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Looking for a super-symmetric S-box

Let’s call an S-box over Fpn a golden Kaisa S-box if:

1 mask and difference propagation is governed by the same rules

2 forward and backward propagation is the same

3 every differential has DP ≤ p−n/2 and every linear approximation LP ≤ p−n/2

• Can we find such a layer with S-boxes over Fpn with pn ̸= 8?

• For p = 2 it is not likely

• But what about p odd?
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Difference and mask propagation properties of a transformation of Fpn

Differential probability (DP) of a differential (a, b)

DP(a, b) =
#{x ∈ Fpn | f (x + a)− f (x) = b}

pn

Correlation and linear potential (LP) of a linear approximation (a, b)

C(a, b) =

∑
x ω

Tr(ax−bf (x))

pn
with ω = e

2πi
p

LP(a, b) = C(a, b)C(a, b)
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Power function in Fpn

• Power functions seem like a good place to start

• Smallest exponent higher than 1: e = 2

• For p = 2 this gives a linear function

• For odd p this is non-linear

• Let us investigate DP and LP
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Differential probabilities of squaring in Fpn with odd p

DP(a, b) = p−n#{x | (x + a)2 − x2 = b}
= p−n#{x | 2ax + a2 = b}

= p−n#{x | x =
b

2a
− a

2
}

= p−n

• Summarizing:

• ∀a ̸= 0, b : DP(a, b) = p−n

• ∀b ̸= 0 : DP(0, b) = 0 and DP(0, 0) = 1

• Non-invertible: any non-zero difference can propagate to 0

• DP(a, b) = DP(b, a) if a ̸= 0 and b ̸= 0
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Let us try correlation

C(a, b) = p−n
∑

x ω
Tr(ax−bx2) Hmmm . . . where to start??

We find in [Lidl & Niederreiter 1997] Theorem 5.33 and can derive from that

C(a, b) =
1

pn

∑
x∈Fpn

ωTr(bx2−ax) =


(−1)d−1
√
pn

ωTr(−a2(4b)−1)η(b) if p ≡ 1 (mod 4)

(−1)d−1
√
pn

idωTr(−a2(4b)−1)η(b) if p ≡ 3 (mod 4)

with η(b) = 1 if b is a square in Fpn and −1 otherwise.

• From this it follows that:

• ∀b ̸= 0, a : LP(a, b) = p−n

• ∀a ̸= 0 : LP(a, 0) = 0 and LP(0, 0) = 1

• Imbalanced: all output masks are correlated to zero input mask

• LP(a, b) = LP(b, a) if a ̸= 0 and b ̸= 0
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Does it satisfy the criteria?

The three criteria are (almost) satisfied for any p and n:

1 forward propagation of differences and backward propagation of masks and vice

versa follow the same rules: yes!

2 forward and backward propagation is the same, except for zero output differences

and input masks: almost

3 every differential has DP = p−n and every linear approximation LP = p−n: even

better!

Now let us try to build an S-box layer from that!
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An S-box layer of squaring in Fpn

• Input differences a active in a single S-box have DP(a, 0) = p−n

• in most constructions the adversary can apply such differences

• presence of a collision is easy to detect and can be used as a distinguisher

• unacceptable weakness

• Output masks b restricted to a single S-box have LP(0, b) = p−n

• measurable bias in the output

• phases of bias allow determining whitening key, etc.

• unacceptable weakness

• problem is local collision/bias
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Building a non-linear layer from squaring without local collision/bias

Specification:

γ : ∀0 ≤ i < m : yi ← xi + x2i+1 mod m

Still not invertible but no local collisions or bias

• DP(a, 0) > 0 implies that all coordinates of a are non-zero

• DP(a, 0) = p−nm

• In case of duplex it is infeasible to apply such a difference

• LP(0, b) > 0 implies that all coordinates of b are non-zero

• LP(a, 0) = p−nm

• In case of duplex these biases cannot be observed

But isn’t the invertibility a global problem?

9/14



Building a non-linear layer from squaring without local collision/bias

Specification:

γ : ∀0 ≤ i < m : yi ← xi + x2i+1 mod m

Still not invertible but no local collisions or bias

• DP(a, 0) > 0 implies that all coordinates of a are non-zero

• DP(a, 0) = p−nm

• In case of duplex it is infeasible to apply such a difference

• LP(0, b) > 0 implies that all coordinates of b are non-zero

• LP(a, 0) = p−nm

• In case of duplex these biases cannot be observed

But isn’t the invertibility a global problem?

9/14



Building a non-linear layer from squaring without local collision/bias

Specification:

γ : ∀0 ≤ i < m : yi ← xi + x2i+1 mod m

Still not invertible but no local collisions or bias

• DP(a, 0) > 0 implies that all coordinates of a are non-zero

• DP(a, 0) = p−nm

• In case of duplex it is infeasible to apply such a difference

• LP(0, b) > 0 implies that all coordinates of b are non-zero

• LP(a, 0) = p−nm

• In case of duplex these biases cannot be observed

But isn’t the invertibility a global problem?

