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Boolean functions

I Mappings f : Fn
2 → F2 are called Boolean functions

I Let Bn be the set of all Boolean functions in n variables
I Let An be the set of all affine functions in n variables

An = {a0 + a1x1 + · · ·+ anxn : ai ∈ F2}

I The Hamming distance between f, g ∈ Bn is given by

dH(f, g) = |{x ∈ Fn
2 : f(x) 6= g(x)}|

I The nonlinearity of f ∈ Bn is defined by

nl(f) = min
l∈An

dH(f, l)
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Boolean bent functions, and their normality

I A function f ∈ Bn is called bent if nl(f) = 2n−1 − 2
n
2−1

I They exist if n = 2m; if f ∈ Bn is bent then deg(f) ≤ n/2

Example (Desarguesian partial spread bent functions)

PSap class: f(x, y) = g(xy2m−2) for x, y ∈ F2m , where g ∈ Bm is
balanced and g(0) = 0

Definition (Dobbertin 1995): A bent function f ∈ Bn is said to be
normal if it is constant on some affine subspace U ⊂ Fn

2 of
dimension n/2; otherwise non-normal

Definition (Charpin 2004): A bent function f ∈ Bn is said to be
weakly normal if it is affine on some affine subspace U ⊂ Fn

2 of
dimension n/2; otherwise non-weakly-normal
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Normality of bent functions: The motivation

Why non-normal bent functions?
Many known constructions are normal. One can consider
non-normal bent functions as “new”

Example (Desarguesian partial spread bent functions)

PSap class: Every f(x, y) = g(xy2m−2) for x, y ∈ F2m , where g ∈ Bm

is balanced and g(0) = 0, is normal w.r.t. F2m × {0}

Why non-weakly-normal bent functions?
Weak normality is invariant under extended-affine equivalence
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Normality of bent functions, theoretical results

I For n small, one can prove normality theoretically, since the
structure of bent functions is known

I n = 2, 4: All bent functions are quadratic, hence normal

I n = 6: All bent functions are Maiorana-McFarland, hence normal

I n = 8:
– All quadratic bent functions are normal
– All cubic bent functions are normal (Charpin 2004)
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Normality of bent functions, computational results

I n = 10, 12, 14: A few examples shown to be non-weakly-normal
using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami–Welch function
x ∈ F211 7→ Tr(x241) to the trace 0/1 elements is a non-weakly-
normal bent function on F210 (Leander and McGuire 2009)

Result (Leander 2005)
Let f, g ∈ Bn be bent and g be additionally quadratic. Then h(x, y) =
f(x)+g(y) is (weakly) normal on Fn

2 ×Fm
2 iff f is (weakly) normal on Fn

2 .

I n ≥ 10: There exist non-weakly-normal bent functions on Fn
2

I The only missing case: n = 8 degree 4

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables BFA 2023 5 / 14



Normality of bent functions, computational results

I n = 10, 12, 14: A few examples shown to be non-weakly-normal
using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami–Welch function
x ∈ F211 7→ Tr(x241) to the trace 0/1 elements is a non-weakly-
normal bent function on F210 (Leander and McGuire 2009)

Result (Leander 2005)
Let f, g ∈ Bn be bent and g be additionally quadratic. Then h(x, y) =
f(x)+g(y) is (weakly) normal on Fn

2 ×Fm
2 iff f is (weakly) normal on Fn

2 .

I n ≥ 10: There exist non-weakly-normal bent functions on Fn
2

I The only missing case: n = 8 degree 4

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables BFA 2023 5 / 14



Normality of bent functions, computational results

I n = 10, 12, 14: A few examples shown to be non-weakly-normal
using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami–Welch function
x ∈ F211 7→ Tr(x241) to the trace 0/1 elements is a non-weakly-
normal bent function on F210 (Leander and McGuire 2009)

Result (Leander 2005)
Let f, g ∈ Bn be bent and g be additionally quadratic. Then h(x, y) =
f(x)+g(y) is (weakly) normal on Fn

2 ×Fm
2 iff f is (weakly) normal on Fn

2 .

I n ≥ 10: There exist non-weakly-normal bent functions on Fn
2

I The only missing case: n = 8 degree 4

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables BFA 2023 5 / 14



Normality of bent functions, computational results

I n = 10, 12, 14: A few examples shown to be non-weakly-normal
using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami–Welch function
x ∈ F211 7→ Tr(x241) to the trace 0/1 elements is a non-weakly-
normal bent function on F210 (Leander and McGuire 2009)

Result (Leander 2005)
Let f, g ∈ Bn be bent and g be additionally quadratic. Then h(x, y) =
f(x)+g(y) is (weakly) normal on Fn

2 ×Fm
2 iff f is (weakly) normal on Fn

2 .

