Normality of Boolean bent functions in eight variables, revisited

Alexandr Polujan^a, Luca Mariot^b, Stjepan Picek^c

^a Otto von Guericke University Magdeburg, Germany
^bSemantics, Cybersecurity and Services Group, University of Twente, The Netherlands
^c Digital Security Group, Radboud University, The Netherlands

BFA 2023 The 8th International Workshop on Boolean Functions and their Applications, 05.09.2023

Boolean functions

- Mappings $f : \mathbb{F}_2^n \to \mathbb{F}_2$ are called Boolean functions
- Let \mathcal{B}_n be the set of all Boolean functions in n variables
- Let A_n be the set of all affine functions in n variables

$$\mathcal{A}_n = \{a_0 + a_1 x_1 + \dots + a_n x_n \colon a_i \in \mathbb{F}_2\}$$

▶ The Hamming distance between $f, g \in B_n$ is given by

$$d_H(f,g) = |\{x \in \mathbb{F}_2^n \colon f(x) \neq g(x)\}|$$

• The nonlinearity of $f \in \mathcal{B}_n$ is defined by

$$\operatorname{nl}(f) = \min_{l \in \mathcal{A}_n} d_H(f, l)$$

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables BFA 2023 1/14

- A function $f \in \mathcal{B}_n$ is called bent if $nl(f) = 2^{n-1} 2^{\frac{n}{2}-1}$
- ▶ They exist if n = 2m; if $f \in \mathcal{B}_n$ is bent then $\deg(f) \le n/2$

- A function $f \in \mathcal{B}_n$ is called bent if $nl(f) = 2^{n-1} 2^{\frac{n}{2}-1}$
- ▶ They exist if n = 2m; if $f \in \mathcal{B}_n$ is bent then $\deg(f) \le n/2$

Example (Desarguesian partial spread bent functions)

 \mathcal{PS}_{ap} class: $f(x,y)=g(xy^{2^m-2}) \ \ \text{for} \ x,y\in \mathbb{F}_{2^m},$ where $g\in \mathcal{B}_m$ is balanced and g(0)=0

- ▶ A function $f \in \mathcal{B}_n$ is called bent if $nl(f) = 2^{n-1} 2^{\frac{n}{2}-1}$
- ▶ They exist if n = 2m; if $f \in \mathcal{B}_n$ is bent then $\deg(f) \le n/2$

Example (Desarguesian partial spread bent functions)

 \mathcal{PS}_{ap} class: $f(x,y)=g(xy^{2^m-2}) \ \ \text{for} \ x,y\in \mathbb{F}_{2^m},$ where $g\in \mathcal{B}_m$ is balanced and g(0)=0

Definition (Dobbertin 1995): A bent function $f \in \mathcal{B}_n$ is said to be normal if it is constant on some affine subspace $U \subset \mathbb{F}_2^n$ of dimension n/2; otherwise non-normal

- ▶ A function $f \in \mathcal{B}_n$ is called bent if $nl(f) = 2^{n-1} 2^{\frac{n}{2}-1}$
- ▶ They exist if n = 2m; if $f \in \mathcal{B}_n$ is bent then $\deg(f) \le n/2$

Example (Desarguesian partial spread bent functions)

 \mathcal{PS}_{ap} class: $f(x,y)=g(xy^{2^m-2}) \ \ \text{for} \ x,y\in \mathbb{F}_{2^m},$ where $g\in \mathcal{B}_m$ is balanced and g(0)=0

Definition (Dobbertin 1995): A bent function $f \in \mathcal{B}_n$ is said to be normal if it is constant on some affine subspace $U \subset \mathbb{F}_2^n$ of dimension n/2; otherwise non-normal

Definition (Charpin 2004): A bent function $f \in \mathcal{B}_n$ is said to be weakly normal if it is affine on some affine subspace $U \subset \mathbb{F}_2^n$ of dimension n/2; otherwise non-weakly-normal

Normality of bent functions: The motivation

Why non-normal bent functions?

Many known constructions are normal. One can consider non-normal bent functions as "new"

Normality of bent functions: The motivation

Why non-normal bent functions?

