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Looking for a super-symmetric S-box

Let’s call an S-box over F,» a golden Kaisa S-box if:
@ mask and difference propagation is governed by the same rules
® forward and backward propagation is the same

© every differential has DP < p~"/2 and every linear approximation LP < p="/2
® Can we find such a layer with S-boxes over F,» with p" # 87

® For p =2 it is not likely
® But what about p odd?
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Difference and mask propagation properties of a transformation of F,.

Differential probability (DP) of a differential (a, b)

#{x € Fpn | f(x + a) — f(x) = b}
p"

DP(a, b) =

Correlation and linear potential (LP) of a linear approximation (a, b)

Tr(ax—bf(x)) omi
L _ with w = e 7
p

LP(a, b) = C(a, b)C(a, b)

C(a, b) =
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Power function in F»

Power functions seem like a good place to start

Smallest exponent higher than 1: e =2

For p = 2 this gives a linear function

For odd p this is non-linear

® | et us investigate DP and LP

4/14



Differential probabilities of squaring in F,» with odd p

5/14



Differential probabilities of squaring in F,» with odd p

DP(a, b) = p~"#{x | (x + a)? — x* = b}
= p "#{x | 2ax + a®> = b}
—n _b 2
= p x| x = o — 2

n

:p_
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DP(a, b) = p~"#{x | (x + a)*> — x*> = b}
= p "#{x | 2ax + a®> = b}
n b a
= p_n
® Summarizing:
® Va£0,b:DP(a,b)=p"
® Vb+#0:DP(0,b) =0 and DP(0,0) =1
® Non-invertible: any non-zero difference can propagate to 0

e DP(a,b) = DP(b,a) if a# 0 and b # 0
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We find in [Lidl & Niederreiter 1997] Theorem 5.33 and can derive from that

/o

1 2
Cla,b)= — » w29 = - :
2 %/%Tr(—az(‘*b) On(b) if p=3 (mod 4)

n
p XE]FPn
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Let us try correlation

C(a,b)=p7">_, wT(ax=bx) Hmmm ... where to start??

We find in [Lidl & Niederreiter 1997] Theorem 5.33 and can derive from that

_qyd—1 B _
Cab) = = 3 Whio—a) _ ELWmEFE (k) ifp=1 (mod 4)
; P eFn %idwm‘ﬁ(‘*b)*)n(b) ifp=3 (mod 4)

with n(b) = 1 if b is a square in Fpn and —1 otherwise.

® From this it follows that:
® Vb+#0,a:LP(a,b)=p "
® Ya#0:LP(a,0)=0and LP(0,0) =1
® |mbalanced: all output masks are correlated to zero input mask

® LP(a,b) =LP(b,a)ifa#0and b #6914
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Does it satisfy the criteria?

The three criteria are (almost) satisfied for any p and n:

@ forward propagation of differences and backward propagation of masks and vice
versa follow the same rules: yes!

® forward and backward propagation is the same, except for zero output differences
and input masks: almost

© every differential has DP = p~" and every linear approximation LP = p~":

better!

even

Now let us try to build an S-box layer from that!
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An S-box layer of squaring in F,»

¢ Input differences a active in a single S-box have DP(a,0) = p~"

® in most constructions the adversary can apply such differences
® presence of a collision is easy to detect and can be used as a distinguisher
® unacceptable weakness

® Qutput masks b restricted to a single S-box have LP(0,b) = p="

® measurable bias in the output
® phases of bias allow determining whitening key, etc.
® unacceptable weakness

® problem is local collision/bias
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Building a non-linear layer from squaring without local collision/bias

Specification:

_ . _ 2
Y:VO < <m:yi = X+ X1 mod m

Still not invertible but no local collisions or bias

® DP(a,0) > 0 implies that all coordinates of a are non-zero

® DP(a,0) =p~""

® In case of duplex it is infeasible to apply such a difference
® LP(0,b) > 0 implies that all coordinates of b are non-zero

® LP(a,0)=p """

® |n case of duplex these biases cannot be observed

But isn't the invertibility a global problem?
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Collision probability of a function f over G
Probability when we randomly take two inputs, that the corresponding outputs
collide, minus the probability that we choose two equal inputs:

_#Hy) €6 x G f(x)=fly)} 1

CP(f) GP Gl

® Any permutation has collision probability 0
® A random transformation with domain G has expected collision probability 1/|G|

® \We have also

ZaEG* DP(a7 0)
|G

CP(f) =
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Collision probability of ~

There are (p” — 1)™ input differences a with DP(a,0) = p~"™, so

n_ 1\m

For large p" this is approximated by p , same as a random transformation

For p" = 3 this becomes 322—'7,, a factor (2/3)™ less than a random transformation

Doing r rounds roughly multiplies this collision probability with a factor r

® A priori not problematic if the domain is large enough
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Differential propagation behavior of ~

Output differences b compatible with given input difference a form an affine space
® dimension is # active elements in input difference a: DP(a, b) = p~"HW(a)

® casy to specify basis and offsets

® Given an output difference b, compatible input differences a form no affine space

Still it is possible to characterize in a simple way the set

We have efficient algorithms for, given b

® Generate all input differences a for which DP(a, b) is above a given threshold
® And find max, DP(a, b)
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Correlation

® Input masks a compatible with a given output mask b form an affine space
® dimension is # active elements in output mask b: LP(a, b) = p~"HW(b)
® casy to specify basis and offsets

® Exactly the same algorithms as for differentials but:

® with input and output swapped
® with left (/) and right (—/) swapped
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Thanks for your attention!
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