An (almost) golden Kaisa S-box layer over \mathbb{F}_{q} for odd q

D. Verbakel ${ }^{1}$
D. Kuijsters ${ }^{1}$
S. Mella ${ }^{1}$
S. Picek ${ }^{1}$
L. Mariot ${ }^{2}$
J. Daemen ${ }^{1}$
BFA, September 7, 2023
Voss, Norway
Radboud University, NL
University of Twente, NL
$1 / 14$

Looking for a super-symmetric S-box

Let's call an S-box over $\mathbb{F}_{p^{n}}$ a golden Kaisa S-box if:

(1) mask and difference propagation is governed by the same rules
(2) forward and backward propagation is the same

3 every differential has DP $\leq p^{-n} / 2$ and every linear approximation LP $\leq p^{-n} / 2$

Let's call an S-box over $\mathbb{F}_{p^{n}}$ a golden Kaisa S-box if:

(1) mask and difference propagation is governed by the same rules
(2) forward and backward propagation is the same
(3) every differential has DP $\leq p^{-n} / 2$ and every linear approximation $L P \leq p^{-n} / 2$

- Can we find such a layer with S-boxes over $\mathbb{F}_{p^{n}}$ with $p^{n} \neq 8$?

Let's call an S-box over $\mathbb{F}_{p^{n}}$ a golden Kaisa S-box if:

(1) mask and difference propagation is governed by the same rules
(2) forward and backward propagation is the same
(3) every differential has DP $\leq p^{-n} / 2$ and every linear approximation $L P \leq p^{-n} / 2$

- Can we find such a layer with S-boxes over $\mathbb{F}_{p^{n}}$ with $p^{n} \neq 8$?
- For $p=2$ it is not likely

Let's call an S-box over $\mathbb{F}_{p^{n}}$ a golden Kaisa S-box if:

(1) mask and difference propagation is governed by the same rules
(2) forward and backward propagation is the same
(3) every differential has DP $\leq p^{-n} / 2$ and every linear approximation $L P \leq p^{-n} / 2$

- Can we find such a layer with S-boxes over $\mathbb{F}_{p^{n}}$ with $p^{n} \neq 8$?
- For $p=2$ it is not likely
- But what about p odd?

Differential probability (DP) of a differential (a, b)

$$
\operatorname{DP}(a, b)=\frac{\#\left\{x \in \mathbb{F}_{p^{n}} \mid f(x+a)-f(x)=b\right\}}{p^{n}}
$$

Correlation and linear potential (LP) of a linear approximation (a, b)

$$
\begin{aligned}
\mathrm{C}(a, b) & =\frac{\sum_{x} \omega^{\operatorname{Tr}(a x-b f(x))}}{p^{n}} \text { with } \omega=e^{\frac{2 \pi i}{p}} \\
\operatorname{LP}(a, b) & =\mathrm{C}(a, b) \overline{\mathrm{C}}(a, b)
\end{aligned}
$$

- Power functions seem like a good place to start
- Power functions seem like a good place to start
- Smallest exponent higher than 1: $e=2$
- Power functions seem like a good place to start
- Smallest exponent higher than 1: $e=2$
- For $p=2$ this gives a linear function
- Power functions seem like a good place to start
- Smallest exponent higher than 1: $e=2$
- For $p=2$ this gives a linear function
- For odd p this is non-linear
- Power functions seem like a good place to start
- Smallest exponent higher than 1: e=2
- For $p=2$ this gives a linear function
- For odd p this is non-linear
- Let us investigate DP and LP

Differential probabilities of squaring in $\mathbb{F}_{p^{n}}$ with odd p

$$
\begin{aligned}
\mathrm{DP}(a, b) & =p^{-n} \#\left\{x \mid(x+a)^{2}-x^{2}=b\right\} \\
& =p^{-n} \#\left\{x \mid 2 a x+a^{2}=b\right\} \\
& =p^{-n} \#\left\{x \left\lvert\, x=\frac{b}{2 a}-\frac{a}{2}\right.\right\} \\
& =p^{-n}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{DP}(a, b) & =p^{-n} \#\left\{x \mid(x+a)^{2}-x^{2}=b\right\} \\
& =p^{-n} \#\left\{x \mid 2 a x+a^{2}=b\right\} \\
& =p^{-n} \#\left\{x \left\lvert\, x=\frac{b}{2 a}-\frac{a}{2}\right.\right\} \\
& =p^{-n}
\end{aligned}
$$