Many known constructions are normal. One can consider non-normal bent functions as "new"

Example (Desarguesian partial spread bent functions)

 \mathcal{PS}_{ap} class: Every $f(x,y) = g(xy^{2^m-2})$ for $x, y \in \mathbb{F}_{2^m}$, where $g \in \mathcal{B}_m$ is balanced and g(0) = 0, is normal w.r.t. $\mathbb{F}_{2^m} \times \{0\}$

Normality of bent functions: The motivation

Why non-normal bent functions?

Many known constructions are normal. One can consider non-normal bent functions as "new"

Example (Desarguesian partial spread bent functions)

 \mathcal{PS}_{ap} class: Every $f(x,y) = g(xy^{2^m-2})$ for $x, y \in \mathbb{F}_{2^m}$, where $g \in \mathcal{B}_m$ is balanced and g(0) = 0, is normal w.r.t. $\mathbb{F}_{2^m} \times \{0\}$

Why non-weakly-normal bent functions?

Weak normality is invariant under extended-affine equivalence

For n small, one can prove normality theoretically, since the structure of bent functions is known

- For n small, one can prove normality theoretically, since the structure of bent functions is known
- ▶ n = 2, 4: All bent functions are quadratic, hence normal

- For n small, one can prove normality theoretically, since the structure of bent functions is known
- ▶ n = 2, 4: All bent functions are quadratic, hence normal
- ▶ n = 6: All bent functions are Maiorana-McFarland, hence normal

- For n small, one can prove normality theoretically, since the structure of bent functions is known
- ▶ n = 2, 4: All bent functions are quadratic, hence normal
- ▶ n = 6: All bent functions are Maiorana-McFarland, hence normal
- $\blacktriangleright n = 8:$
- All quadratic bent functions are normal
- All cubic bent functions are normal (Charpin 2004)

n = 10, 12, 14: A few examples shown to be non-weakly-normal using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

 n = 10, 12, 14: A few examples shown to be non-weakly-normal using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami–Welch function $x \in \mathbb{F}_{2^{11}} \mapsto Tr(x^{241})$ to the trace 0/1 elements is a non-weakly-normal bent function on $\mathbb{F}_{2^{10}}$ (Leander and McGuire 2009)

n = 10, 12, 14: A few examples shown to be non-weakly-normal using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami–Welch function $x \in \mathbb{F}_{2^{11}} \mapsto Tr(x^{241})$ to the trace 0/1 elements is a non-weakly-normal bent function on $\mathbb{F}_{2^{10}}$ (Leander and McGuire 2009)

Result (Leander 2005)

Let $f, g \in \mathcal{B}_n$ be bent and g be additionally quadratic. Then h(x, y) = f(x) + g(y) is (weakly) normal on $\mathbb{F}_2^n \times \mathbb{F}_2^m$ iff f is (weakly) normal on \mathbb{F}_2^n .

n = 10, 12, 14: A few examples shown to be non-weakly-normal using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami–Welch function $x \in \mathbb{F}_{2^{11}} \mapsto Tr(x^{241})$ to the trace 0/1 elements is a non-weakly-normal bent function on $\mathbb{F}_{2^{10}}$ (Leander and McGuire 2009)

Result (Leander 2005)

Let $f, g \in \mathcal{B}_n$ be bent and g be additionally quadratic. Then h(x, y) = f(x) + g(y) is (weakly) normal on $\mathbb{F}_2^n \times \mathbb{F}_2^m$ iff f is (weakly) normal on \mathbb{F}_2^n .

▶ $n \ge 10$: There exist non-weakly-normal bent functions on \mathbb{F}_2^n

n = 10, 12, 14: A few examples shown to be non-weakly-normal using an algorithm of Canteaut, Daum, Dobbertin and Leander 2006

Example: The restriction of the Kasami–Welch function $x \in \mathbb{F}_{2^{11}} \mapsto Tr(x^{241})$ to the trace 0/1 elements is a non-weakly-normal bent function on $\mathbb{F}_{2^{10}}$ (Leander and McGuire 2009)

Result (Leander 2005)

Let $f, g \in \mathcal{B}_n$ be bent and g be additionally quadratic. Then h(x, y) = f(x) + g(y) is (weakly) normal on $\mathbb{F}_2^n \times \mathbb{F}_2^m$ iff f is (weakly) normal on \mathbb{F}_2^n .

