Normality of Boolean bent functions in eight variables, revisited

Alexandr Polujan ${ }^{a}$, Luca Mariot ${ }^{b}$, Stjepan Picek ${ }^{c}$

${ }^{a}$ Otto von Guericke University Magdeburg, Germany
${ }^{b}$ Semantics, Cybersecurity and Services Group, University of Twente, The Netherlands ${ }^{c}$ Digital Security Group, Radboud University, The Netherlands

BFA 2023
The 8th International Workshop on Boolean Functions and their Applications, 05.09.2023

Boolean functions

- Mappings $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ are called Boolean functions
- Let \mathcal{B}_{n} be the set of all Boolean functions in n variables
- Let \mathcal{A}_{n} be the set of all affine functions in n variables

$$
\mathcal{A}_{n}=\left\{a_{0}+a_{1} x_{1}+\cdots+a_{n} x_{n}: a_{i} \in \mathbb{F}_{2}\right\}
$$

- The Hamming distance between $f, g \in \mathcal{B}_{n}$ is given by

$$
d_{H}(f, g)=\left|\left\{x \in \mathbb{F}_{2}^{n}: f(x) \neq g(x)\right\}\right|
$$

- The nonlinearity of $f \in \mathcal{B}_{n}$ is defined by

$$
\operatorname{nl}(f)=\min _{l \in \mathcal{A}_{n}} d_{H}(f, l)
$$

Boolean bent functions, and their normality

- A function $f \in \mathcal{B}_{n}$ is called bent if $\operatorname{nl}(f)=2^{n-1}-2^{\frac{n}{2}-1}$
- They exist if $n=2 m$; if $f \in \mathcal{B}_{n}$ is bent then $\operatorname{deg}(f) \leq n / 2$

Boolean bent functions, and their normality

- A function $f \in \mathcal{B}_{n}$ is called bent if $\operatorname{nl}(f)=2^{n-1}-2^{\frac{n}{2}-1}$
- They exist if $n=2 m$; if $f \in \mathcal{B}_{n}$ is bent then $\operatorname{deg}(f) \leq n / 2$

Example (Desarguesian partial spread bent functions)

$\mathcal{P} \mathcal{S}_{a p}$ class: $f(x, y)=g\left(x y^{2^{m}-2}\right)$ for $x, y \in \mathbb{F}_{2^{m}}$, where $g \in \mathcal{B}_{m}$ is balanced and $g(0)=0$

Boolean bent functions, and their normality

- A function $f \in \mathcal{B}_{n}$ is called bent if $n l(f)=2^{n-1}-2^{\frac{n}{2}-1}$
- They exist if $n=2 m$; if $f \in \mathcal{B}_{n}$ is bent then $\operatorname{deg}(f) \leq n / 2$

Example (Desarguesian partial spread bent functions)

$\mathcal{P} \mathcal{S}_{a p}$ class: $f(x, y)=g\left(x y^{2^{m}-2}\right)$ for $x, y \in \mathbb{F}_{2^{m}}$, where $g \in \mathcal{B}_{m}$ is balanced and $g(0)=0$

Definition (Dobbertin 1995): A bent function $f \in \mathcal{B}_{n}$ is said to be normal if it is constant on some affine subspace $U \subset \mathbb{F}_{2}^{n}$ of dimension $n / 2$; otherwise non-normal

Boolean bent functions, and their normality

- A function $f \in \mathcal{B}_{n}$ is called bent if $n l(f)=2^{n-1}-2^{\frac{n}{2}-1}$
- They exist if $n=2 m$; if $f \in \mathcal{B}_{n}$ is bent then $\operatorname{deg}(f) \leq n / 2$

Example (Desarguesian partial spread bent functions)

$\mathcal{P} \mathcal{S}_{a p}$ class: $f(x, y)=g\left(x y^{2^{m}-2}\right)$ for $x, y \in \mathbb{F}_{2^{m}}$, where $g \in \mathcal{B}_{m}$ is balanced and $g(0)=0$

