistel counterpart of the boomerang connectivity table*, IACR Trans. Symmetric Cryptol. 1 (2020), 331–362.

Feistel Boomerang Connectivity Table (FBCT)

Definition (Boukerrou et al., 2020)

For any $a, b \in \mathbb{F}_{2^n}$, the FBCT entry of the function f at point (a, b), denoted by $FBCT_f(a, b)$, is number of solutions $X \in \mathbb{F}_{2^n}$ of the following equation

f(X + a + b) + f(X + b) + f(X + a) + f(X) = 0.

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Feistel Boomerang Connectivity Table (FBCT)

Definition (Boukerrou et al., 2020)

For any $a, b \in \mathbb{F}_{2^n}$, the FBCT entry of the function f at point (a, b), denoted by $FBCT_f(a, b)$, is number of solutions $X \in \mathbb{F}_{2^n}$ of the following equation

$$f(X + a + b) + f(X + b) + f(X + a) + f(X) = 0.$$

Feistel Boomerang Uniformity

The *F*-Boomerang uniformity, denoted by β_f , is given by

$$\beta_f = \max_{a \neq 0, b \neq 0, a \neq b} FBCT_f(a, b).$$

.

Second-order zero differential uniformity

Second-order zero differential spectra

For any function $f : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ and $a, b \in \mathbb{F}_{p^n}$, the second-order zero differential spectra of f with respect to a, b, denoted by $\nabla_f(a, b)$ is defined as

$$#\{X \in \mathbb{F}_{p^n} : f(X+a+b) - f(X+b) - f(X+a) + f(X) = 0\}.$$

Second-order zero differential uniformity

The second-order zero differential uniformity of f, is given by

$$\nabla_f = \begin{cases} \max\{\nabla_f(a,b) : a \neq b, a, b \in \mathbb{F}_{2^n} \setminus \{0\}\} & \text{ if } p = 2\\ \max\{\nabla_f(a,b) : a, b \in \mathbb{F}_{p^n} \setminus \{0\}\} & \text{ if } p > 2. \end{cases}$$

Properties of FBCT

- The entries of FBCT of *f* are the second-order zero differential spectra of *f* and the *F*-Boomerang uniformity is the second-order zero differential uniformity of *f* in even characteristic.
- All the non trivial second-order zero differential spectra of APN functions in even characteristic are 0.
- Thus any non-APN function has Feistel boomerang uniformity higher or equal to 4.

Our results

• We first considered a power function $F(X) = X^{2^{\frac{n+3}{2}}-1}$ over \mathbb{F}_{2^n} , a differentially 6-uniform⁷ function, where n is odd and show that F attains the best possible value of FBCT, i.e. 4.

⁷C. Blondeau, L. Perrin, *More differentially 6-uniform power functions*, Des. Codes Cryptogr. 73 (2014), 487–505.

Our results

• We first considered a power function $F(X) = X^{2^{\frac{n+3}{2}}-1}$ over \mathbb{F}_{2^n} , a differentially 6-uniform⁷ function, where n is odd and show that F attains the best possible value of FBCT, i.e. 4.

Theorem 1

Let
$$F(X) = X^d$$
 be a power function of \mathbb{F}_{2^n} , where $d = 2^{\frac{n+3}{2}} - 1$ and n is odd.
Let $s = \frac{n+3}{2}$, $A = \frac{a^{2^s}b + ab^{2^s}}{ab(a+b)}$, $a_0 = A^{2^s+2} + a^4b^4 + a^4 + b^4$,
 $w_1 = \frac{a_0}{b^2(a+b)^2}$, $w_2 = \frac{a_0}{a^2(a+b)^2}$, $w_3 = \frac{a_0}{a^2b^2}$. Then for $a, b \in \mathbb{F}_{2^n}$,
 $\nabla_F(a,b) = \begin{cases} 4 & \text{if } \operatorname{Tr}(w_1) = \operatorname{Tr}(w_2) = \operatorname{Tr}(w_3) = 0\\ 2^n & \text{if } ab = 0 \text{ or } a = b\\ 0 & \text{otherwise.} \end{cases}$
(2.1)

Thus, F is second-order zero differential 4-uniform (that is, the Feistel boomerang uniformity of F is 4).

⁷C. Blondeau, L. Perrin, *More differentially 6-uniform power functions,* Des. Codes Cryptogr. 73 (2014), 487–505.