- ▶ $n \ge 10$: There exist non-weakly-normal bent functions on \mathbb{F}_2^n
- The only missing case: n = 8 degree 4

Research Questions:

 Do non-normal bent functions of 8 variables and degree 4 exist? (Charpin 2004, Open problem 5)

Research Questions:

- Do non-normal bent functions of 8 variables and degree 4 exist? (Charpin 2004, Open problem 5)
- 2. Do non-normal partial spread bent functions in the $\mathcal{PS}^- \setminus \mathcal{PS}_{ap}$ class exist? (Leander 2005, p.17)

Research Questions:

- Do non-normal bent functions of 8 variables and degree 4 exist? (Charpin 2004, Open problem 5)
- 2. Do non-normal partial spread bent functions in the $\mathcal{PS}^- \setminus \mathcal{PS}_{ap}$ class exist? (Leander 2005, p.17)
- 3. What's about weak normality?

Research Questions:

- Do non-normal bent functions of 8 variables and degree 4 exist? (Charpin 2004, Open problem 5)
- 2. Do non-normal partial spread bent functions in the $\mathcal{PS}^- \setminus \mathcal{PS}_{ap}$ class exist? (Leander 2005, p.17)
- 3. What's about weak normality?

Main Results:

- I. Non-normal bent functions on \mathbb{F}_2^8 in the $\mathcal{PS}^-\setminus\mathcal{PS}_{ap}$ exist
- II. Partial spread bent functions on \mathbb{F}_2^8 are normal or weakly normal
- III. Generation of non-(weakly) normal bent functions using genetic programming: A designer's perspective

Partial spread bent functions: The \mathcal{PS}^- class

Definition: A partial spread of order s in \mathbb{F}_2^n with n = 2m is a set of s vector subspaces U_1, \ldots, U_s of \mathbb{F}_2^n of dimension m each, such that $U_i \cap U_j = \{0\}$ for all $i \neq j$.

Partial spread bent functions: The \mathcal{PS}^- class

Definition: A partial spread of order s in \mathbb{F}_2^n with n = 2m is a set of s vector subspaces U_1, \ldots, U_s of \mathbb{F}_2^n of dimension m each, such that $U_i \cap U_j = \{0\}$ for all $i \neq j$.

• The partial spread class \mathcal{PS}^- (Dillon 1974):

$$f(x) = \sum_{i=1}^{2^{m-1}} \mathbb{1}_{U_i^*}(x) \text{ where } U_i^* := U_i \setminus \{0\}$$

and vector subspaces $U_1,\ldots,U_{2^{m-1}}$ of \mathbb{F}_2^n form a partial spread

Partial spread bent functions: The \mathcal{PS}^- class

Definition: A partial spread of order s in \mathbb{F}_2^n with n = 2m is a set of s vector subspaces U_1, \ldots, U_s of \mathbb{F}_2^n of dimension m each, such that $U_i \cap U_j = \{0\}$ for all $i \neq j$.

• The partial spread class \mathcal{PS}^- (Dillon 1974):

$$f(x) = \sum_{i=1}^{2^{m-1}} \mathbb{1}_{U_i^*}(x) \quad \text{where } U_i^* := U_i \setminus \{0\}$$

and vector subspaces $U_1,\ldots,U_{2^{m-1}}$ of \mathbb{F}_2^n form a partial spread

- The only known explicit subclass of \mathcal{PS}^- is \mathcal{PS}_{ap}
- ▶ All members of $\mathcal{PS}_{ap} \subset \mathcal{PS}^-$ are normal

\mathcal{PS}^- bent functions in n = 8 variables

▶ Up to equivalence, all \mathcal{PS}^- bent functions in n = 8 variables are known (Langevin and Hou 2011)