Definition (Dobbertin 1995): A bent function $f \in \mathcal{B}_{n}$ is said to be normal if it is constant on some affine subspace $U \subset \mathbb{F}_{2}^{n}$ of dimension $n / 2$; otherwise non-normal

Definition (Charpin 2004): A bent function $f \in \mathcal{B}_{n}$ is said to be weakly normal if it is affine on some affine subspace $U \subset \mathbb{F}_{2}^{n}$ of dimension $n / 2$; otherwise non-weakly-normal

Normality of bent functions: The motivation

Why non-normal bent functions?
Many known constructions are normal. One can consider non-normal bent functions as "new"

Normality of bent functions: The motivation

Why non-normal bent functions?
Many known constructions are normal. One can consider non-normal bent functions as "new"

Example (Desarguesian partial spread bent functions)

$\mathcal{P} \mathcal{S}_{a p}$ class: Every $f(x, y)=g\left(x y^{2^{m}-2}\right) \quad$ for $x, y \in \mathbb{F}_{2^{m}}$, where $g \in \mathcal{B}_{m}$ is balanced and $g(0)=0$, is normal w.r.t. $\mathbb{F}_{2^{m}} \times\{0\}$

Normality of bent functions: The motivation

Why non-normal bent functions?
Many known constructions are normal. One can consider non-normal bent functions as "new"

Example (Desarguesian partial spread bent functions)

$\mathcal{P} \mathcal{S}_{a p}$ class: Every $f(x, y)=g\left(x y^{2^{m}-2}\right) \quad$ for $x, y \in \mathbb{F}_{2^{m}}$, where $g \in \mathcal{B}_{m}$ is balanced and $g(0)=0$, is normal w.r.t. $\mathbb{F}_{2^{m}} \times\{0\}$

Why non-weakly-normal bent functions?
Weak normality is invariant under extended-affine equivalence

Normality of bent functions, theoretical results

- For n small, one can prove normality theoretically, since the structure of bent functions is known

Normality of bent functions, theoretical results

- For n small, one can prove normality theoretically, since the structure of bent functions is known
- $n=2,4$: All bent functions are quadratic, hence normal

Normality of bent functions, theoretical results

- For n small, one can prove normality theoretically, since the structure of bent functions is known
- $n=2,4$: All bent functions are quadratic, hence normal
- $n=6$: All bent functions are Maiorana-McFarland, hence normal

Normality of bent functions, theoretical results

- For n small, one can prove normality theoretically, since the structure of bent functions is known
- $n=2,4$: All bent functions are quadratic, hence normal
- $n=6$: All bent functions are Maiorana-McFarland, hence normal
- $n=8$:
- All quadratic bent functions are normal
- All cubic bent functions are normal (Charpin 2004)

Normality of bent functions, computational results

- $n=10,12,14$: A few examples shown to be non-weakly-normal using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Normality of bent functions, computational results

- $n=10,12,14$: A few examples shown to be non-weakly-normal using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami-Welch function $x \in \mathbb{F}_{2^{11}} \mapsto \operatorname{Tr}\left(x^{241}\right)$ to the trace $0 / 1$ elements is a non-weaklynormal bent function on $\mathbb{F}_{2^{10}}$ (Leander and McGuire 2009)

Normality of bent functions, computational results

- $n=10,12,14$: A few examples shown to be non-weakly-normal using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami-Welch function $x \in \mathbb{F}_{2^{11}} \mapsto \operatorname{Tr}\left(x^{241}\right)$ to the trace 0/1 elements is a non-weaklynormal bent function on $\mathbb{F}_{2^{10}}$ (Leander and McGuire 2009)

Result (Leander 2005)

Let $f, g \in \mathcal{B}_{n}$ be bent and g be additionally quadratic. Then $h(x, y)=$ $f(x)+g(y)$ is (weakly) normal on $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ iff f is (weakly) normal on \mathbb{F}_{2}^{n}.