• For $a, b \in \mathbb{F}_{2^n}$, we consider the equation:

$$F(X + a + b) + F(X + b) + F(X + a) + F(X) = 0.$$

э

イロト イヨト イヨト イヨト

• For $a, b \in \mathbb{F}_{2^n}$, we consider the equation:

$$F(X + a + b) + F(X + b) + F(X + a) + F(X) = 0.$$

• If
$$ab = 0$$
 and $a = b$, then $\nabla_F(a, b) = 2^n$.

э

イロト イヨト イヨト イヨト

• For $a, b \in \mathbb{F}_{2^n}$, we consider the equation:

$$F(X + a + b) + F(X + b) + F(X + a) + F(X) = 0.$$

• If
$$ab = 0$$
 and $a = b$, then $\nabla_F(a, b) = 2^n$.

• Let $ab \neq 0$ and $a \neq b$, then $X \in \{0, a, b, a + b\}$ is a solution if $a^{2^{\frac{n+3}{2}}-2} = b^{2^{\frac{n+3}{2}}-2}$, which is not possible.

く 何 ト く ヨ ト く ヨ ト

• For $a, b \in \mathbb{F}_{2^n}$, we consider the equation:

$$F(X + a + b) + F(X + b) + F(X + a) + F(X) = 0.$$

• If
$$ab = 0$$
 and $a = b$, then $\nabla_F(a, b) = 2^n$.

- Let $ab \neq 0$ and $a \neq b$, then $X \in \{0, a, b, a + b\}$ is a solution if $a^{2^{\frac{n+3}{2}}-2} = b^{2^{\frac{n+3}{2}}-2}$, which is not possible.
- For $X \not\in \{0, a, b, a + b\}$, we simplify the above equation and get

$$X^{2^s} + AX^2 + BX = 0,$$

where
$$s = \frac{n+3}{2}, A = \frac{a^{2^s}b + ab^{2^s}}{ab(a+b)}$$
 and $B = \frac{a^{2^s}b^2 + a^2b^{2^s}}{ab(a+b)}$.

• • = • • = •

Continued...

We then have two cases.

Case 1. If A = 0, then $a^{2^s-1} = b^{2^s-1}$ and after some computations we reduce $X^{2^s} + AX^2 + BX = 0$ to the linearized polynomial

$$X(X^{2^s-1} + b^{2^s-1}) = 0.$$

Notice that, $X^{2^{s}-1} = b^{2^{s}-1}$ can have either seven solutions or one solution. Among these possible eight solutions (including X = 0) of the linearized polynomial $X(X^{2^{s}-1} + b^{2^{s}-1}) = 0$, the four solutions come from the set $\{0, a, b, a + b\}$, which we have already discarded. Hence, for A = 0, we would have at most four solutions.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Continued...

Case 2. Next, we have $A \neq 0$. Then we can reduce $X^{2^s} + AX^2 + BX = 0$ using some computations to the following equation

$$X^{8} + A^{2^{s}}(AX + B)^{2}X^{2} + B^{2^{s}}(AX + B)X = 0.$$

One can computationally verify that each of the member of the set $\{0, a, b, a+b\}$ is a solution of the above equation which is not true and will further reduce it to a degree four equation given below:

$$X^{4} + (a^{2} + b^{2} + ab)X^{2} + ab(a + b)X + A^{2^{s}+2} + a^{4} + b^{4} + (ab)^{4} = 0.$$

We analyze the degree four equation via a Lemma given by Leonard and Williams⁸ and show that the above four degree equation has at most four solutions $X \in \mathbb{F}_{2^n}$.

⁸P. A. Leonard, K. S. Williams, *Quartics over* $GF(2^n)$. Proc. Amer. Math. Soc. 36:2 (1972), 347–350.

Continued...