- Summarizing:
- $\forall a \neq 0, b: \operatorname{DP}(a, b)=p^{-n}$
- $\forall b \neq 0: \operatorname{DP}(0, b)=0$ and $\operatorname{DP}(0,0)=1$

$$
\begin{aligned}
\mathrm{DP}(a, b) & =p^{-n} \#\left\{x \mid(x+a)^{2}-x^{2}=b\right\} \\
& =p^{-n} \#\left\{x \mid 2 a x+a^{2}=b\right\} \\
& =p^{-n} \#\left\{x \left\lvert\, x=\frac{b}{2 a}-\frac{a}{2}\right.\right\} \\
& =p^{-n}
\end{aligned}
$$

- Summarizing:
- $\forall a \neq 0, b: \operatorname{DP}(a, b)=p^{-n}$
- $\forall b \neq 0: \operatorname{DP}(0, b)=0$ and $\operatorname{DP}(0,0)=1$
- Non-invertible: any non-zero difference can propagate to 0

$$
\begin{aligned}
\operatorname{DP}(a, b) & =p^{-n} \#\left\{x \mid(x+a)^{2}-x^{2}=b\right\} \\
& =p^{-n} \#\left\{x \mid 2 a x+a^{2}=b\right\} \\
& =p^{-n} \#\left\{x \left\lvert\, x=\frac{b}{2 a}-\frac{a}{2}\right.\right\} \\
& =p^{-n}
\end{aligned}
$$

- Summarizing:
- $\forall a \neq 0, b: \operatorname{DP}(a, b)=p^{-n}$
- $\forall b \neq 0: \operatorname{DP}(0, b)=0$ and $\operatorname{DP}(0,0)=1$
- Non-invertible: any non-zero difference can propagate to 0
- $\operatorname{DP}(a, b)=\operatorname{DP}(b, a)$ if $a \neq 0$ and $b \neq 0$

Let us try correlation

Let us try correlation

$$
\mathrm{C}(a, b)=p^{-n} \sum_{x} \omega^{\operatorname{Tr}\left(a x-b x^{2}\right)}
$$

Let us try correlation

$$
\mathrm{C}(a, b)=p^{-n} \sum_{x} \omega^{\operatorname{Tr}\left(a x-b x^{2}\right)} \quad \text { Hmmm } \ldots
$$

Let us try correlation

$$
\mathrm{C}(a, b)=p^{-n} \sum_{x} \omega^{\operatorname{Tr}\left(a x-b x^{2}\right)} \quad \text { Hmmm } \ldots \text { where to start?? }
$$

Let us try correlation

$$
\mathrm{C}(a, b)=p^{-n} \sum_{x} \omega^{\operatorname{Tr}\left(a x-b x^{2}\right)} \quad \text { Hmmm } \ldots \text { where to start?? }
$$

We find in [Lidl \& Niederreiter 1997] Theorem 5.33 and can derive from that

$$
\mathrm{C}(a, b)=\frac{1}{p^{n}} \sum_{x \in \mathbb{F}_{p^{n}}} \omega^{\operatorname{Tr}\left(b x^{2}-a x\right)}=\left\{\begin{array}{lll}
\frac{(-1)^{d-1}}{\sqrt{p^{n}}} \omega^{\operatorname{Tr}\left(-a^{2}(4 b)^{-1}\right)} \eta(b) & \text { if } p \equiv 1 & (\bmod 4) \\
\frac{(-1)^{d-1}}{\sqrt{p^{n}}} i^{d} \omega^{\operatorname{Tr}\left(-a^{2}(4 b)^{-1}\right)} \eta(b) & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

with $\eta(b)=1$ if b is a square in $\mathbb{F}_{p^{n}}$ and -1 otherwise.

