Relevant classes of

 polynomial functions with applications to Cryptography
Daniele Bartoli

University of Perugia, Italy

BFA 2023
The 8th International Workshop on Boolean Functions and their Applications

Voss, September 3-8, 2023

Outline

(1) Algebraic curves over finite fields

Outline

(1) Algebraic curves over finite fields
(2) How describe a problem via a curve?
(3) Which machineries?

Outline

(1) Algebraic curves over finite fields
(2) How describe a problem via a curve?
(3) Which machineries?
(9) Applications:

- Permutation polynomials
- Planar polynomials in char 2
- APN rational functions
- APcN/PcN functions
- Crooked functions

Toy example: a permutation problem

How to check if a polynomial $f(x)$ permutes \mathbb{F}_{q} ?

Toy example: a permutation problem

How to check if a polynomial $f(x)$ permutes \mathbb{F}_{q} ?
$f(x)$ permutes \mathbb{F}_{q}

Toy example: a permutation problem

How to check if a polynomial $f(x)$ permutes \mathbb{F}_{q} ?

```
\(f(x)\) permutes \(\mathbb{F}_{q}\)
```

\Uparrow
$\forall b \in \mathbb{F}_{q} \quad f(x)=b$ has exactly one solution $\bar{x} \in \mathbb{F}_{q}$

Toy example: a permutation problem

How to check if a polynomial $f(x)$ permutes \mathbb{F}_{q} ?

$$
f(x) \text { permutes } \mathbb{F}_{q}
$$

\|
$\forall b \in \mathbb{F}_{q} \quad f(x)=b$ has exactly one solution $\bar{x} \in \mathbb{F}_{q}$

$$
f(x)=f(y) \text { has only solutions }(\bar{x}, \bar{x}) \in \mathbb{F}_{q}^{2}
$$

Toy example: a permutation problem

How to check if a polynomial $f(x)$ permutes \mathbb{F}_{q} ?

$$
f(x) \text { permutes } \mathbb{F}_{q}
$$

§

$\forall b \in \mathbb{F}_{q} \quad f(x)=b$ has exactly one solution $\bar{x} \in \mathbb{F}_{q}$

$$
f(x)=f(y) \text { has only solutions }(\bar{x}, \bar{x}) \in \mathbb{F}_{q}^{2}
$$

\Uparrow
$\frac{f(x)-f(y)}{x-y}=0$ has no solution $(\bar{x}, \bar{y}) \in \mathbb{F}_{q}^{2}$ with $\bar{x} \neq \bar{y}$

Toy example: a permutation problem

Example

$$
\text { Does } f(x)=x^{3}+x \text { permute } \mathbb{F}_{7} \text { ? }
$$

Toy example: a permutation problem

Example

$$
\text { Does } f(x)=x^{3}+x \text { permute } \mathbb{F}_{7} \text { ? }
$$

$$
\frac{f(x)-f(y)}{x-y}=0 \text { reads } x^{2}+x y+y^{2}+1=0
$$

Toy example: a permutation problem

Example

Does $f(x)=x^{3}+x$ permute \mathbb{F}_{7} ?

$$
\frac{f(x)-f(y)}{x-y}=0 \text { reads } x^{2}+x y+y^{2}+1=0
$$

solutions $\longrightarrow(1,3),(4,4),(6,4),(4,6),(3,3),(3,1)$

Toy example: a permutation problem

Example
Does $f(x)=x^{3}+x$ permute \mathbb{F}_{7} ?

$$
\frac{f(x)-f(y)}{x-y}=0 \text { reads } x^{2}+x y+y^{2}+1=0
$$

$$
\text { solutions } \longrightarrow(1,3),(4,4),(6,4),(4,6),(3,3),(3,1)
$$

Toy example: a permutation problem

Example

$$
\text { Does } f(x)=x^{3}+x \text { permute } \mathbb{F}_{7} \text { ? }
$$

$$
\frac{f(x)-f(y)}{x-y}=0 \text { reads } x^{2}+x y+y^{2}+1=0
$$

solutions $\longrightarrow(1,3),(4,4),(6,4),(4,6),(3,3),(3,1)$

$$
f(x)=x^{3}+x \text { does not permute } \mathbb{F}_{7}
$$

What is a curve?

\mathbb{F}_{q} : finite field with $q=p^{h}$ elements

Definition (Affine plane)

$$
\operatorname{AG}(2, q):=\left(\mathbb{F}_{q}\right)^{2}
$$

What is a curve?

\mathbb{F}_{q} : finite field with $q=p^{h}$ elements

Definition (Affine plane)

$$
\operatorname{AG}(2, q):=\left(\mathbb{F}_{q}\right)^{2}
$$

Definition (Curve)

\mathcal{C} in $\operatorname{AG}(2, q)$ Curve class of proportional polynomials $F(X, Y) \in \mathbb{F}_{q}[X, Y]$ degree of $\mathcal{C}=\operatorname{deg}(F(X, Y))$

What is a curve?

\mathbb{F}_{q} : finite field with $q=p^{h}$ elements

Definition (Affine plane)

$$
\operatorname{AG}(2, q):=\left(\mathbb{F}_{q}\right)^{2}
$$

Definition (Curve)

\mathcal{C} in $\operatorname{AG}(2, q)$ Curve class of proportional polynomials $F(X, Y) \in \mathbb{F}_{q}[X, Y]$ degree of $\mathcal{C}=\operatorname{deg}(F(X, Y))$

$$
2 X+7 Y^{2}+3 \Longleftrightarrow 4 X+14 Y^{2}+6
$$

What is a curve?