Normality of bent functions, computational results

- $n=10,12,14$: A few examples shown to be non-weakly-normal using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami-Welch function $x \in \mathbb{F}_{2^{11}} \mapsto \operatorname{Tr}\left(x^{241}\right)$ to the trace 0/1 elements is a non-weaklynormal bent function on $\mathbb{F}_{2^{10}}$ (Leander and McGuire 2009)

Result (Leander 2005)

Let $f, g \in \mathcal{B}_{n}$ be bent and g be additionally quadratic. Then $h(x, y)=$ $f(x)+g(y)$ is (weakly) normal on $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ iff f is (weakly) normal on \mathbb{F}_{2}^{n}.

- $n \geq 10$: There exist non-weakly-normal bent functions on \mathbb{F}_{2}^{n}

Normality of bent functions, computational results

- $n=10,12,14$: A few examples shown to be non-weakly-normal using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami-Welch function $x \in \mathbb{F}_{2^{11}} \mapsto \operatorname{Tr}\left(x^{241}\right)$ to the trace 0/1 elements is a non-weaklynormal bent function on $\mathbb{F}_{2^{10}}$ (Leander and McGuire 2009)

Result (Leander 2005)

Let $f, g \in \mathcal{B}_{n}$ be bent and g be additionally quadratic. Then $h(x, y)=$ $f(x)+g(y)$ is (weakly) normal on $\mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$ iff f is (weakly) normal on \mathbb{F}_{2}^{n}.

- $n \geq 10$: There exist non-weakly-normal bent functions on \mathbb{F}_{2}^{n}
- The only missing case: $n=8$ degree 4

Normality of bent functions in $n=8$ variables

Research Questions:

1. Do non-normal bent functions of 8 variables and degree 4 exist? (Charpin 2004, Open problem 5)

Normality of bent functions in $n=8$ variables

Research Questions:

1. Do non-normal bent functions of 8 variables and degree 4 exist? (Charpin 2004, Open problem 5)
2. Do non-normal partial spread bent functions in the $\mathcal{P S} \mathcal{S}^{-} \backslash \mathcal{P} \mathcal{S}_{a p}$ class exist? (Leander 2005, p.17)

Normality of bent functions in $n=8$ variables

Research Questions:

1. Do non-normal bent functions of 8 variables and degree 4 exist? (Charpin 2004, Open problem 5)
2. Do non-normal partial spread bent functions in the $\mathcal{P S} \mathcal{S}^{-} \backslash \mathcal{P} \mathcal{S}_{a p}$ class exist? (Leander 2005, p.17)
3. What's about weak normality?

Normality of bent functions in $n=8$ variables

Research Questions:

1. Do non-normal bent functions of 8 variables and degree 4 exist? (Charpin 2004, Open problem 5)
2. Do non-normal partial spread bent functions in the $\mathcal{P S} \mathcal{S}^{-} \backslash \mathcal{P} \mathcal{S}_{a p}$ class exist? (Leander 2005, p.17)
3. What's about weak normality?

Main Results:

I. Non-normal bent functions on \mathbb{F}_{2}^{8} in the $\mathcal{P} \mathcal{S}^{-} \backslash \mathcal{P} \mathcal{S}_{a p}$ exist
II. Partial spread bent functions on \mathbb{F}_{2}^{8} are normal or weakly normal
III. Generation of non-(weakly) normal bent functions using genetic programming: A designer's perspective

Partial spread bent functions: The $\mathcal{P} \mathcal{S}^{-}$class

Definition: A partial spread of order s in \mathbb{F}_{2}^{n} with $n=2 m$ is a set of s vector subspaces U_{1}, \ldots, U_{s} of \mathbb{F}_{2}^{n} of dimension m each, such that $U_{i} \cap U_{j}=\{0\}$ for all $i \neq j$.

Partial spread bent functions: The $\mathcal{P} \mathcal{S}^{-}$class

Definition: A partial spread of order s in \mathbb{F}_{2}^{n} with $n=2 m$ is a set of s vector subspaces U_{1}, \ldots, U_{s} of \mathbb{F}_{2}^{n} of dimension m each, such that $U_{i} \cap U_{j}=\{0\}$ for all $i \neq j$.