Let us try correlation

$$
\mathrm{C}(a, b)=p^{-n} \sum_{x} \omega^{\operatorname{Tr}\left(a x-b x^{2}\right)} \quad \mathrm{Hmmm} \ldots \text { where to start?? }
$$

We find in [Lidl \& Niederreiter 1997] Theorem 5.33 and can derive from that

$$
\mathrm{C}(a, b)=\frac{1}{p^{n}} \sum_{x \in \mathbb{F}_{p^{n}}} \omega^{\operatorname{Tr}\left(b x^{2}-a x\right)}=\left\{\begin{array}{lll}
\frac{(-1)^{d-1}}{\sqrt{p^{n}}} \omega^{\operatorname{Tr}\left(-a^{2}(4 b)^{-1}\right)} \eta(b) & \text { if } p \equiv 1 & (\bmod 4) \\
\frac{(-1)^{d-1}}{\sqrt{p^{n}}} i^{d} \omega^{\operatorname{Tr}\left(-a^{2}(4 b)^{-1}\right)} \eta(b) & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

with $\eta(b)=1$ if b is a square in $\mathbb{F}_{p^{n}}$ and -1 otherwise.

- From this it follows that:

Let us try correlation

$\mathrm{C}(a, b)=p^{-n} \sum_{x} \omega^{\operatorname{Tr}\left(a x-b x^{2}\right)} \quad$ Hmmm \ldots where to start??

We find in [Lidl \& Niederreiter 1997] Theorem 5.33 and can derive from that

$$
\mathrm{C}(a, b)=\frac{1}{p^{n}} \sum_{x \in \mathbb{F}_{p^{n}}} \omega^{\operatorname{Tr}\left(b x^{2}-a x\right)}=\left\{\begin{array}{lll}
\frac{(-1)^{d-1}}{\sqrt{p^{n}}} \omega^{\operatorname{Tr}\left(-a^{2}(4 b)^{-1}\right)} \eta(b) & \text { if } p \equiv 1 & (\bmod 4) \\
\frac{(-1)^{d-1}}{\sqrt{p^{n}}} i^{d} \omega^{\operatorname{Tr}\left(-a^{2}(4 b)^{-1}\right)} \eta(b) & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

with $\eta(b)=1$ if b is a square in $\mathbb{F}_{p^{n}}$ and -1 otherwise.

- From this it follows that:
- $\forall b \neq 0, a: \operatorname{LP}(a, b)=p^{-n}$
- $\forall a \neq 0: \operatorname{LP}(a, 0)=0$ and $\operatorname{LP}(0,0)=1$

Let us try correlation

$$
\mathrm{C}(a, b)=p^{-n} \sum_{x} \omega^{\operatorname{Tr}\left(a x-b x^{2}\right)} \quad \mathrm{Hmmm} \ldots \text { where to start?? }
$$

We find in [Lidl \& Niederreiter 1997] Theorem 5.33 and can derive from that

$$
\mathrm{C}(a, b)=\frac{1}{p^{n}} \sum_{x \in \mathbb{F}_{p^{n}}} \omega^{\operatorname{Tr}\left(b x^{2}-a x\right)}=\left\{\begin{array}{lll}
\frac{(-1)^{d-1}}{\sqrt{p^{n}}} \omega^{\operatorname{Tr}\left(-a^{2}(4 b)^{-1}\right)} \eta(b) & \text { if } p \equiv 1 & (\bmod 4) \\
\frac{(-1)^{d-1}}{\sqrt{p^{n}}} i^{d} \omega^{\operatorname{Tr}\left(-a^{2}(4 b)^{-1}\right)} \eta(b) & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

with $\eta(b)=1$ if b is a square in $\mathbb{F}_{p^{n}}$ and -1 otherwise.

- From this it follows that:
- $\forall b \neq 0, a: \operatorname{LP}(a, b)=p^{-n}$
- $\forall a \neq 0: \operatorname{LP}(a, 0)=0$ and $\operatorname{LP}(0,0)=1$
- Imbalanced: all output masks are correlated to zero input mask

Let us try correlation

$$
\mathrm{C}(a, b)=p^{-n} \sum_{x} \omega^{\operatorname{Tr}\left(a x-b x^{2}\right)} \quad \mathrm{Hmmm} \ldots \text { where to start?? }
$$

We find in [Lidl \& Niederreiter 1997] Theorem 5.33 and can derive from that

$$
\mathrm{C}(a, b)=\frac{1}{p^{n}} \sum_{x \in \mathbb{F}_{p^{n}}} \omega^{\operatorname{Tr}\left(b x^{2}-a x\right)}=\left\{\begin{array}{lll}
\frac{(-1)^{d-1}}{\sqrt{p^{n}}} \omega^{\operatorname{Tr}\left(-a^{2}(4 b)^{-1}\right)} \eta(b) & \text { if } p \equiv 1 & (\bmod 4) \\
\frac{(-1)^{d-1}}{\sqrt{p^{n}}} i^{d} \omega^{\operatorname{Tr}\left(-a^{2}(4 b)^{-1}\right)} \eta(b) & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

with $\eta(b)=1$ if b is a square in $\mathbb{F}_{p^{n}}$ and -1 otherwise.