\mathcal{C} defined by $F(X, Y)$

Definition

$(a, b) \in \operatorname{AG}(2, q)$
(affine) $\mathbb{F}_{q^{-}}$-rational point of $\mathcal{C} \Longleftrightarrow F(a, b)=0$

$$
\mathcal{C}: F(X, Y)=0
$$

Curves: absolute irreducibility

Definition

$\mathcal{C}: F(X, Y)=0$ affine equation

Definition

\mathcal{C} absolutely irreducible \Longleftrightarrow

$$
\begin{gathered}
\nexists G(X, Y), H(X, Y) \in \overline{\mathbb{F}}_{q}[X, Y]: \\
\quad F(X, Y)=G(X, Y) H(X, Y)
\end{gathered}
$$

$\operatorname{deg}(G(X, Y)), \operatorname{deg}(H(X, Y))>0$

Example

$X^{2}+Y^{2}+1$ absolutely irreducible
$X^{2}-s Y^{2}, s \notin \square_{q}$,
$\Longrightarrow(X-\eta Y)(X+\eta Y), \eta^{2}=s, \eta \in \mathbb{F}_{q^{2}}$ not absolutely irreducible

A fundamental tool: Hasse-Weil Theorem

Question

How many \mathbb{F}_{q}-rational points can \mathcal{C} have?

A fundamental tool: Hasse-Weil Theorem

Question

How many \mathbb{F}_{q}-rational points can \mathcal{C} have?

Theorem (Hasse-Weil Theorem)
\mathcal{C} absolutely irreducible curve of degree d defined over \mathbb{F}_{q} The number N_{q} of \mathbb{F}_{q}-rational points is

$$
\left|N_{q}-(q+1)\right| \leq(d-1)(d-2) \sqrt{q} .
$$

A fundamental tool: Hasse-Weil Theorem

Question

How many \mathbb{F}_{q}-rational points can \mathcal{C} have?

Theorem (Hasse-Weil Theorem)
\mathcal{C} absolutely irreducible curve of degree d defined over \mathbb{F}_{q} The number N_{q} of \mathbb{F}_{q}-rational points is

$$
\left|N_{q}-(q+1)\right| \leq(d-1)(d-2) \sqrt{q} .
$$

Example

$\mathcal{C}: X^{2}-Y^{2}=0$ has $2 q+1 \mathbb{F}_{q^{-}}$rational points!
$\mathcal{C}: X^{2}-s Y^{2}=0, \quad s \notin \square_{q}$ has $1 \mathbb{F}_{q}$-rational point!

Algebraic curves and Permutation Polynomials

Theorem

$$
\begin{aligned}
& \mathcal{C}_{f}: \frac{f(X)-f(Y)}{X-Y}=0 \\
& \text { has no affine } \mathbb{F}_{q} \text {-rational } \\
& \text { points off } X-Y=0
\end{aligned}
$$

Algebraic curves and Permutation Polynomials

Theorem

$$
f(x) \in \mathbb{F}_{q}[x] \text { is } P P \Longleftrightarrow \begin{aligned}
& \mathcal{C}_{f}: \frac{f(X)-f(Y)}{X-Y}=0 \\
& \text { has no affine } \mathbb{F}_{q} \text {-rational } \\
& \text { points off } X-Y=0
\end{aligned}
$$

Example

$f(x)=x^{3}+x \in \mathbb{F}_{q}[x]$

$$
\mathcal{C}_{f}: \frac{f(X)-f(Y)}{X-Y}=X^{2}+X Y+Y^{2}+1=0
$$

Algebraic curves and Permutation Polynomials

Theorem

$$
f(x) \in \mathbb{F}_{q}[x] \text { is } P P \Longleftrightarrow \begin{aligned}
& \mathcal{C}_{f}: \frac{f(X)-f(Y)}{X-Y}=0 \\
& \text { has no affine } \mathbb{F}_{q} \text {-rational } \\
& \text { points off } X-Y=0
\end{aligned}
$$

Example

$f(x)=x^{3}+x \in \mathbb{F}_{q}[x]$

$$
\mathcal{C}_{f}: \frac{f(X)-f(Y)}{X-Y}=X^{2}+X Y+Y^{2}+1=0
$$

with at least $q-3$
\mathcal{C}_{f} CONIC \Longrightarrow affine \mathbb{F}_{q}-rational points

$$
\text { not on } X-Y=0
$$

Algebraic curves and Permutation Polynomials

Theorem

$$
f(x) \in \mathbb{F}_{q}[x] \text { is } P P \Longleftrightarrow \begin{aligned}
& \mathcal{C}_{f}: \frac{f(X)-f(Y)}{X-Y}=0 \\
& \text { has no affine } \mathbb{F}_{q} \text {-rational } \\
& \text { points off } X-Y=0
\end{aligned}
$$

Example

$f(x)=x^{3}+x \in \mathbb{F}_{q}[x]$

$$
\mathcal{C}_{f}: \frac{f(X)-f(Y)}{X-Y}=X^{2}+X Y+Y^{2}+1=0
$$

with at least $q-3$
\mathcal{C}_{f} CONIC \Longrightarrow affine \mathbb{F}_{q}-rational points

$$
\text { not on } X-Y=0
$$

if $q>3 \Longrightarrow f(x)=x^{3}+x$ is NOT a PP

An easy criterion

Criterion (SEGRE)
$P \in \mathcal{C}$ has tangent t

- non-repeated
- $t \cap \mathcal{C}=\{P\}$
$\Longrightarrow \mathcal{C}$ is absolutely irreducible

An easy criterion

Criterion (SEGRE)
$P \in \mathcal{C}$ has tangent t
- non-repeated
- $t \cap \mathcal{C}=\{P\}$

BARTOCCI-SEGRE. Acta Arith XVIII, 1971

Frobenius automorphism and \mathbb{F}_{q}-rational components

Definition (Frobenius automorphism)

$$
\begin{aligned}
\varphi_{q}: & \overline{\mathbb{F}_{q}} \rightarrow \overline{\mathbb{F}_{q}} \\
& \alpha \mapsto \alpha^{q}
\end{aligned}
$$