- The partial spread class $\mathcal{P S}^{-}$(Dillon 1974):

$$
f(x)=\sum_{i=1}^{2^{m-1}} \mathbb{1}_{U_{i}^{*}}(x) \quad \text { where } U_{i}^{*}:=U_{i} \backslash\{0\}
$$

and vector subspaces $U_{1}, \ldots, U_{2^{m-1}}$ of \mathbb{F}_{2}^{n} form a partial spread

Partial spread bent functions: The $\mathcal{P} \mathcal{S}^{-}$class

Definition: A partial spread of order s in \mathbb{F}_{2}^{n} with $n=2 m$ is a set of s vector subspaces U_{1}, \ldots, U_{s} of \mathbb{F}_{2}^{n} of dimension m each, such that $U_{i} \cap U_{j}=\{0\}$ for all $i \neq j$.

- The partial spread class $\mathcal{P S}^{-}$(Dillon 1974):

$$
f(x)=\sum_{i=1}^{2^{m-1}} \mathbb{1}_{U_{i}^{*}}(x) \quad \text { where } U_{i}^{*}:=U_{i} \backslash\{0\}
$$

and vector subspaces $U_{1}, \ldots, U_{2^{m-1}}$ of \mathbb{F}_{2}^{n} form a partial spread

- The only known explicit subclass of $\mathcal{P S}{ }^{-}$is $\mathcal{P} \mathcal{S}_{a p}$
- All members of $\mathcal{P} \mathcal{S}_{a p} \subset \mathcal{P} \mathcal{S}^{-}$are normal

$\mathcal{P S} \mathcal{S}^{-}$bent functions in $n=8$ variables

- Up to equivalence, all $\mathcal{P S}^{-}$bent functions in $n=8$ variables are known (Langevin and Hou 2011)

$\mathcal{P S} \mathcal{S}^{-}$bent functions in $n=8$ variables

- Up to equivalence, all $\mathcal{P S}^{-}$bent functions in $n=8$ variables are known (Langevin and Hou 2011)
- The representatives are available online (Langevin 2012)

	extension		classification			stabilization	
n	time	size	time	time	class	time	psf
4	1	5	1	0	3	1	64374841666437120
5	15	233	55	10	22	10	20267057123180937216
6	69	4893	1162	385	341	6	1339989812392369324032
7	415	29691	7038	7246	3726	62	17833337132662061531136
8	1076	60943	14449	33501	9316	229	46056096661467073413120
9	681	31715	7516	8594	5442	19529	24520650576127040978944
10	219	8871	2109	698	1336	23	4731497045822911021056
11	75	2759	654	148	303	6	713809537614313684992
12	20	675	160	30	42	10	38019657690425327616
13	3	96	23	4	6	2	129740065512357888
14	0	11	3	0	1	59	44213490155520
15	0	3	1	0	1	11186	6579388416
16	0	2	0	0	1	0	200787
17	0	1	0	0	1	0	1

$\mathcal{P S} \mathcal{S}^{-}$bent functions in $n=8$ variables

- Up to equivalence, all $\mathcal{P S}^{-}$bent functions in $n=8$ variables are known (Langevin and Hou 2011)
- The representatives are available online (Langevin 2012)

	extension		classification			stabilization	
n	time	size	time	time	class	time	$p s f$
4	1	5	1	0	3	1	64374841666437120
5	15	233	55	10	22	10	20267057123180937216
6	69	4893	1162	385	341	6	1339989812392369324032
7	415	29691	7038	7246	3726	62	17833337132662061531136
8	1076	60943	14449	33501	9316	229	46056096661467073413120
9	681	31715	7516	8594	5442	19529	24520650576127040978944
10	219	8871	2109	698	1336	23	4731497045822911021056
11	75	2759	654	148	303	6	713809537614313684992
12	20	675	160	30	42	10	38019657690425327616
13	3	96	23	4	6	2	129740065512357888
14	0	11	3	0	1	59	44213490155520
15	0	3	1	0	1	11186	6579388416
16	0	2	0	0	1	0	200787
17	0	1	0	0	1	0	1

- How to check normality of 9316 bent functions in a reasonable time?