- From this it follows that:
- $\forall b \neq 0, a: \operatorname{LP}(a, b)=p^{-n}$
- $\forall a \neq 0: \operatorname{LP}(a, 0)=0$ and $\operatorname{LP}(0,0)=1$
- Imbalanced: all output masks are correlated to zero input mask
- $\operatorname{LP}(a, b)=\operatorname{LP}(b, a)$ if $a \neq 0$ and $b \neq 0$

Does it satisfy the criteria?

The three criteria are (almost) satisfied for any p and n :

Does it satisfy the criteria?

The three criteria are (almost) satisfied for any p and n :
(1) forward propagation of differences and backward propagation of masks and vice versa follow the same rules:

Does it satisfy the criteria?

The three criteria are (almost) satisfied for any p and n :
(1) forward propagation of differences and backward propagation of masks and vice versa follow the same rules: yes!

Does it satisfy the criteria?

The three criteria are (almost) satisfied for any p and n :
(1) forward propagation of differences and backward propagation of masks and vice versa follow the same rules: yes!
(2) forward and backward propagation is the same, except for zero output differences and input masks:

Does it satisfy the criteria?

The three criteria are (almost) satisfied for any p and n :
(1) forward propagation of differences and backward propagation of masks and vice versa follow the same rules: yes!
(2) forward and backward propagation is the same, except for zero output differences and input masks: almost

Does it satisfy the criteria?

The three criteria are (almost) satisfied for any p and n :
(1) forward propagation of differences and backward propagation of masks and vice versa follow the same rules: yes!
(2) forward and backward propagation is the same, except for zero output differences and input masks: almost
(3) every differential has DP $=p^{-n}$ and every linear approximation $L P=p^{-n}$:

Does it satisfy the criteria?

The three criteria are (almost) satisfied for any p and n :
(1) forward propagation of differences and backward propagation of masks and vice versa follow the same rules: yes!
(2) forward and backward propagation is the same, except for zero output differences and input masks: almost
(3) every differential has DP $=p^{-n}$ and every linear approximation $L P=p^{-n}$: even better!

Does it satisfy the criteria?

The three criteria are (almost) satisfied for any p and n :

(1) forward propagation of differences and backward propagation of masks and vice versa follow the same rules: yes!
(2) forward and backward propagation is the same, except for zero output differences and input masks: almost
(3) every differential has DP $=p^{-n}$ and every linear approximation $L P=p^{-n}$: even better!

Now let us try to build an S-box layer from that!

An S-box layer of squaring in $\mathbb{F}_{p^{n}}$

An S-box layer of squaring in $\mathbb{F}_{p^{n}}$

- Input differences a active in a single S-box have $\operatorname{DP}(a, 0)=p^{-n}$
- Input differences a active in a single S-box have $\operatorname{DP}(a, 0)=p^{-n}$
- in most constructions the adversary can apply such differences
- Input differences a active in a single S-box have $\operatorname{DP}(a, 0)=p^{-n}$
- in most constructions the adversary can apply such differences
- presence of a collision is easy to detect and can be used as a distinguisher
- Input differences a active in a single S-box have $\operatorname{DP}(a, 0)=p^{-n}$
- in most constructions the adversary can apply such differences
- presence of a collision is easy to detect and can be used as a distinguisher
- unacceptable weakness
- Input differences a active in a single S-box have $\operatorname{DP}(a, 0)=p^{-n}$
- in most constructions the adversary can apply such differences
- presence of a collision is easy to detect and can be used as a distinguisher
- unacceptable weakness
- Output masks b restricted to a single S-box have $\operatorname{LP}(0, b)=p^{-n}$
- Input differences a active in a single S-box have $\operatorname{DP}(a, 0)=p^{-n}$
- in most constructions the adversary can apply such differences
- presence of a collision is easy to detect and can be used as a distinguisher
- unacceptable weakness
- Output masks b restricted to a single S-box have $\operatorname{LP}(0, b)=p^{-n}$
- measurable bias in the output
- Input differences a active in a single S-box have $\operatorname{DP}(a, 0)=p^{-n}$
- in most constructions the adversary can apply such differences
- presence of a collision is easy to detect and can be used as a distinguisher
- unacceptable weakness
- Output masks b restricted to a single S-box have $\operatorname{LP}(0, b)=p^{-n}$
- measurable bias in the output
- phases of bias allow determining whitening key, etc.
- Input differences a active in a single S-box have $\operatorname{DP}(a, 0)=p^{-n}$
- in most constructions the adversary can apply such differences
- presence of a collision is easy to detect and can be used as a distinguisher
- unacceptable weakness
- Output masks b restricted to a single S-box have $\operatorname{LP}(0, b)=p^{-n}$
- measurable bias in the output
- phases of bias allow determining whitening key, etc.
- unacceptable weakness
- Input differences a active in a single S-box have $\operatorname{DP}(a, 0)=p^{-n}$
- in most constructions the adversary can apply such differences
- presence of a collision is easy to detect and can be used as a distinguisher
- unacceptable weakness
- Output masks b restricted to a single S-box have $\operatorname{LP}(0, b)=p^{-n}$
- measurable bias in the output
- phases of bias allow determining whitening key, etc.
- unacceptable weakness
- problem is local collision/bias