\mathcal{PS}^- bent functions in n = 8 variables

- ▶ Up to equivalence, all \mathcal{PS}^- bent functions in n = 8 variables are known (Langevin and Hou 2011)
- The representatives are available online (Langevin 2012)

extension				classif:	ication	stabilization	
n	time	size	time	time	class	time	psf
4	1	5	1	0	3	1	64374841666437120
5	15	233	55	10	22	10	20267057123180937216
6	69	4893	1162	385	341	6	1339989812392369324032
7	415	29691	7038	7246	3726	62	17833337132662061531136
8	1076	60943	14449	33501	9316	229	46056096661467073413120
9	681	31715	7516	8594	5442	19529	24520650576127040978944
10	219	8871	2109	698	1336	23	4731497045822911021056
11	75	2759	654	148	303	6	713809537614313684992
12	20	675	160	30	42	10	38019657690425327616
13	3	96	23	4	6	2	129740065512357888
14	0	11	3	0	1	59	44213490155520
15	0	3	1	0	1	11186	6579388416
16	0	2	0	0	1	0	200787
17	0	1	0	0	1	0	1

\mathcal{PS}^- bent functions in n=8 variables

- ▶ Up to equivalence, all \mathcal{PS}^- bent functions in n = 8 variables are known (Langevin and Hou 2011)
- The representatives are available online (Langevin 2012)

extension				classif:	ication	stabilization	
n	time	size	time	time	class	time	psf
4	1	5	1	0	3	1	64374841666437120
5	15	233	55	10	22	10	20267057123180937216
6	69	4893	1162	385	341	6	1339989812392369324032
7	415	29691	7038	7246	3726	62	17833337132662061531136
8	1076	60943	14449	33501	9316	229	46056096661467073413120
9	681	31715	7516	8594	5442	19529	24520650576127040978944
10	219	8871	2109	698	1336	23	4731497045822911021056
11	75	2759	654	148	303	6	713809537614313684992
12	20	675	160	30	42	10	38019657690425327616
13	3	96	23	4	6	2	129740065512357888
14	0	11	3	0	1	59	44213490155520
15	0	3	1	0	1	11186	6579388416
16	0	2	0	0	1	0	200787
17	0	1	0	0	1	0	1

How to check normality of 9316 bent functions in a reasonable time?

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables BFA 2023 8 / 14

Checking Normality for n = 8 variables

One can use the following result (Charpin 2004, Theorem 1)

Algorithm. Checking normality

Require: Bent function $f : \mathbb{F}_2^n \to \mathbb{F}_2$. 1: for all subspaces V of dimension n/2 do 2: Check the following condition: f is constant on b + V iff $(-1)^{b \cdot v} \hat{\chi}_f(v) = \varepsilon 2^{n/2}$, for all $v \in V^{\perp}$

where ε is constant, equal either to +1 or -1.

- 3: **Output** affine subspaces b + V, on which f is constant.
- 4: end for

Checking Normality for n = 8 variables

One can use the following result (Charpin 2004, Theorem 1)

Algorithm. Checking normality

Require: Bent function $f : \mathbb{F}_2^n \to \mathbb{F}_2$. 1: for all subspaces V of dimension n/2 do 2: Check the following condition: f is constant on b + V iff $(-1)^{b \cdot v} \hat{\chi}_f(v) = \varepsilon 2^{n/2}$, for all $v \in V^{\perp}$ where ε is constant, equal either to +1 or -1.

- 3: **Output** affine subspaces b + V, on which f is constant.
- 4: end for
- ▶ There are 200787 vector spaces of dim 4 in \mathbb{F}_2^8 and 9316 \mathcal{PS}^- bent functions to check

Checking Normality for n = 8 variables

One can use the following result (Charpin 2004, Theorem 1)

Algorithm. Checking normality

Require: Bent function $f : \mathbb{F}_2^n \to \mathbb{F}_2$. 1: for all subspaces V of dimension n/2 do 2: Check the following condition: f is constant on b + V iff $(-1)^{b \cdot v} \hat{\chi}_f(v) = \varepsilon 2^{n/2}$, for all $v \in V^{\perp}$ where ε is constant, equal either to +1 or -1.