Frobenius automorphism and \mathbb{F}_{q}-rational components

Definition (Frobenius automorphism)

$$
\begin{aligned}
\varphi_{q}: & \overline{\mathbb{F}_{q}} \rightarrow \overline{\mathbb{F}_{q}} \\
& \alpha \mapsto \alpha^{q}
\end{aligned}
$$

$$
\begin{array}{rl|ll}
\varphi_{q}: & \mathbb{A}^{2}\left(\overline{\mathbb{F}_{q}}\right) & \rightarrow \mathbb{A}^{2}\left(\overline{\mathbb{F}_{q}}\right) \\
(\alpha, \beta) & \mapsto\left(\alpha^{q}, \beta^{q}\right) & \varphi_{q}: \overline{\mathbb{F}_{q}}[X, Y] & \rightarrow \overline{\mathbb{F}_{q}}[X, Y] \\
\sum \alpha_{i, j} X^{i} Y^{j} & \mapsto \sum \alpha_{i, j}^{q} X^{i} Y^{j}
\end{array}
$$

Frobenius automorphism and \mathbb{F}_{q}-rational components
Definition (Frobenius automorphism)

$$
\begin{aligned}
\varphi_{q}: & \overline{\mathbb{F}_{q}} \rightarrow \overline{\mathbb{F}_{q}} \\
& \alpha \mapsto \alpha^{q}
\end{aligned}
$$

$$
\begin{array}{rll}
\varphi_{q}: \left.\begin{array}{lll}
\mathbb{A}^{2}\left(\overline{\mathbb{F}_{q}}\right) & \rightarrow & \mathbb{A}^{2}\left(\overline{\mathbb{F}_{q}}\right) \\
(\alpha, \beta) & \mapsto & \left(\alpha^{q}, \beta^{q}\right)
\end{array} \right\rvert\, \begin{aligned}
\varphi_{q}: & \overline{\mathbb{F}_{q}}[X, Y] \\
& \rightarrow \alpha_{i, j} X^{i} Y^{j}
\end{aligned} & \left.\mapsto \sum, Y\right] \\
& \mapsto \alpha_{i, j}^{q} X^{i} Y^{j}
\end{array}
$$

$$
\begin{aligned}
& \varphi_{q}(\alpha)=\alpha \Longleftrightarrow \alpha \in \mathbb{F}_{q} \\
& \varphi_{q}(\alpha, \beta)=(\alpha, \beta) \Longleftrightarrow(\alpha, \beta) \in \mathbb{A}^{2}\left(\mathbb{F}_{q}\right) \\
& \varphi_{q}(\mathcal{C})=\mathcal{C} \Longleftrightarrow \lambda F \in \mathbb{F}_{q}[X, Y] \text { for some } \lambda \in{\overline{\mathbb{F}_{q}}}^{*}
\end{aligned}
$$

Frobenius automorphism and \mathbb{F}_{q}-rational components
$F(X, Y) \in \mathbb{F}_{q}[X, Y], \quad \mathcal{C}: F(X, Y)=0$ curve
\qquad

Frobenius automorphism and \mathbb{F}_{q}-rational components

$$
\begin{aligned}
& F(X, Y) \in \mathbb{F}_{q}[X, Y], \quad \mathcal{C}: F(X, Y)=0 \text { curve } \\
& \quad F(X, Y)=F_{1}(X, Y) \cdot F_{2}(X, Y) \cdots \cdot F_{k}(X, Y), \quad F_{i} \in \overline{\mathbb{F}_{q}}[X, Y]
\end{aligned}
$$

$$
\mathcal{C}_{i}: F_{i}(X, Y)=0 \text { components of } \mathcal{C}
$$

Frobenius automorphism and \mathbb{F}_{q}-rational components
$F(X, Y) \in \mathbb{F}_{q}[X, Y], \quad \mathcal{C}: F(X, Y)=0$ curve

$$
F(X, Y)=F_{1}(X, Y) \cdot F_{2}(X, Y) \cdots \cdot F_{k}(X, Y), \quad F_{i} \in \overline{\mathbb{F}_{q}}[X, Y]
$$

$\mathcal{C}_{i}: F_{i}(X, Y)=0$ components of \mathcal{C}

$$
P \in \mathcal{C} \Longrightarrow \varphi_{q}(P) \in \mathcal{C}
$$

Frobenius automorphism and \mathbb{F}_{q}-rational components $F(X, Y) \in \mathbb{F}_{q}[X, Y], \quad \mathcal{C}: F(X, Y)=0$ curve

$$
F(X, Y)=F_{1}(X, Y) \cdot F_{2}(X, Y) \cdots F_{k}(X, Y), \quad F_{i} \in \overline{\mathbb{F}_{q}}[X, Y]
$$

$\mathcal{C}_{i}: F_{i}(X, Y)=0$ components of \mathcal{C}

$$
\varphi_{q}\left(\mathcal{C}_{i}\right)=\mathcal{C}_{j}
$$

Remark

$$
\varphi_{q}\left(\mathcal{C}_{i}\right)=\mathcal{C}_{i} \Longrightarrow \quad \begin{gathered}
\mathcal{C}_{i} \text { is defined over } \mathbb{F}_{q} \\
\mathcal{C}_{i} \mathbb{F}_{q} \text {-rational A.I. component of } \mathcal{C}
\end{gathered}
$$

Hasse-Weil again

Theorem (Hasse-Weil Theorem)
\mathcal{C} absolutely irreducible curve of degree d defined over \mathbb{F}_{q}

$$
\left|N_{q}-(q+1)\right| \leq(d-1)(d-2) \sqrt{q} .
$$

Hasse-Weil again

Theorem (Hasse-Weil Theorem)
\mathcal{C} absolutely irreducible curve of degree d defined over \mathbb{F}_{q}

$$
\left|N_{q}-(q+1)\right| \leq(d-1)(d-2) \sqrt{q} .
$$

Corollary

$\operatorname{deg} f(x)<q^{1 / 4}$
$f(x) P P \Longrightarrow \mathcal{C}_{f}$ has no $\mathbb{F}_{q}-$ A.I.C. distinct from $X-Y=0$