Lemma

Let $f(x) = x^4 + a_2x^2 + a_1x + a_0 \in \mathbb{F}_{2^n}[x]$ with $a_0a_1 \neq 0$ and the companion cubic $g(y) = y^3 + a_2y + a_1$ with the roots r_1, r_2, r_3 . When the roots exist in \mathbb{F}_{2^n} , we set $w_i = a_0r_i^2/a_1^2$. We write a polynomial h as $h = (1, 2, 3, \ldots)$ over some field to mean that it decomposes as a product of degree $1, 2, 3, \ldots$, over that field. Then the factorization of f(x) over \mathbb{F}_{2^n} is characterized as follows:

(i)
$$f = (1, 1, 1, 1) \Leftrightarrow g = (1, 1, 1)$$
 and $\operatorname{Tr}(w_1) = \operatorname{Tr}(w_2) = \operatorname{Tr}(w_3) = 0;$
(ii) $f = (2, 2) \Leftrightarrow g = (1, 1, 1)$ and $\operatorname{Tr}(w_1) = 0, \operatorname{Tr}(w_2) = \operatorname{Tr}(w_3) = 1;$
(iii) $f = (1, 3) \Leftrightarrow g = (3);$
(iv) $f = (1, 1, 2) \Leftrightarrow g = (1, 2)$ and $\operatorname{Tr}(w_1) = 0;$
(v) $f = (4) \Leftrightarrow g = (1, 2)$ and $\operatorname{Tr}(w_1) = 1.$

ヘロト 人間 とくほと くほとう

Our results

Our next considered function was introduced by Tan, Qu, Tan and Li⁹ who showed that when n is even, the permutation polynomial $F(X) = X^{-1} + \text{Tr}\left(\frac{X^2}{X+1}\right)$ is differentially 4-uniform. Further, Hasan, Pal and Stănică¹⁰ studied the c-differential and boomerang uniformities of F(X). In the next theorem, we studied FBCT of this function.

⁹Y. Tan, L. Qu, C. H. Tan, C. Li, *New families of differentially 4-uniform permutations over* $\mathbb{F}_{2^{2k}}$, in Sequences and Their Applications-SETA (Lecture Notes in Computer Science), vol. 7280, T. Helleseth and J. Jedwab, Eds. Heidelberg, Germany: Springer, 2012, pp. 25–39.

¹⁰S. U. Hasan, M. Pal, P. Stănică, *The c-Differential Uniformity and Boomerang Uniformity of Two Classes of Permutation Polynomials*, IEEE Trans. Inf. Theory 68 (2022), 679–691.

Theorem 2

Let
$$F(X) = X^{-1} + \operatorname{Tr}\left(\frac{X^2}{X+1}\right)$$
 be a function over \mathbb{F}_{2^n} , where n is even. Then for $a, b \in \mathbb{F}_{2^n}$, then $\nabla_F(a, b) =$

$$\begin{cases} 4 & \text{ if } \operatorname{Tr}(b^{-1}) = \operatorname{Tr}(b^{-1}\omega) = \operatorname{Tr}(b^{-1}\omega^2) = 0, \operatorname{Tr}(w_4) = \operatorname{Tr}(b^3) = 1, \\ & \text{ or } \operatorname{Tr}(w_4) = \operatorname{Tr}(b^3) = 0 \text{ and } \operatorname{Tr}(b^{-1}) = 1, \\ & \text{ or } \operatorname{Tr}(w_4) = \operatorname{Tr}(b^3) = 0 \text{ and } \operatorname{Tr}(b^{-1}\omega) = 1, \\ & \text{ or } \operatorname{Tr}(w_4) = \operatorname{Tr}(b^3) = 0 \text{ and } \operatorname{Tr}(b^{-1}\omega^2) = 1, \\ & \text{ or } \operatorname{Tr}(w_1) = \operatorname{Tr}(w_2) = \operatorname{Tr}(w_3) = \operatorname{Tr}\left(\frac{ab(a+b)}{a^2+b^2+ab(a+b)+ab+1}\right) = 1, \\ 8 & \text{ if } \operatorname{Tr}(w_4) = \operatorname{Tr}(b^{-1}) = \operatorname{Tr}(b^{-1}\omega) = \operatorname{Tr}(b^{-1}\omega^2) = 0, \operatorname{Tr}(b^3) = 1, \\ 2^n & \text{ if } ab = 0 \text{ or } a = b, \\ 0 & \text{ otherwise,} \end{cases}$$

where ω is a cube roots of unity, $w_1 = \frac{a}{b(a+b)}, w_2 = \frac{b}{a(a+b)}, w_3 = \frac{a+b}{ab}$ and $w_4 = \frac{b^3}{b^3+1}$. Moreover, F is second-order zero differential 8-uniform (that is, the Feistel boomerang uniformity of F is 8).