- 3: **Output** affine subspaces b + V, on which f is constant.
- 4: end for
- ▶ There are 200787 vector spaces of dim 4 in \mathbb{F}_2^8 and 9316 \mathcal{PS}^- bent functions to check
- It took a few hours to check (on a laptop) that all but one PS⁻ bent functions are normal

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables BFA 2023 9 / 14

Non-normal \mathcal{PS}^- bent function in n = 8 variables

► The following bent function f ∈ PS⁻ \ PS_{ap} class (psf=970 in the list of Langevin 2012) is non-normal

$$\begin{split} f(x) &= x_1 + x_2 + x_1x_2 + x_3 + x_1x_3 + x_2x_3 + x_1x_2x_3 + x_4 + x_1x_4 + x_2x_4 + x_1x_2x_4 + x_3x_4 \\ &+ x_1x_3x_4 + x_2x_3x_4 + x_1x_2x_3x_4 + x_5 + x_1x_5 + x_1x_2x_5 + x_1x_3x_5 + x_2x_3x_5 + x_4x_5 + x_1x_4x_5 \\ &+ x_2x_4x_5 + x_1x_2x_4x_5 + x_2x_3x_4x_5 + x_6 + x_1x_6 + x_2x_6 + x_3x_6 + x_1x_3x_6 + x_2x_3x_6 \\ &+ x_1x_2x_3x_6 + x_1x_4x_6 + x_1x_2x_4x_6 + x_3x_4x_6 + x_1x_3x_4x_6 + x_5x_6 + x_2x_5x_6 + x_3x_5x_6 \\ &+ x_2x_3x_5x_6 + x_4x_5x_6 + x_7 + x_2x_7 + x_1x_2x_7 + x_3x_7 + x_2x_3x_7 + x_2x_4x_7 + x_1x_2x_4x_7 \\ &+ x_1x_3x_4x_7 + x_2x_3x_4x_7 + x_5x_7 + x_2x_5x_7 + x_1x_2x_5x_7 + x_3x_5x_7 + x_1x_3x_5x_7 + x_4x_5x_7 \\ &+ x_1x_4x_5x_7 + x_2x_4x_5x_7 + x_6x_7 + x_1x_6x_7 + x_2x_6x_7 + x_3x_6x_7 + x_2x_3x_6x_7 + x_1x_4x_6x_7 \\ &+ x_5x_6x_7 + x_1x_5x_6x_7 + x_2x_5x_6x_7 + x_4x_5x_6x_7 + x_8 + x_1x_8 + x_1x_2x_8 + x_4x_8 + x_1x_4x_8 \\ &+ x_2x_4x_8 + x_3x_4x_8 + x_1x_3x_4x_8 + x_2x_3x_4x_8 + x_5x_8 + x_1x_2x_5x_8 + x_4x_5x_8 + x_2x_4x_5x_8 \\ &+ x_6x_8 + x_1x_6x_8 + x_2x_6x_8 + x_1x_3x_6x_8 + x_4x_6x_8 + x_5x_6x_8 + x_1x_5x_6x_8 + x_4x_5x_6x_8 \\ &+ x_7x_8 + x_1x_7x_8 + x_2x_7x_8 + x_1x_2x_7x_8 + x_3x_7x_8 + x_2x_3x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_3x_5x_7x_8 + x_6x_7x_8 + x_16x_7x_8 + x_3x_6x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_3x_5x_7x_8 + x_6x_7x_8 + x_1x_6x_7x_8 + x_5x_6x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_3x_5x_7x_8 + x_6x_7x_8 + x_1x_6x_7x_8 + x_5x_6x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_3x_5x_7x_8 + x_6x_7x_8 + x_1x_6x_7x_8 + x_5x_6x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_3x_5x_7x_8 + x_6x_7x_8 + x_1x_6x_7x_8 + x_5x_6x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_3x_5x_7x_8 + x_1x_6x_7x_8 + x_1x_6x_7x_8 + x_5x_6x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_3x_5x_7x_8 + x_6x_7x_8 + x_1x_6x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_3x_5x_7x_8 + x_6x_7x_8 + x_1x_6x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_3x_5x_7x_8 + x_6x_7x_8 + x_1x_6x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_3x_5x_7x_8 + x_6x_7x_8 + x_1x_6x_7x_8 + x_5x_6x_7x_8 \\ &+ x_1x_5x_7x_8 + x_1x_5x_7x_8 + x_$$

It has a trivial automorphism group

It is weakly-normal

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables BFA 2023 10 / 14

Theorem (Gadouleau, Mariot and Picek 2023)

Let $m, l, d \in \mathbb{N}$ such that m = ld. If there are $t = 2^{ld-1}$ coprime polynomials of degree $d \ge 1$ over \mathbb{F}_{2^l} , possibly including the constant polynomial 1 of degree 0. Then, there exists a partial spread P over $\mathbb{F}_2^n, n = 2m$, whose union of its subspaces with the null vector discarded defines a bent function in the class \mathcal{PS}^- .