Hasse-Weil again

Theorem (Hasse-Weil Theorem)

\mathcal{C} absolutely irreducible curve of degree d defined over \mathbb{F}_{q}

$$
\left|N_{q}-(q+1)\right| \leq(d-1)(d-2) \sqrt{q} .
$$

Corollary
$\operatorname{deg} f(x)<q^{1 / 4}$
$f(x) P P=$

$$
\Longrightarrow \mathcal{C}_{f} \text { has no } \mathbb{F}_{q}-\text { A.I.C. distinct from } X-Y=0
$$

Proof. $\mathcal{D} \quad \mathbb{F}_{q}$-A.I.C. By Hasse-Weil Theorem

$$
\begin{array}{rrr}
N_{q} & \geq & -(d-1)(d-2) \sqrt{q}+(q+1) \\
\geq & -(\sqrt[4]{q}-2)(\sqrt[4]{q}-3) \sqrt{q}+(q+1) \\
& = & 5 \sqrt[4]{q^{3}}-6 \sqrt{q}+1
\end{array}
$$

Number of points not at infinity nor on $X-Y=0$

$$
N_{q}-2 \operatorname{deg}(\mathcal{D}) \geq N_{q}-2(\sqrt[4]{q}-1) \geq 5 \sqrt[4]{q^{3}}-6 \sqrt{q}-2 \sqrt[4]{q}+3>0
$$

Existence of absolutely irreducible $\mathbb{F}_{q^{-}}$-rational components

Remark

$P \in \mathcal{C}$ simple point $\Longrightarrow P$ belongs to a unique component of \mathcal{C}

Existence of absolutely irreducible $\mathbb{F}_{q^{-}}$-rational components

Remark
 $P \in \mathcal{C}$ simple point $\Longrightarrow P$ belongs to a unique component of \mathcal{C}

Criterion

$F(X, Y, T) \in \mathbb{F}_{q}[X, Y, T]$,
$P \in \mathcal{C}: F(X, Y, T)=0$ simple
\mathbb{F}_{q}-point
$\Longrightarrow \mathcal{C}$ has \mathbb{F}_{q}-A.I.C. defined over \mathbb{F}_{q}

$$
P=\varphi_{q}(P)
$$

Existence of absolutely irreducible $\mathbb{F}_{q^{-}}$-rational components

Remark
 $P \in \mathcal{C}$ simple point $\Longrightarrow P$ belongs to a unique component of \mathcal{C}

Criterion

$F(X, Y, T) \in \mathbb{F}_{q}[X, Y, T]$,
$P \in \mathcal{C}: F(X, Y, T)=0$ simple \mathbb{F}_{q}-point
$\Longrightarrow \mathcal{C}$ has \mathbb{F}_{q}-A.I.C. defined over \mathbb{F}_{q}

Existence of absolutely irreducible \mathbb{F}_{q}-rational components

Remark

$P \in \mathcal{C}$ simple point $\Longrightarrow P$ belongs to a unique component of \mathcal{C}

Criterion

$F(X, Y, T) \in \mathbb{F}_{q}[X, Y, T]$,
$P \in \mathcal{C}: F(X, Y, T)=0$ simple \mathbb{F}_{q}-point
$\Longrightarrow \mathcal{C}$ has \mathbb{F}_{q}-A.I.C. defined over \mathbb{F}_{q}

$$
\varphi_{q}(\mathcal{D})=\mathcal{D}
$$

Exceptional Planar Functions

Definition (Planar Function, q odd)
q odd prime power $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ planar or perfect nonlinear if

$$
\forall \epsilon \in \mathbb{F}_{q}^{*} \Longrightarrow x \mapsto f(x+\epsilon)-f(x) \text { is } \mathrm{PP}
$$

Exceptional Planar Functions

Definition (Planar Function, q odd)

q odd prime power
$f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ planar or perfect nonlinear if

$$
\forall \epsilon \in \mathbb{F}_{q}^{*} \Longrightarrow x \mapsto f(x+\epsilon)-f(x) \text { is } \mathrm{PP}
$$

- Construction of finite projective planes

DEMBOWSKI-OSTROM, Math. Z. 1968

- Relative difference sets

GANLEY-SPENCE, J. Combin. Theory Ser. A 1975

- Error-correcting codes

CARLET-DING-YUAN, IEEE Trans. Inform. Theory 2005

- S-boxes in block ciphers

NYBERG-KNUDSEN, Advances in cryptology 1993.

Exceptional Planar Functions

Definition (Planar Function, q even)

q even
$f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ planar if

$$
\forall \epsilon \in \mathbb{F}_{q}^{*} \Longrightarrow x \mapsto f(x+\epsilon)+f(x)+\epsilon x \text { is } \mathrm{PP}
$$

Exceptional Planar Functions

Definition (Planar Function, q even)

q even
$f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ planar if

$$
\forall \epsilon \in \mathbb{F}_{q}^{*} \Longrightarrow x \mapsto f(x+\epsilon)+f(x)+\epsilon x \text { is } \mathrm{PP}
$$

ZHOU, J. Combin. Des. 2013.
Other works
SCHMIDT-ZHOU, J. Algebraic Combin., 2014 SCHERR-ZIEVE, Ann. Comb., 2014
HU-LI-ZHANG-FENG-GE, Des. Codes Cryptogr., 2015
QU, IEEE Trans. Inform. Theory, 2016

Exceptional Planar Functions

Theorem (B.-SCHMIDT, 2018)
$f(X) \in \mathbb{F}_{q}[X], \operatorname{deg}(f) \leq q^{1 / 4}$
$f(X)$ planar on $\mathbb{F}_{q} \Longleftrightarrow f(X)=\sum_{i} a_{i} X^{2^{i}}$