Second order differential spectra (odd characteristic)

Li, Yue and Tang¹¹ further studied the second-order zero differential spectra of APN functions and those with low differential uniformity in odd characteristic.

p	d	condition	Δ_F	∇_F
p > 3	3	any	2	1
p = 3	$3^n - 3$	n>1 is odd	2	2
p > 2	$p^n - 2$	$p^n \equiv 2 \pmod{3}$	2	1
p > 3	$p^{m} + 2$	$n = 2m$, $p^m \equiv 1 \pmod{3}$	2	1
p = 3	$3^n - 2$	any	3	3
p	$p^n - 2$	$p^n \equiv 1 \pmod{3}$	3	3

Table: Second-order differential uniformity (odd characteristic)

¹¹X. Li, Q. Yue, D. Tang, The second-order zero differential spectra of almost perfect nonlinear functions and the inverse function in odd characteristic, Cryptogr. Commun. 14:3 (2022), 653–662.

Kirpa Garg (IIT Jammu)

Second order differential spectra (odd characteristic)

We further extend their work by investigating the second-order zero differential spectra of two power functions, whose differential uniformities are studied by Helleseth, Rong and Sandberg.¹²

- $F(X) = X^d$, where $d = \frac{2p^n 1}{3}$ over \mathbb{F}_{p^n} , for $p^n \equiv 2 \pmod{3}$ is an APN function.
- $F(X) = X^d$, where $d = \frac{p^k + 1}{2}$, has differential uniformity at most $gcd(\frac{p^k 1}{2}, p^{2n} 1)$.

¹²T. Helleseth, C. Rong, D. Sandberg *New families of almost perfect nonlinear power mappings*, IEEE Trans. Inf. Theory 45:2 (1999), 475–485.

Kirpa Garg (IIT Jammu)

Our results

Theorem 3

Let $F(X) = X^d$ be a function of \mathbb{F}_{p^n} , where $d = \frac{2p^n - 1}{3}$, $p^n \equiv 2 \pmod{3}$. Then for $a, b \in \mathbb{F}_{p^n}$,

$$\nabla_F(a,b) = \begin{cases} 1 & \text{if } ab \neq 0\\ p^n & \text{if } ab = 0. \end{cases}$$

Moreover, F is second-order zero differential 1-uniform.

• • = • • = •

Our results

Theorem 4

Let $F(X) = X^d$ be a power function of \mathbb{F}_{p^n} , where $d = \frac{p^k+1}{2}$, and gcd(k, 2n) = 1. Let p > 3. Then for $a, b \in \mathbb{F}_{p^n}$,

$$\nabla_F(a,b) = \begin{cases} 0 & \text{if } ab \neq 0, \text{and } \eta(D) = -1\\ 1 & \text{if } ab \neq 0, \text{and } \eta(D) = 0\\ \frac{p-3}{2} & \text{if } ab \neq 0, \text{and } \eta(D) = 1\\ p^n & \text{if } ab = 0 \end{cases}$$

where $D = \frac{4a^2}{(1-u^{2i})^2} + \frac{b^2}{u^{2i}}$, u is a primitive (p-1)-th root of unity in $\mathbb{F}_{p^{2n}}^*$. Moreover, F is second-order zero differential $\frac{p-3}{2}$ -uniform.

・ 「「・ ・ 」 ・ ・ 」 ヨ

Conclusion

p	F(X)	condition	Δ_F	∇_F
2	$X^{2^{\frac{n+3}{2}}-1}$	$n \ {\sf is} \ {\sf odd}$	6	4
2	$X^{-1} + \operatorname{Tr}\left(\frac{X^2}{X+1}\right)$	n is even	4	8
p > 3	$X^{\frac{p^k+1}{2}}$	gcd(2n,k) = 1	$\leq \gcd(\frac{p^k-1}{2}, p^{2n}-1)$	$\frac{p-3}{2}$
p = 3	$X^{\frac{p^n-1}{2}+2}$	$n \operatorname{is} \operatorname{odd}$	4	3

Table: Second-order differential uniformity for functions over finite fields

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Conclusion

- We compute the second-order zero differential spectra of some APN power functions and functions with low differential uniformity.
- It is worthwhile to look into more functions with low differential uniformity and investigate their second-order zero differential spectrum.

A B M A B M

Thank you for your attention!

æ