Checking Normality for $n=8$ variables

- One can use the following result (Charpin 2004, Theorem 1)

```
Algorithm. Checking normality
Require: Bent function \(f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}\).
    1: for all subspaces \(V\) of dimension \(n / 2\) do
    2: \(\quad\) Check the following condition: \(f\) is constant on \(b+V\) iff
\[
(-1)^{b \cdot v} \hat{\chi}_{f}(v)=\varepsilon 2^{n / 2}, \text { for all } v \in V^{\perp}
\]
where \(\varepsilon\) is constant, equal either to +1 or -1 .
3: Output affine subspaces \(b+V\), on which \(f\) is constant.
end for
```


Checking Normality for $n=8$ variables

- One can use the following result (Charpin 2004, Theorem 1)

```
Algorithm. Checking normality
Require: Bent function \(f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}\).
    1: for all subspaces \(V\) of dimension \(n / 2\) do
    2: \(\quad\) Check the following condition: \(f\) is constant on \(b+V\) iff
\[
(-1)^{b \cdot v} \hat{\chi}_{f}(v)=\varepsilon 2^{n / 2}, \text { for all } v \in V^{\perp}
\]
where \(\varepsilon\) is constant, equal either to +1 or -1 .
Output affine subspaces \(b+V\), on which \(f\) is constant.
end for
- There are 200787 vector spaces of dim 4 in \(\mathbb{F}_{2}^{8}\) and \(9316 \mathcal{P S}^{-}\) bent functions to check
```


Checking Normality for $n=8$ variables

- One can use the following result (Charpin 2004, Theorem 1)

```
Algorithm. Checking normality
Require: Bent function \(f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}\).
    1: for all subspaces \(V\) of dimension \(n / 2\) do
    2: \(\quad\) Check the following condition: \(f\) is constant on \(b+V\) iff
\[
(-1)^{b \cdot v} \hat{\chi}_{f}(v)=\varepsilon 2^{n / 2}, \text { for all } v \in V^{\perp}
\]
where \(\varepsilon\) is constant, equal either to +1 or -1 .
3: Output affine subspaces \(b+V\), on which \(f\) is constant.
4: end for
```

- There are 200787 vector spaces of dim 4 in \mathbb{F}_{2}^{8} and $9316 \mathcal{P S}^{-}$ bent functions to check
- It took a few hours to check (on a laptop) that all but one $\mathcal{P S}^{-}$ bent functions are normal

Non-normal $\mathcal{P S}^{-}$bent function in $n=8$ variables

- The following bent function $f \in \mathcal{P S}^{-} \backslash \mathcal{P} \mathcal{S}_{a p}$ class (psf=970 in the list of Langevin 2012) is non-normal