Exceptional Planar Functions

$$
\begin{aligned}
& \text { Theorem (B.-SCHMIDT, 2018) } \\
& f(X) \in \mathbb{F}_{q}[X], \operatorname{deg}(f) \leq q^{1 / 4} \\
& \qquad f(X) \text { planar on } \mathbb{F}_{q} \Longleftrightarrow f(X)=\sum_{i} a_{i} X^{2^{i}}
\end{aligned}
$$

Proposition (Connection with algebraic surfaces) $f(X) \in \mathbb{F}_{q}[X]$ planar $\Longleftrightarrow \mathcal{S}_{f}: \psi(X, Y, Z)=0$

$$
\psi(X, Y, Z)=1+\frac{f(X)+f(Y)+f(Z)+f(X+Y+Z)}{(X+Y)(X+Z)} \in \mathbb{F}_{q}[X, Y, Z]
$$

has no affine \mathbb{F}_{q}-rational points off $X=Y$ and $Z=X$

Proof Strategy

- Consider \mathcal{S}_{f}

Proof Strategy

- Consider \mathcal{S}_{f}
- $\mathcal{C}_{f}=\mathcal{S}_{f} \cap \pi$

Proof Strategy

- Consider \mathcal{S}_{f}
- $\mathcal{C}_{f}=\mathcal{S}_{f} \cap \pi$
- \mathcal{C}_{f} has \mathbb{F}_{q}-rational A.I. component

Proof Strategy

- Consider \mathcal{S}_{f}
- $\mathcal{C}_{f}=\mathcal{S}_{f} \cap \pi$
- \mathcal{C}_{f} has \mathbb{F}_{q}-rational A.I. component
- Hasse-Weil $\Longrightarrow \mathcal{S}_{f}$ has \mathbb{F}_{q}-rational points $(\bar{x}, \bar{y}, \bar{z})$, $\bar{x} \neq \bar{y}, \bar{x} \neq \bar{z}$, if q is large enough

Another method based on singular points

JANWA-McGUIRE-WILSON, J. Algebra, 1995
JEDLICKA, Finite Fields Appl., 2007
HERNANDO-McGUIRE, J. Algebra, 2011
HERNANDO-McGUIRE, Des. Codes Cryptogr., 2012
HERNANDO-McGUIRE-MONSERRAT, Geometriae Dedicata, 2014
SCHMIDT-ZHOU, J. Algebraic Combin., 2014
LEDUCQ, Des. Codes Cryptogr., 2015
B.-ZHOU, J. Algebra, 2018

Another method based on singular points

- Consider a curve \mathcal{C} defined by $F(X, Y)=0, \operatorname{deg}(F)=d$

Another method based on singular points

- Consider a curve \mathcal{C} defined by $F(X, Y)=0, \operatorname{deg}(F)=d$
- Suppose \mathcal{C} has no A.I. components defined over \mathbb{F}_{q}

Another method based on singular points

- There are two components of \mathcal{C}

$$
\begin{aligned}
& \mathcal{A}: A(X, Y)=0, \quad \mathcal{B}: \quad B(X, Y)=0, \text { with } \\
& F(X, Y)=A(X, Y) \cdot B(X, Y), \quad \operatorname{deg}(A) \cdot \operatorname{deg}(B) \geq 2 d^{2} / 9
\end{aligned}
$$

Another method based on singular points
－ $\mathcal{A} \cap \mathcal{B} \subset \operatorname{SING}(\mathcal{C})$

Another method based on singular points

- $\mathcal{I}(P, \mathcal{A}, \mathcal{B}) \leq M A X_{P}$ for all $P \in \operatorname{SING}(\mathcal{C})$

How to get a contradiction

How to get a contradiction

- Good estimates on $\mathcal{I}(P, \mathcal{A}, \mathcal{B}), P=(\xi, \eta)$
- Analyzing the smallest homogeneous parts in

$$
F(X+\xi, Y+\eta)=F_{m}(X, Y)+F_{m+1}(X, Y)+\cdots
$$

- Proving that there is a unique branch centered at P
- Studying the structure of all the branches centered at P
- Good estimates on the number of singular points of \mathcal{C}

How to get a contradiction

$$
2 d^{2} / 9 \leq \overbrace{\operatorname{deg}(A) \cdot \operatorname{deg}(B)=\sum_{P \in \mathcal{A} \cap \mathcal{B}} \mathcal{I}(P, \mathcal{A}, \mathcal{B})}^{\text {BEZOUT'S }} \leq \underbrace{\sum_{P \in \mathcal{A} \cap \mathcal{B}} M A X_{P}<2 d^{2} / 9}_{\text {CONTRADICTION }}
$$

－Good estimates on $\mathcal{I}(P, \mathcal{A}, \mathcal{B}), P=(\xi, \eta)$
－Analyzing the smallest homogeneous parts in

$$
F(X+\xi, Y+\eta)=F_{m}(X, Y)+F_{m+1}(X, Y)+\cdots
$$

－Proving that there is a unique branch centered at P
－Studying the structure of all the branches centered at P
－Good estimates on the number of singular points of \mathcal{C}

How to get a contradiction

$$
2 d^{2} / 9 \leq \overbrace{\operatorname{deg}(A) \cdot \operatorname{deg}(B)=\sum_{P \in \mathcal{A \cap B}} \mathcal{I}(P, \mathcal{A}, \mathcal{B})}^{\text {BEZOUT'S }} \leq \underbrace{\sum_{P \in \mathcal{A} \cap \mathcal{B}} M A X_{P}<2 d^{2} / 9}_{\text {CONTRADICTION }}
$$