Building a non-linear layer from squaring without local collision/bias

Specification:

$$
\gamma: \forall 0 \leq i<m: y_{i} \leftarrow x_{i}+x_{i+1}^{2} \bmod m
$$

Specification:

$$
\gamma: \forall 0 \leq i<m: y_{i} \leftarrow x_{i}+x_{i+1 \bmod m}^{2}
$$

Still not invertible but no local collisions or bias

Specification:

$$
\gamma: \forall 0 \leq i<m: y_{i} \leftarrow x_{i}+x_{i+1 \bmod m}^{2}
$$

Still not invertible but no local collisions or bias

- $\operatorname{DP}(a, 0)>0$ implies that all coordinates of a are non-zero

Specification:

$$
\gamma: \forall 0 \leq i<m: y_{i} \leftarrow x_{i}+x_{i+1 \bmod m}^{2}
$$

Still not invertible but no local collisions or bias

- $\operatorname{DP}(a, 0)>0$ implies that all coordinates of a are non-zero
- $\operatorname{DP}(a, 0)=p^{-n m}$

Specification:

$$
\gamma: \forall 0 \leq i<m: y_{i} \leftarrow x_{i}+x_{i+1}^{2} \bmod m
$$

Still not invertible but no local collisions or bias

- $\operatorname{DP}(a, 0)>0$ implies that all coordinates of a are non-zero
- $\operatorname{DP}(a, 0)=p^{-n m}$
- In case of duplex it is infeasible to apply such a difference

Specification:

$$
\gamma: \forall 0 \leq i<m: y_{i} \leftarrow x_{i}+x_{i+1}^{2} \bmod m
$$

Still not invertible but no local collisions or bias

- $\operatorname{DP}(a, 0)>0$ implies that all coordinates of a are non-zero
- $\operatorname{DP}(a, 0)=p^{-n m}$
- In case of duplex it is infeasible to apply such a difference
- $\operatorname{LP}(0, b)>0$ implies that all coordinates of b are non-zero

Specification:

$$
\gamma: \forall 0 \leq i<m: y_{i} \leftarrow x_{i}+x_{i+1}^{2} \bmod m
$$

Still not invertible but no local collisions or bias

- $\operatorname{DP}(a, 0)>0$ implies that all coordinates of a are non-zero
- $\operatorname{DP}(a, 0)=p^{-n m}$
- In case of duplex it is infeasible to apply such a difference
- $\operatorname{LP}(0, b)>0$ implies that all coordinates of b are non-zero
- $\operatorname{LP}(a, 0)=p^{-n m}$

Specification:

$$
\gamma: \forall 0 \leq i<m: y_{i} \leftarrow x_{i}+x_{i+1 \bmod m}^{2}
$$

Still not invertible but no local collisions or bias

- $\operatorname{DP}(a, 0)>0$ implies that all coordinates of a are non-zero
- $\operatorname{DP}(a, 0)=p^{-n m}$
- In case of duplex it is infeasible to apply such a difference
- $\operatorname{LP}(0, b)>0$ implies that all coordinates of b are non-zero
- $\operatorname{LP}(a, 0)=p^{-n m}$
- In case of duplex these biases cannot be observed

Specification:

$$
\gamma: \forall 0 \leq i<m: y_{i} \leftarrow x_{i}+x_{i+1 \bmod m}^{2}
$$

Still not invertible but no local collisions or bias

- $\operatorname{DP}(a, 0)>0$ implies that all coordinates of a are non-zero
- $\operatorname{DP}(a, 0)=p^{-n m}$
- In case of duplex it is infeasible to apply such a difference
- $\operatorname{LP}(0, b)>0$ implies that all coordinates of b are non-zero
- $\operatorname{LP}(a, 0)=p^{-n m}$
- In case of duplex these biases cannot be observed

But isn't the invertibility a global problem?