Theorem (Gadouleau, Mariot and Picek 2023)

Let $m, l, d \in \mathbb{N}$ such that m = ld. If there are $t = 2^{ld-1}$ coprime polynomials of degree $d \ge 1$ over \mathbb{F}_{2^l} , possibly including the constant polynomial 1 of degree 0. Then, there exists a partial spread P over $\mathbb{F}_2^n, n = 2m$, whose union of its subspaces with the null vector discarded defines a bent function in the class \mathcal{PS}^- .

- ► Using coprime polynomials of degree d = 2 over F₄, one can construct 273 PS⁻ bent functions
- However, all of them are normal

Theorem (Gadouleau, Mariot and Picek 2023)

Let $m, l, d \in \mathbb{N}$ such that m = ld. If there are $t = 2^{ld-1}$ coprime polynomials of degree $d \ge 1$ over \mathbb{F}_{2^l} , possibly including the constant polynomial 1 of degree 0. Then, there exists a partial spread P over $\mathbb{F}_2^n, n = 2m$, whose union of its subspaces with the null vector discarded defines a bent function in the class \mathcal{PS}^- .

- ► Using coprime polynomials of degree d = 2 over F₄, one can construct 273 PS⁻ bent functions
- ► However, all of them are normal
- Other ways to construct non-normal or non-weakly-normal bent functions?

Evolving Boolean functions with Genetic Programming

▶ GP Encoding: An individual is represented by a tree

Evolving Boolean functions with Genetic Programming

▶ GP Encoding: An individual is represented by a tree

Create a random initial population of X individuals
Repeat Y times

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables BFA 2023 12 / 14

Evolving Boolean functions with Genetic Programming

▶ GP Encoding: An individual is represented by a tree

- Create a random initial population of X individuals
- Repeat Y times
- 1. Evaluation with a fitness function
- 2. Selection of parents and reproduction
- 3. Replace the last population

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables

BFA 2023 12 / 14

Evolving Boolean functions with Genetic Programming

▶ GP Encoding: An individual is represented by a tree

- Create a random initial population of 50 individuals
- Repeat 500 000 times
- 1. Evaluation with a fitness function (highest nonlinearity)
- 2. Selection of parents and reproduction
- 3. Replace the last population

Alexandr Polujan (Magdeburg) Normality of Boolean bent functions in 8 variables

Evolving bent functions with GP: The results

• After $10\,000$ runs, we got $7\,478$ different bent functions, including

degree, d	# of bent functions with degree d
2	4 690
3	2367
4	421

Evolving bent functions with GP: The results

• After $10\,000$ runs, we got $7\,478$ different bent functions, including

degree, d	# of bent functions with degree d
2	4 6 9 0
3	2367
4	421

All bent functions we got are normal

Evolving bent functions with GP: The results

• After $10\,000$ runs, we got $7\,478$ different bent functions, including

degree, d	# of bent functions with degree d
2	4 6 9 0
3	2367
4	421

- All bent functions we got are normal
- The "most complicated" ANF looks as follows

 $g(x) = 1 + x_2 + x_5 + x_6 + x_8 + x_1x_5 + x_1x_7 + x_1x_8 + x_2x_6 + x_2x_7 + x_3x_8 + x_4x_7 + x_2x_5x_8 + x_1x_3x_6x_7 + x_2x_5x_7x_8$

Conclusion and future work

Summary

- I. Non-normal degree 4 bent functions on \mathbb{F}_2^8 exist, thus Corollary: Let f be a non-normal bent function on \mathbb{F}_2^n . Then, $n \ge 8$.
- II. Partial spread bent functions on \mathbb{F}_2^8 are normal or weakly normal.
- III. Non-normal bent functions in the \mathcal{PS}^- class exist.