- Good estimates on $\mathcal{I}(P, \mathcal{A}, \mathcal{B}), P=(\xi, \eta)$
- Analyzing the smallest homogeneous parts in

$$
F(X+\xi, Y+\eta)=F_{m}(X, Y)+F_{m+1}(X, Y)+\cdots
$$

- Proving that there is a unique branch centered at P
- Studying the structure of all the branches centered at P
- Good estimates on the number of singular points of \mathcal{C}

Another application: Exceptional APN rational functions

Definition

$f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is APN (Almost Perfect Nonlinear) if

$$
\forall \alpha, \beta \in \mathbb{F}_{2^{n}}, \quad \alpha \neq 0, \Longrightarrow f(x+\alpha)+f(x)=\beta
$$

has at most two solutions.
If f is APN over $\mathbb{F}_{2^{m n}}$ for infinitely many extensions $\mathbb{F}_{2^{m n}}$ of $\mathbb{F}_{2^{n}}, f$ is said to be exceptional APN

Another application: Exceptional APN rational functions

Definition

$f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ is APN (Almost Perfect Nonlinear) if

$$
\forall \alpha, \beta \in \mathbb{F}_{2^{n}}, \quad \alpha \neq 0, \Longrightarrow f(x+\alpha)+f(x)=\beta
$$

has at most two solutions.
If f is APN over $\mathbb{F}_{2^{m n}}$ for infinitely many extensions $\mathbb{F}_{2^{m n}}$ of $\mathbb{F}_{2^{n}}, f$ is said to be exceptional APN

Theorem (Rodier, 2009)
$f \in \mathbb{F}_{2^{n}}[X] A P N$ over $\mathbb{F}_{2^{n}} \Longleftrightarrow$ the surface

$$
S_{f}: \varphi_{f}(X, Y, Z):=\frac{f(X)+f(Y)+f(Z)+f(X+Y+Z)}{(X+Y)(X+Z)(Y+Z)}=0
$$

Another application: Exceptional APN rational functions

Only polynomial functions have been considered so far (mostly)
Every function $h: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be described by a polynomial of degree at most q - 1

Another application: Exceptional APN rational functions

Only polynomial functions have been considered so far (mostly)
Every function $h: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be described by a polynomial of degree at most q - 1 non-existence results obtained via algebraic varieties require low degree

Another application: Exceptional APN rational functions

Only polynomial functions have been considered so far (mostly)
Every function $h: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be described by a polynomial of degree at most q - 1
non-existence results obtained via algebraic varieties require low degree
It could be useful to investigate functions $h: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ described by rational functions $f(x) / g(x)$ of "low degree" to get new non-existence results

Another application：Exceptional APN rational functions

Let consider
－$q=2^{19}$ ；
－$\psi: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, \quad x \mapsto \frac{x}{x^{3}+x+1}$ ．
－$h \in \mathbb{F}_{q}[X], \operatorname{deg}(h) \leq q-1$ ，such that $\psi(x)=h(x)$ for any $x \in \mathbb{F}_{q}$ ．

Another application: Exceptional APN rational functions

Let consider

- $q=2^{19}$;
- $\psi: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, \quad x \mapsto \frac{x}{x^{3}+x+1}$.
- $h \in \mathbb{F}_{q}[X], \operatorname{deg}(h) \leq q-1$, such that $\psi(x)=h(x)$ for any $x \in \mathbb{F}_{q}$.

By the Lagrange Interpolation Formula

$$
h(X)=\sum_{a \in \mathbb{F}_{q}} \psi(a)\left(1-(X-a)^{q-1}\right)
$$

Another application: Exceptional APN rational functions

Let consider

- $q=2^{19}$;
- $\psi: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}, \quad x \mapsto \frac{x}{x^{3}+x+1}$.
- $h \in \mathbb{F}_{q}[X], \operatorname{deg}(h) \leq q-1$, such that $\psi(x)=h(x)$ for any $x \in \mathbb{F}_{q}$.

By the Lagrange Interpolation Formula

$$
h(X)=\sum_{a \in \mathbb{F}_{q}} \psi(a)\left(1-(X-a)^{q-1}\right)
$$

and by computations with MAGMA,

$$
\operatorname{deg}(f)=q-1>\sqrt[4]{q}
$$

so Rodier's result cannot be applied.

Another application: Exceptional APN functions

However, one can consider

- the rational representation $\psi=\frac{f}{g}=\frac{X}{X^{3}+X+1} \in \mathbb{F}_{q}(X)$
- the corresponding surface

$$
S_{\psi}=\frac{\frac{f}{g}(X)+\frac{f}{g}(Y)+\frac{f}{g}(Z)+\frac{f}{g}(X+Y+Z)}{(X+Y)(X+Z)(Y+Z)}
$$

S_{ψ} has degree 10 , so the investigation of its \mathbb{F}_{q}-rational points becomes feasible by means of Lang-Weil bound.

Another application: Exceptional APN rational functions

- $q=2^{n}$,
- $\mathbb{F}_{q}(X)$ rational field over \mathbb{F}_{q}.
- $\psi=\frac{f}{g} \in \mathbb{F}_{q}(X)$

$$
\begin{aligned}
f & =a_{m} X^{m}+a_{m-1} X^{m-1}+\cdots+a_{i+1} X^{i+1}+a_{i} X^{i} \\
g & =b_{d} X^{d}+b_{d-1} X^{d-1}+\cdots+b_{1} X+b_{0}
\end{aligned}
$$

$g(x) \neq 0$ for all $x \in \mathbb{F}_{q}, a_{m} \neq 0 \neq b_{d}$, and $a_{i} \neq 0$.