9/14



Building a non-linear layer from squaring without local collision/bias

Specification:

γ : ∀0 ≤ i < m : yi ← xi + x2i+1 mod m

Still not invertible but no local collisions or bias

• DP(a, 0) > 0 implies that all coordinates of a are non-zero

• DP(a, 0) = p−nm

• In case of duplex it is infeasible to apply such a difference

• LP(0, b) > 0 implies that all coordinates of b are non-zero

• LP(a, 0) = p−nm

• In case of duplex these biases cannot be observed

But isn’t the invertibility a global problem?

9/14



Building a non-linear layer from squaring without local collision/bias

Specification:

γ : ∀0 ≤ i < m : yi ← xi + x2i+1 mod m

Still not invertible but no local collisions or bias

• DP(a, 0) > 0 implies that all coordinates of a are non-zero

• DP(a, 0) = p−nm

• In case of duplex it is infeasible to apply such a difference

• LP(0, b) > 0 implies that all coordinates of b are non-zero

• LP(a, 0) = p−nm

• In case of duplex these biases cannot be observed

But isn’t the invertibility a global problem?

9/14



Building a non-linear layer from squaring without local collision/bias

Specification:

γ : ∀0 ≤ i < m : yi ← xi + x2i+1 mod m

Still not invertible but no local collisions or bias

• DP(a, 0) > 0 implies that all coordinates of a are non-zero

• DP(a, 0) = p−nm

• In case of duplex it is infeasible to apply such a difference

• LP(0, b) > 0 implies that all coordinates of b are non-zero

• LP(a, 0) = p−nm

• In case of duplex these biases cannot be observed

But isn’t the invertibility a global problem?

9/14



Building a non-linear layer from squaring without local collision/bias

Specification:

γ : ∀0 ≤ i < m : yi ← xi + x2i+1 mod m

Still not invertible but no local collisions or bias

• DP(a, 0) > 0 implies that all coordinates of a are non-zero

• DP(a, 0) = p−nm

• In case of duplex it is infeasible to apply such a difference

• LP(0, b) > 0 implies that all coordinates of b are non-zero

• LP(a, 0) = p−nm

• In case of duplex these biases cannot be observed

But isn’t the invertibility a global problem?

9/14



Building a non-linear layer from squaring without local collision/bias

Specification:

γ : ∀0 ≤ i < m : yi ← xi + x2i+1 mod m

Still not invertible but no local collisions or bias

• DP(a, 0) > 0 implies that all coordinates of a are non-zero

• DP(a, 0) = p−nm

• In case of duplex it is infeasible to apply such a difference

• LP(0, b) > 0 implies that all coordinates of b are non-zero

• LP(a, 0) = p−nm

• In case of duplex these biases cannot be observed

But isn’t the invertibility a global problem?

9/14



Building a non-linear layer from squaring without local collision/bias

Specification:

γ : ∀0 ≤ i < m : yi ← xi + x2i+1 mod m

Still not invertible but no local collisions or bias

• DP(a, 0) > 0 implies that all coordinates of a are non-zero

• DP(a, 0) = p−nm

• In case of duplex it is infeasible to apply such a difference

• LP(0, b) > 0 implies that all coordinates of b are non-zero

• LP(a, 0) = p−nm

• In case of duplex these biases cannot be observed

But isn’t the invertibility a global problem?

9/14



Building a non-linear layer from squaring without local collision/bias

Specification:

γ : ∀0 ≤ i < m : yi ← xi + x2i+1 mod m

Still not invertible but no local collisions or bias

• DP(a, 0) > 0 implies that all coordinates of a are non-zero

• DP(a, 0) = p−nm

• In case of duplex it is infeasible to apply such a difference

• LP(0, b) > 0 implies that all coordinates of b are non-zero

• LP(a, 0) = p−nm

• In case of duplex these biases cannot be observed

But isn’t the invertibility a global problem?

9/14



Collision probability

Collision probability of a function f over G

Probability when we randomly take two inputs, that the corresponding outputs

collide, minus the probability that we choose two equal inputs:

CP(f ) =
#{(x , y) ∈ G × G | f (x) = f (y)}

|G |2
− 1

|G |

• Any permutation has collision probability 0

• A random transformation with domain G has expected collision probability 1/|G |
• We have also

CP(f ) =

∑
a∈G∗ DP(a, 0)

|G |
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Collision probability of γ

There are (pn − 1)m input differences a with DP(a, 0) = p−nm, so

CP(γ) =
(pn − 1)m

p2nm

• For large pn this is approximated by p−nm, same as a random transformation

• For pn = 3 this becomes 2m

32m
, a factor (2/3)m less than a random transformation

• Doing r rounds roughly multiplies this collision probability with a factor r

• A priori not problematic if the domain is large enough
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Differential propagation behavior of γ

• Output differences b compatible with given input difference a form an affine space

• dimension is # active elements in input difference a: DP(a, b) = p−nHW(a)

• easy to specify basis and offsets

• Given an output difference b, compatible input differences a form no affine space

• Still it is possible to characterize in a simple way the set

• We have efficient algorithms for, given b

• Generate all input differences a for which DP(a, b) is above a given threshold

• And find maxa DP(a, b)
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Correlation

• Input masks a compatible with a given output mask b form an affine space

• dimension is # active elements in output mask b: LP(a, b) = p−nHW(b)

• easy to specify basis and offsets

• Exactly the same algorithms as for differentials but:

• with input and output swapped

• with left (i) and right (−i) swapped
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Thanks for your attention!
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