$$
\begin{aligned}
& f(x)=x_{1}+x_{2}+x_{1} x_{2}+x_{3}+x_{1} x_{3}+x_{2} x_{3}+x_{1} x_{2} x_{3}+x_{4}+x_{1} x_{4}+x_{2} x_{4}+x_{1} x_{2} x_{4}+x_{3} x_{4} \\
& +x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4}+x_{1} x_{2} x_{3} x_{4}+x_{5}+x_{1} x_{5}+x_{1} x_{2} x_{5}+x_{1} x_{3} x_{5}+x_{2} x_{3} x_{5}+x_{4} x_{5}+x_{1} x_{4} x_{5} \\
& +x_{2} x_{4} x_{5}+x_{1} x_{2} x_{4} x_{5}+x_{2} x_{3} x_{4} x_{5}+x_{6}+x_{1} x_{6}+x_{2} x_{6}+x_{3} x_{6}+x_{1} x_{3} x_{6}+x_{2} x_{3} x_{6} \\
& +x_{1} x_{2} x_{3} x_{6}+x_{1} x_{4} x_{6}+x_{1} x_{2} x_{4} x_{6}+x_{3} x_{4} x_{6}+x_{1} x_{3} x_{4} x_{6}+x_{5} x_{6}+x_{2} x_{5} x_{6}+x_{3} x_{5} x_{6} \\
& +x_{2} x_{3} x_{5} x_{6}+x_{4} x_{5} x_{6}+x_{7}+x_{2} x_{7}+x_{1} x_{2} x_{7}+x_{3} x_{7}+x_{2} x_{3} x_{7}+x_{2} x_{4} x_{7}+x_{1} x_{2} x_{4} x_{7} \\
& +x_{1} x_{3} x_{4} x_{7}+x_{2} x_{3} x_{4} x_{7}+x_{5} x_{7}+x_{2} x_{5} x_{7}+x_{1} x_{2} x_{5} x_{7}+x_{3} x_{5} x_{7}+x_{1} x_{3} x_{5} x_{7}+x_{4} x_{5} x_{7} \\
& +x_{1} x_{4} x_{5} x_{7}+x_{2} x_{4} x_{5} x_{7}+x_{6} x_{7}+x_{1} x_{6} x_{7}+x_{2} x_{6} x_{7}+x_{3} x_{6} x_{7}+x_{2} x_{3} x_{6} x_{7}+x_{1} x_{4} x_{6} x_{7} \\
& +x_{5} x_{6} x_{7}+x_{1} x_{5} x_{6} x_{7}+x_{2} x_{5} x_{6} x_{7}+x_{4} x_{5} x_{6} x_{7}+x_{8}+x_{1} x_{8}+x_{1} x_{2} x_{8}+x_{4} x_{8}+x_{1} x_{4} x_{8} \\
& +x_{2} x_{4} x_{8}+x_{3} x_{4} x_{8}+x_{1} x_{3} x_{4} x_{8}+x_{2} x_{3} x_{4} x_{8}+x_{5} x_{8}+x_{1} x_{2} x_{5} x_{8}+x_{4} x_{5} x_{8}+x_{2} x_{4} x_{5} x_{8} \\
& +x_{6} x_{8}+x_{1} x_{6} x_{8}+x_{2} x_{6} x_{8}+x_{1} x_{3} x_{6} x_{8}+x_{4} x_{6} x_{8}+x_{5} x_{6} x_{8}+x_{1} x_{5} x_{6} x_{8}+x_{4} x_{5} x_{6} x_{8} \\
& +x_{7} x_{8}+x_{1} x_{7} x_{8}+x_{2} x_{7} x_{8}+x_{1} x_{2} x_{7} x_{8}+x_{3} x_{7} x_{8}+x_{2} x_{3} x_{7} x_{8}+x_{4} x_{7} x_{8}+x_{5} x_{7} x_{8} \\
& +x_{1} x_{5} x_{7} x_{8}+x_{3} x_{5} x_{7} x_{8}+x_{6} x_{7} x_{8}+x_{1} x_{6} x_{7} x_{8}+x_{3} x_{6} x_{7} x_{8}+x_{5} x_{6} x_{7} x_{8}
\end{aligned}
$$

- It has a trivial automorphism group
- It is weakly-normal

Is there a "nice" description of this function?

Theorem (Gadouleau, Mariot and Picek 2023)

Let $m, l, d \in \mathbb{N}$ such that $m=l d$. If there are $t=2^{l d-1}$ coprime polynomials of degree $d \geq 1$ over $\mathbb{F}_{2^{l}}$, possibly including the constant polynomial 1 of degree 0 . Then, there exists a partial spread P over $\mathbb{F}_{2}^{n}, n=2 m$, whose union of its subspaces with the null vector discarded defines a bent function in the class $\mathcal{P S}{ }^{-}$.

Is there a "nice" description of this function?