I n ≥ 10: There exist non-weakly-normal bent functions on Fn
2

I The only missing case: n = 8 degree 4

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables BFA 2023 5 / 14



Normality of bent functions, computational results

I n = 10, 12, 14: A few examples shown to be non-weakly-normal
using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami–Welch function
x ∈ F211 7→ Tr(x241) to the trace 0/1 elements is a non-weakly-
normal bent function on F210 (Leander and McGuire 2009)

Result (Leander 2005)
Let f, g ∈ Bn be bent and g be additionally quadratic. Then h(x, y) =
f(x)+g(y) is (weakly) normal on Fn

2 ×Fm
2 iff f is (weakly) normal on Fn

2 .

I n ≥ 10: There exist non-weakly-normal bent functions on Fn
2

I The only missing case: n = 8 degree 4

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables BFA 2023 5 / 14



Normality of bent functions in n = 8 variables

Research Questions:
1. Do non-normal bent functions of 8 variables and degree 4 exist?

(Charpin 2004, Open problem 5)

2. Do non-normal partial spread bent functions in the PS− \ PSap

class exist? (Leander 2005, p.17)
3. What’s about weak normality?

Main Results:
I. Non-normal bent functions on F8

2 in the PS− \ PSap exist
II. Partial spread bent functions on F8

2 are normal or weakly normal
III. Generation of non-(weakly) normal bent functions using genetic

programming: A designer’s perspective
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Partial spread bent functions: The PS− class

Definition: A partial spread of order s in Fn
2 with n = 2m is a set of

s vector subspaces U1, . . . , Us of Fn
2 of dimension m each, such that

Ui ∩ Uj = {0} for all i 6= j.

I The partial spread class PS− (Dillon 1974):

f(x) =
2m−1∑
i=1

1U∗
i
(x) where U∗i := Ui \ {0}

and vector subspaces U1, . . . , U2m−1 of Fn
2 form a partial spread

I The only known explicit subclass of PS− is PSap

I All members of PSap ⊂ PS− are normal
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PS− bent functions in n = 8 variables

I Up to equivalence, all PS− bent functions in n = 8 variables are
known (Langevin and Hou 2011)

I The representatives are available online (Langevin 2012)

I How to check normality of 9 316 bent functions in a reasonable
time?
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Checking Normality for n = 8 variables

I One can use the following result (Charpin 2004, Theorem 1)

I There are 200 787 vector spaces of dim 4 in F8
2 and 9 316 PS−

bent functions to check
I It took a few hours to check (on a laptop) that all but one PS−

bent functions are normal
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Non-normal PS− bent function in n = 8 variables

I The following bent function f ∈ PS− \ PSap class (psf=970 in the
list of Langevin 2012) is non-normal

I It has a trivial automorphism group
I It is weakly-normal
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Is there a “nice” description of this function?

Theorem (Gadouleau, Mariot and Picek 2023)
Let m, l, d ∈ N such that m = ld. If there are t = 2ld−1 coprime polyno-
mials of degree d ≥ 1 over F2l , possibly including the constant polynomial
1 of degree 0. Then, there exists a partial spread P over Fn

2 , n = 2m,
whose union of its subspaces with the null vector discarded defines a bent
function in the class PS−.

I Using coprime polynomials of degree d = 2 over F4, one can
construct 273 PS− bent functions

I However, all of them are normal
I Other ways to construct non-normal or non-weakly-normal bent

functions?
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Evolving Boolean functions with Genetic Programming

I GP Encoding: An individual is represented by a tree

I Create a random initial population of individuals
I Repeat times
1. Evaluation with a fitness function
2. Selection of parents and reproduction
3. Replace the last population
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Evolving Boolean functions with Genetic Programming

I GP Encoding: An individual is represented by a tree

I Create a random initial population of 50 individuals
I Repeat 500 000 times
1. Evaluation with a fitness function (highest nonlinearity)
2. Selection of parents and reproduction
3. Replace the last population
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Evolving bent functions with GP: The results

I After 10 000 runs, we got 7 478 different bent functions, including

degree, d # of bent functions with degree d

2 4 690
3 2 367
4 421

I All bent functions we got are normal
I The “most complicated” ANF looks as follows
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Conclusion and future work

Summary
I. Non-normal degree 4 bent functions on F8

2 exist, thus
Corollary: Let f be a non-normal bent function on Fn

2 . Then, n ≥ 8.

II. Partial spread bent functions on F8
2 are normal or weakly normal.

III. Non-normal bent functions in the PS− class exist.

Open problems
1. Understand the non-normal example, e.g., what is so special in the

corresponding partial spread?
2. Do non-weakly-normal bent functions on F8

2 exist?
3. How to tune GP to produce many “interesting” (e.g., non-normal,

non-weakly-normal, with trivial automorphism groups, inequivalent
to MM∪PS classes) bent functions?
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