Collision probability

Collision probability

Collision probability of a function f over G

Probability when we randomly take two inputs, that the corresponding outputs collide, minus the probability that we choose two equal inputs:

$$
\mathrm{CP}(f)=\frac{\#\{(x, y) \in G \times G \mid f(x)=f(y)\}}{|G|^{2}}-\frac{1}{|G|}
$$

Collision probability

Collision probability of a function f over G

Probability when we randomly take two inputs, that the corresponding outputs collide, minus the probability that we choose two equal inputs:

$$
\mathrm{CP}(f)=\frac{\#\{(x, y) \in G \times G \mid f(x)=f(y)\}}{|G|^{2}}-\frac{1}{|G|}
$$

- Any permutation has collision probability 0

Collision probability

Collision probability of a function f over G

Probability when we randomly take two inputs, that the corresponding outputs collide, minus the probability that we choose two equal inputs:

$$
\mathrm{CP}(f)=\frac{\#\{(x, y) \in G \times G \mid f(x)=f(y)\}}{|G|^{2}}-\frac{1}{|G|}
$$

- Any permutation has collision probability 0
- A random transformation with domain G has expected collision probability $1 /|G|$

Collision probability

Collision probability of a function f over G

Probability when we randomly take two inputs, that the corresponding outputs collide, minus the probability that we choose two equal inputs:

$$
\mathrm{CP}(f)=\frac{\#\{(x, y) \in G \times G \mid f(x)=f(y)\}}{|G|^{2}}-\frac{1}{|G|}
$$

- Any permutation has collision probability 0
- A random transformation with domain G has expected collision probability $1 /|G|$
- We have also

$$
\mathrm{CP}(f)=\frac{\sum_{a \in G^{*}} \operatorname{DP}(a, 0)}{|G|}
$$

Collision probability of γ

Collision probability of γ

There are $\left(p^{n}-1\right)^{m}$ input differences a with $\operatorname{DP}(a, 0)=p^{-n m}$, so

$$
\mathrm{CP}(\gamma)=\frac{\left(p^{n}-1\right)^{m}}{p^{2 n m}}
$$

Collision probability of γ

There are $\left(p^{n}-1\right)^{m}$ input differences a with $\operatorname{DP}(a, 0)=p^{-n m}$, so

$$
\mathrm{CP}(\gamma)=\frac{\left(p^{n}-1\right)^{m}}{p^{2 n m}}
$$

- For large p^{n} this is approximated by $p^{-n m}$, same as a random transformation

There are $\left(p^{n}-1\right)^{m}$ input differences a with $\operatorname{DP}(a, 0)=p^{-n m}$, so

$$
\mathrm{CP}(\gamma)=\frac{\left(p^{n}-1\right)^{m}}{p^{2 n m}}
$$

- For large p^{n} this is approximated by $p^{-n m}$, same as a random transformation
- For $p^{n}=3$ this becomes $\frac{2^{m}}{3^{2 m}}$, a factor $(2 / 3)^{m}$ less than a random transformation

There are $\left(p^{n}-1\right)^{m}$ input differences a with $\operatorname{DP}(a, 0)=p^{-n m}$, so

$$
\mathrm{CP}(\gamma)=\frac{\left(p^{n}-1\right)^{m}}{p^{2 n m}}
$$

- For large p^{n} this is approximated by $p^{-n m}$, same as a random transformation
- For $p^{n}=3$ this becomes $\frac{2^{m}}{3^{2 m}}$, a factor $(2 / 3)^{m}$ less than a random transformation
- Doing r rounds roughly multiplies this collision probability with a factor r