Link with algebraic surfaces

Proposition
$\psi A P N$ over $\mathbb{F}_{q} \Longleftrightarrow$

$$
S_{\psi}: \varphi_{\psi}(X, Y, Z):=\frac{\theta_{\psi}(X, Y, Z)}{(X+Y)(X+Z)(Y+Z)}=0
$$

$$
\begin{aligned}
\theta_{\psi}(X, Y, Z):= & f(X) g(Y) g(Z) g(X+Y+Z)+f(Y) g(X) g(Z) g(X+Y+Z)+ \\
& +f(Z) g(X) g(Y) g(X+Y+Z)+f(X+Y+Z) g(X) g(Y) g(Z),
\end{aligned}
$$

has no affine \mathbb{F}_{q}-rational points off the planes $X=Y, X=Z$ and $Y=Z$.

Another application: Exceptional APN rational functions

Theorem (B.-FATABBI-GHIANDONI, 2023)

- $\operatorname{deg}(f)-\operatorname{deg}(g)=2 \ell, \ell>0$ odd

$$
\begin{gathered}
g \notin \mathbb{F}_{q}\left[X^{p}\right], \text { or } \\
f^{\prime} \neq \gamma g \text { for all } \gamma \in \mathbb{F}_{q} \\
\cdot \operatorname{deg}(g)-\operatorname{deg}(f)=\ell, \ell>1 \text { odd }
\end{gathered}
$$

$$
f^{\prime} \neq \gamma g \text { for all } \gamma \in \mathbb{F}_{q} \quad \Longrightarrow \quad \psi=\frac{f}{g} \text { is not exceptional APN }
$$

- $\operatorname{deg}(f)=1$
(1) Intersection with specific hyperplanes
(2) Lang-Weil bound for surfaces

Another application: c-planar functions

Definition (Planar functions, odd characteristic)
$f(X) \in \mathbb{F}_{q}[X]$ is planar polynomial if

$$
\forall \epsilon \in \mathbb{F}_{q}^{*} \quad x \mapsto f(x+\epsilon)-f(x) \text { BIJECTION }
$$

Another application: c-planar functions

Definition (Planar functions, odd characteristic)
$f(X) \in \mathbb{F}_{q}[X]$ is planar polynomial if

$$
\forall \epsilon \in \mathbb{F}_{q}^{*} \quad x \mapsto f(x+\epsilon)-f(x) \text { BIJECTION }
$$

Definition (c-Planar functions, odd characteristic) $c \in \mathbb{F}_{q} \backslash\{0,1\}, f(X) \in \mathbb{F}_{q}[X]$ is c-planar polynomial if

$$
\forall \epsilon \in \mathbb{F}_{q} \quad x \mapsto f(x+\epsilon)-c f(x) \text { BIJECTION }
$$

[P. Ellingsen, P. Felke, C. Riera, P. Stănică, A. Tkachenko, C-differentials, multiplicative uniformity and (almost) perfect c-nonlinearity, 2020]

Another application: c-planar functions

Theorem (B.-TIMPANELLA, J. Alg. Combin. 2020)
$c \in \mathbb{F}_{p^{r}} \backslash\{0,-1\}, \quad k$ such that $(t-1) \mid\left(p^{k}-1\right)$
$p \nmid t \leq \sqrt[4]{p^{r}}, X^{t}$ is NOT c-planar if
(1) $p \nmid t-1, \quad p \nmid \prod_{m=1}^{7} \prod_{\ell=-7}^{7-m} m \frac{p^{k}-1}{t-1}+\ell, \quad t \geq 470$;
(2) $t=p^{\alpha} m+1,(p, \alpha) \neq(3,1), \alpha \geq 1, p \nmid m, m \neq p^{r}-1 \forall r \mid \ell$, where $\ell=\min _{i}\left\{m \mid p^{i}-1, c^{\left(p^{i}-1\right) / m}=1\right\}$.

Another application: c-planar functions

$$
\mathcal{C}: F(X, Y)=\frac{(X+1)^{t}-(Y+1)^{t}-c\left(X^{t}-Y^{t}\right)}{X-Y} \in \mathbb{F}_{p^{r}}[X, Y] .
$$

Another application: c-planar functions

$$
\mathcal{C}: F(X, Y)=\frac{(X+1)^{t}-(Y+1)^{t}-c\left(X^{t}-Y^{t}\right)}{X-Y} \in \mathbb{F}_{p^{r}}[X, Y] .
$$

Singular points $\operatorname{SING}(\mathcal{C})$ satisfy

$$
\left\{\begin{array}{l}
\left(\frac{X+1}{X}\right)^{t-1}=c \\
\left(\frac{X}{Y}\right)^{t-1}=1 \\
\left(\frac{X+1}{Y+1}\right)^{t-1}=1
\end{array}\right.
$$

Another application: c-planar functions

$$
\mathcal{C}: F(X, Y)=\frac{(X+1)^{t}-(Y+1)^{t}-c\left(X^{t}-Y^{t}\right)}{X-Y} \in \mathbb{F}_{p^{r}}[X, Y] .
$$

Singular points $\operatorname{SING}(\mathcal{C})$ satisfy

$$
\left\{\begin{array}{l}
\left(\frac{X+1}{X}\right)^{t-1}=c \\
\left(\frac{X}{Y}\right)^{t-1}=1 \\
\left(\frac{X+1}{Y+1}\right)^{t-1}=1
\end{array}\right.
$$

We use estimates on the number of points of particular Fermat curves
GARCIA-VOLOCH, Manuscripta Math., 1987 GARCIA-VOLOCH, J. Number Theory, 1988

Another application: Crooked functions

Definition

$f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}$ crooked if
(1) $f(0)=0$
(2) $f(x)+f(y)+f(z)+f(x+y+z) \neq 0$ for any x, y, z distinct
(3) $f(x)+f(y)+f(z)+f(x+a)+f(y+a)+f(z+a) \neq 0$ for any x, y, z, and $a \neq 0$

$$
\mathcal{W}_{f}: \frac{f(X)+f(Y)+f(Z)+f(X+U)+f(Y+U)+f(Z+U)}{U}=0
$$

Theorem

$f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}, f(0)=0$
If there exists an affine $\mathbb{F}_{2^{n}}$-rational point $P \in \mathcal{W}_{f}$ not lying on $U=0$, then $f(X)$ is not crooked over $\mathbb{F}_{2^{n}}$.