Conclusion and future work

Summary

- I. Non-normal degree 4 bent functions on \mathbb{F}_2^8 exist, thus Corollary: Let f be a non-normal bent function on \mathbb{F}_2^n . Then, $n \ge 8$.
- II. Partial spread bent functions on \mathbb{F}_2^8 are normal or weakly normal.
- III. Non-normal bent functions in the \mathcal{PS}^- class exist.

Open problems

- 1. Understand the non-normal example, e.g., what is so special in the corresponding partial spread?
- 2. Do non-weakly-normal bent functions on \mathbb{F}_2^8 exist?
- 3. How to tune GP to produce many "interesting" (e.g., non-normal, non-weakly-normal, with trivial automorphism groups, inequivalent to $\mathcal{MM} \cup \mathcal{PS}$ classes) bent functions?

14 / 14

Normality of Boolean bent functions in eight variables, revisited

Alexandr Polujan^a, Luca Mariot^b, Stjepan Picek^c

^a Otto von Guericke University Magdeburg, Germany
^bSemantics, Cybersecurity and Services Group, University of Twente, The Netherlands
^c Digital Security Group, Radboud University, The Netherlands

BFA 2023 The 8th International Workshop on Boolean Functions and their Applications, 05.09.2023

Further Reading I

[Can+06] Anne Canteaut, Magnus Daum, Hans Dobbertin and Gregor Leander. "Finding nonnormal bent functions". In: Discrete Applied Mathematics 154.2 (2006). Coding and Cryptography, pp. 202–218. DOI: https://doi.org/10.1016/j.dam.2005.03.027 (cit. on pp. 14–18).

[Cha04]

Pascale Charpin. "Normal Boolean functions". In: Journal of Complexity 20.2 (2004). Festschrift for Harald Niederreiter, Special Issue on Coding and Cryptography, pp. 245–265. DOI: https://doi.org/10.1016/j.jco.2003.08.010 (cit. on pp. 3–6, 10–13, 19–22, 29–31).

Further Reading II

[Dil74]

J. F. Dillon. "Elementary Hadamard Difference Sets". PhD thesis. University of Maryland, 1974. DOI: https://doi.org/10.13016/M2MS3K194 (cit. on pp. 23-25).

[Dob95] Hans Dobbertin. "Construction of bent functions and balanced Boolean functions with high nonlinearity". In: Fast Software Encryption. Ed. by Bart Preneel. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 61–74. DOI: https://doi.org/10.1007/3-540-60590-8_5 (cit. on pp. 3–6).

Further Reading III

[GMP23] Maximilien Gadouleau, Luca Mariot and Stjepan Picek. "Bent functions in the partial spread class generated by linear recurring sequences". In: Designs, Codes and Cryptography 91.1 (Jan. 2023), pp. 63–82. DOI: https://doi.org/10.1007/s10623-022-01097-1 (cit. on pp. 33–35).

[Lan12]

Philippe Langevin. "Classification of partial spread functions in eight variables". In: Philippe Langevin's numerical project page. 2012. URL: https://langevin.univtln.fr/project/spread/psp.html (cit. on pp. 26-28, 32).

Further Reading IV

[Lea05] Gregor Leander. "Normality of bent bunctions monomial- and binomial-bent functions". doctoralthesis. Ruhr-Universität Bochum, Universitätsbibliothek, 2005. URL: https://hss-opus.ub.ruhr-uni-bochum.de/opus4/ frontdoor/index/index/year/2018/docId/413 (cit. on pp. 14-22).

[LH11]

Philippe Langevin and Xiang-Dong Hou. "Counting Partial Spread Functions in Eight Variables". In: *IEEE Transactions on Information Theory* 57.4 (2011), pp. 2263–2269. DOI: https://doi.org10.1109/TIT.2011.2112230 (cit. on pp. 26–28).

Further Reading V

[LM09]

Gregor Leander and Gary McGuire. "Construction of bent functions from near-bent functions". In: *Journal of Combinatorial Theory, Series A* 116.4 (2009), pp. 960–970. DOI: https://doi.org/10.1016/j.jcta.2008.12.004 (cit. on pp. 14–18).