Theorem (Gadouleau, Mariot and Picek 2023)

Let $m, l, d \in \mathbb{N}$ such that $m=l d$. If there are $t=2^{l d-1}$ coprime polynomials of degree $d \geq 1$ over $\mathbb{F}_{2^{l}}$, possibly including the constant polynomial 1 of degree 0 . Then, there exists a partial spread P over $\mathbb{F}_{2}^{n}, n=2 m$, whose union of its subspaces with the null vector discarded defines a bent function in the class $\mathcal{P S}^{-}$.

- Using coprime polynomials of degree $d=2$ over \mathbb{F}_{4}, one can construct $273 \mathcal{P S}^{-}$bent functions
- However, all of them are normal

Is there a "nice" description of this function?

Theorem (Gadouleau, Mariot and Picek 2023)

Let $m, l, d \in \mathbb{N}$ such that $m=l d$. If there are $t=2^{l d-1}$ coprime polynomials of degree $d \geq 1$ over $\mathbb{F}_{2^{l}}$, possibly including the constant polynomial 1 of degree 0 . Then, there exists a partial spread P over $\mathbb{F}_{2}^{n}, n=2 m$, whose union of its subspaces with the null vector discarded defines a bent function in the class $\mathcal{P S}{ }^{-}$.

- Using coprime polynomials of degree $d=2$ over \mathbb{F}_{4}, one can construct $273 \mathcal{P S}^{-}$bent functions
- However, all of them are normal
- Other ways to construct non-normal or non-weakly-normal bent functions?

Evolving Boolean functions with Genetic Programming

- GP Encoding: An individual is represented by a tree

Evolving Boolean functions with Genetic Programming

- GP Encoding: An individual is represented by a tree

- Create a random initial population of X individuals
- Repeat Y times

Evolving Boolean functions with Genetic Programming

- GP Encoding: An individual is represented by a tree

- Create a random initial population of X individuals
- Repeat Y times

1. Evaluation with a fitness function
2. Selection of parents and reproduction
3. Replace the last population

Evolving Boolean functions with Genetic Programming

- GP Encoding: An individual is represented by a tree

- Create a random initial population of 50 individuals
- Repeat 500000 times

1. Evaluation with a fitness function (highest nonlinearity)
2. Selection of parents and reproduction
3. Replace the last population

Evolving bent functions with GP: The results

- After 10000 runs, we got 7478 different bent functions, including

degree, d	$\#$ of bent functions with degree d
2	4690
3	2367
4	421

Evolving bent functions with GP: The results

- After 10000 runs, we got 7478 different bent functions, including

degree, d	$\#$ of bent functions with degree d
2	4690
3	2367
4	421

- All bent functions we got are normal

Evolving bent functions with GP: The results

- After 10000 runs, we got 7478 different bent functions, including

degree, d	$\#$ of bent functions with degree d
2	4690
3	2367
4	421

- All bent functions we got are normal
- The "most complicated" ANF looks as follows

$$
\begin{aligned}
g(x) & =1+x_{2}+x_{5}+x_{6}+x_{8}+x_{1} x_{5}+x_{1} x_{7}+x_{1} x_{8}+x_{2} x_{6}+x_{2} x_{7}+x_{3} x_{8}+x_{4} x_{7} \\
& +x_{2} x_{5} x_{8}+x_{1} x_{3} x_{6} x_{7}+x_{2} x_{5} x_{7} x_{8}
\end{aligned}
$$

Conclusion and future work

Summary

I. Non-normal degree 4 bent functions on \mathbb{F}_{2}^{8} exist, thus Corollary: Let f be a non-normal bent function on \mathbb{F}_{2}^{n}. Then, $n \geq 8$.
II. Partial spread bent functions on \mathbb{F}_{2}^{8} are normal or weakly normal.
III. Non-normal bent functions in the $\mathcal{P S}{ }^{-}$class exist.

Conclusion and future work

Summary

I. Non-normal degree 4 bent functions on \mathbb{F}_{2}^{8} exist, thus Corollary: Let f be a non-normal bent function on \mathbb{F}_{2}^{n}. Then, $n \geq 8$.
II. Partial spread bent functions on \mathbb{F}_{2}^{8} are normal or weakly normal.
III. Non-normal bent functions in the $\mathcal{P S}{ }^{-}$class exist.