There are $\left(p^{n}-1\right)^{m}$ input differences a with $\operatorname{DP}(a, 0)=p^{-n m}$, so

$$
\mathrm{CP}(\gamma)=\frac{\left(p^{n}-1\right)^{m}}{p^{2 n m}}
$$

- For large p^{n} this is approximated by $p^{-n m}$, same as a random transformation
- For $p^{n}=3$ this becomes $\frac{2^{m}}{3^{2 m}}$, a factor $(2 / 3)^{m}$ less than a random transformation
- Doing r rounds roughly multiplies this collision probability with a factor r
- A priori not problematic if the domain is large enough

Differential propagation behavior of γ

Differential propagation behavior of γ

- Output differences b compatible with given input difference a form an affine space

Differential propagation behavior of γ

- Output differences b compatible with given input difference a form an affine space
- dimension is \# active elements in input difference $a: \operatorname{DP}(a, b)=p^{-n \mathrm{HW}(a)}$

Differential propagation behavior of γ

- Output differences b compatible with given input difference a form an affine space
- dimension is \# active elements in input difference $a: \operatorname{DP}(a, b)=p^{-n \mathrm{HW}(a)}$
- easy to specify basis and offsets

Differential propagation behavior of γ

- Output differences b compatible with given input difference a form an affine space
- dimension is \# active elements in input difference $a: \operatorname{DP}(a, b)=p^{-n H W(a)}$
- easy to specify basis and offsets
- Given an output difference b, compatible input differences a form no affine space

Differential propagation behavior of γ

- Output differences b compatible with given input difference a form an affine space
- dimension is \# active elements in input difference $a: \operatorname{DP}(a, b)=p^{-n \mathrm{HW}(a)}$
- easy to specify basis and offsets
- Given an output difference b, compatible input differences a form no affine space
- Still it is possible to characterize in a simple way the set
- Output differences b compatible with given input difference a form an affine space
- dimension is \# active elements in input difference $a: \operatorname{DP}(a, b)=p^{-n H W(a)}$
- easy to specify basis and offsets
- Given an output difference b, compatible input differences a form no affine space
- Still it is possible to characterize in a simple way the set
- We have efficient algorithms for, given b
- Output differences b compatible with given input difference a form an affine space
- dimension is \# active elements in input difference $a: \operatorname{DP}(a, b)=p^{-n H W(a)}$
- easy to specify basis and offsets
- Given an output difference b, compatible input differences a form no affine space
- Still it is possible to characterize in a simple way the set
- We have efficient algorithms for, given b
- Generate all input differences a for which $\operatorname{DP}(a, b)$ is above a given threshold
- Output differences b compatible with given input difference a form an affine space
- dimension is \# active elements in input difference $a: \operatorname{DP}(a, b)=p^{-n H W(a)}$
- easy to specify basis and offsets
- Given an output difference b, compatible input differences a form no affine space
- Still it is possible to characterize in a simple way the set
- We have efficient algorithms for, given b
- Generate all input differences a for which $\operatorname{DP}(a, b)$ is above a given threshold
- And find $\max _{a} \operatorname{DP}(a, b)$

Correlation

Correlation

- Input masks a compatible with a given output mask b form an affine space

Correlation

- Input masks a compatible with a given output mask b form an affine space
- dimension is \# active elements in output mask $b: \operatorname{LP}(a, b)=p^{-n \operatorname{HW}(b)}$

Correlation

- Input masks a compatible with a given output mask b form an affine space
- dimension is \# active elements in output mask $b: \operatorname{LP}(a, b)=p^{-n \operatorname{HW}(b)}$
- easy to specify basis and offsets
- Input masks a compatible with a given output mask b form an affine space
- dimension is \# active elements in output mask $b: \operatorname{LP}(a, b)=p^{-n \operatorname{HW}(b)}$
- easy to specify basis and offsets
- Exactly the same algorithms as for differentials but:
- Input masks a compatible with a given output mask b form an affine space
- dimension is \# active elements in output mask $b: \operatorname{LP}(a, b)=p^{-n \operatorname{HW}(b)}$
- easy to specify basis and offsets
- Exactly the same algorithms as for differentials but:
- with input and output swapped
- Input masks a compatible with a given output mask b form an affine space
- dimension is \# active elements in output mask $b: \operatorname{LP}(a, b)=p^{-n \operatorname{HW}(b)}$
- easy to specify basis and offsets
- Exactly the same algorithms as for differentials but:
- with input and output swapped
- with left (i) and right ($-i$) swapped

Thanks for your attention!