Open problems

1. Understand the non-normal example, e.g., what is so special in the corresponding partial spread?
2. Do non-weakly-normal bent functions on \mathbb{F}_{2}^{8} exist?
3. How to tune GP to produce many "interesting" (e.g., non-normal, non-weakly-normal, with trivial automorphism groups, inequivalent to $\mathcal{M} \mathcal{M} \cup \mathcal{P S}$ classes) bent functions?

Normality of Boolean bent functions in eight variables, revisited

Alexandr Polujan ${ }^{a}$, Luca Mariot ${ }^{b}$, Stjepan Picek ${ }^{c}$

${ }^{a}$ Otto von Guericke University Magdeburg, Germany
${ }^{b}$ Semantics, Cybersecurity and Services Group, University of Twente, The Netherlands ${ }^{c}$ Digital Security Group, Radboud University, The Netherlands

BFA 2023
The 8th International Workshop on Boolean Functions and their Applications, 05.09.2023

Further Reading I

[Can+06] Anne Canteaut, Magnus Daum, Hans Dobbertin and Gregor Leander. "Finding nonnormal bent functions". In: Discrete Applied Mathematics 154.2 (2006). Coding and Cryptography, pp. 202-218. DOI:
https://doi.org/10.1016/j.dam. 2005.03.027 (cit. on pp. 14-18).
[Cha04] Pascale Charpin. "Normal Boolean functions". In: Journal of Complexity 20.2 (2004). Festschrift for Harald Niederreiter, Special Issue on Coding and Cryptography, pp. 245-265. DOI: https://doi.org/10.1016/j.jco.2003.08.010 (cit. on pp. 3-6, 10-13, 19-22, 29-31).

Further Reading II

[Dil74] J. F. Dillon. "Elementary Hadamard Difference Sets". PhD thesis. University of Maryland, 1974. Doi:
https://doi.org/10.13016/M2MS3K194 (cit. on
pp. 23-25).
[Dob95] Hans Dobbertin. "Construction of bent functions and balanced Boolean functions with high nonlinearity". In: Fast Software Encryption. Ed. by Bart Preneel. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 61-74. Doi: https://doi.org/10.1007/3-540-60590-8_5 (cit. on pp. 3-6).

Further Reading III

[GMP23] Maximilien Gadouleau, Luca Mariot and Stjepan Picek. "Bent functions in the partial spread class generated by linear recurring sequences". In: Designs, Codes and Cryptography 91.1 (Jan. 2023), pp. 63-82. DOI: https://doi.org/10.1007/s10623-022-01097-1 (cit. on pp. 33-35).
[Lan12] Philippe Langevin. "Classification of partial spread functions in eight variables". In: Philippe Langevin's numerical project page. 2012. URL: https://langevin.univtln.fr/project/spread/psp.html (cit. on pp. 26-28, 32).

Further Reading IV

[Lea05] Gregor Leander. "Normality of bent bunctions monomial- and binomial-bent functions". doctoralthesis. Ruhr-Universität Bochum, Universitätsbibliothek, 2005. URL:
https://hss-opus.ub.ruhr-uni-bochum.de/opus4/ frontdoor/index/index/year/2018/docId/413 (cit. on pp. 14-22).
[LH11] Philippe Langevin and Xiang-Dong Hou. "Counting Partial Spread Functions in Eight Variables". In: IEEE Transactions on Information Theory 57.4 (2011), pp. 2263-2269. DOI: https://doi.org10.1109/TIT.2011.2112230 (cit. on pp. 26-28).

Further Reading V

[LMO9] Gregor Leander and Gary McGuire. "Construction of bent functions from near-bent functions". In: Journal of Combinatorial Theory, Series A 116.4 (2009), pp. 960-970. DOI: https://doi.org/10.1016/j.jcta.2008.12.004 (cit. on pp. 14-18).