Theorem

Let $g(X)=(f(X))^{2^{j}}, j \geq 0, f(X)=\sum_{i=0}^{d} a_{i} X^{i}, a_{d} \neq 0 . g(X)$ exceptional crooked function implies one of the following cases

- $f(X)=X^{2^{k}+1}+h(X), \operatorname{deg}(h(X))=2^{j}+1$, and $f(X)$ is quadratic;
- $f(X)=X^{2^{k}+1}+h(X)$, where $\operatorname{deg}(h(X)) \geq 2^{k-1}+2$ is even;
- $d=4 e+\ldots$
[B.-CALDERINI-TIMPANELLA, Exceptional crooked functions, 2022]

$$
\mathcal{W}_{f}: \frac{f(X)+f(Y)+f(Z)+f(X+U)+f(Y+U)+f(Z+U)}{U}=0
$$

Theorem

$f: \mathbb{F}_{2^{n}} \rightarrow \mathbb{F}_{2^{n}}, f(0)=0$
If there exists an affine $\mathbb{F}_{2^{n}}$-rational point $P \in \mathcal{W}_{f}$ not lying on $U=0$, then $f(X)$ is not crooked over $\mathbb{F}_{2^{n}}$.

Theorem

Let $g(X)=(f(X))^{2^{j}}, j \geq 0, f(X)=\sum_{i=0}^{d} a_{i} X^{i}, a_{d} \neq 0 . g(X)$ exceptional crooked function implies one of the following cases

- $f(X)=X^{2^{k}+1}+h(X), \operatorname{deg}(h(X))=2^{j}+1$, and $f(X)$ is quadratic;
- $f(X)=X^{2^{k}+1}+h(X)$, where $\operatorname{deg}(h(X)) \geq 2^{k-1}+2$ is even;
- $d=4 e+\ldots$
(1) Existence of simple \mathbb{F}_{q}-rational points
(2) Direct proofs of irreducibility

Another application: c-differential uniformity

Definition (c-Planar functions)
$c \in \mathbb{F}_{q} \backslash\{0,1\}, f(X) \in \mathbb{F}_{q}[X]$ is c-planar polynomial if

$$
\forall \epsilon \in \mathbb{F}_{q} \quad x \mapsto f(x+\epsilon)-c f(x) \text { BIJECTION }
$$

Another application: c-differential uniformity

Definition (c-Planar functions)
$c \in \mathbb{F}_{q} \backslash\{0,1\}, f(X) \in \mathbb{F}_{q}[X]$ is c-planar polynomial if

$$
\forall \epsilon \in \mathbb{F}_{q} \quad x \mapsto f(x+\epsilon)-c f(x) \text { BIJECTION }
$$

What about the maximum number of solutions of

$$
f(x+\epsilon)-c f(x)=\beta,
$$

for $\beta \in \mathbb{F}_{q}$?

Another application: c-differential uniformity

Definition (c-Planar functions)

$c \in \mathbb{F}_{q} \backslash\{0,1\}, f(X) \in \mathbb{F}_{q}[X]$ is c-planar polynomial if

$$
\forall \epsilon \in \mathbb{F}_{q} \quad x \mapsto f(x+\epsilon)-c f(x) \text { BIJECTION }
$$

What about the maximum number of solutions of

$$
f(x+\epsilon)-c f(x)=\beta,
$$

for $\beta \in \mathbb{F}_{\boldsymbol{q}}$?
$f(x)=x^{d}$

$$
\mathcal{C}: F(X, Y)=\frac{(X+1)^{d}-(Y+1)^{d}-c\left(X^{d}-Y^{d}\right)}{X-Y} \in \mathbb{F}_{p^{r}}[X, Y] .
$$

Another application: c-differential uniformity

Theorem
$p \nmid d(d-1)$

$$
c \neq\left(\frac{1-\xi^{i}}{\xi^{k}-\xi^{j}}\right)^{d-1}, \quad \xi^{d-1}=1, i, j, k \in\{0, \ldots, d-2\}
$$

Then the c-uniformity of x^{d} is d (asymptotically)
[B.-CALDERINI, On construction and (non)existence of c-(almost) perfect nonlinear functions. Finite Fields Their Appl. 2021]

Another application: c-differential uniformity

Theorem
$p \nmid d(d-1)$

$$
c \neq\left(\frac{1-\xi^{i}}{\xi^{k}-\xi^{j}}\right)^{d-1}, \quad \xi^{d-1}=1, i, j, k \in\{0, \ldots, d-2\}
$$

Then the c-uniformity of x^{d} is d (asymptotically)
[B.-CALDERINI, On construction and (non)existence of c -(almost) perfect nonlinear functions. Finite Fields Their Appl. 2021]
(1) Algebraic curves
(2) Monodromy groups of function field extensions

THANK YOU

FOR YOUR ATTENTION

What to do when the degree is too high: A Useful Criterion

Problem

The degree of $\mathcal{C}_{f}: \frac{f(x)-f(y)}{x-y}=0$ can be too high to use Hasse-Weil

What to do when the degree is too high:

A Useful Criterion

Problem

The degree of $\mathcal{C}_{f}: \frac{f(x)-f(y)}{x-y}=0$ can be too high to use Hasse-Weil

$$
f_{r, d, h}(x)=x^{r} h\left(x^{\frac{q-1}{d}}\right)
$$

What to do when the degree is too high:

A Useful Criterion

Problem

The degree of $\mathcal{C}_{f}: \frac{f(x)-f(y)}{x-y}=0$ can be too high to use Hasse-Weil

$$
f_{r, d, h}(x)=x^{r} h\left(x^{\frac{q-1}{d}}\right)
$$

Criterion

$f_{r, d, h}(x) \in \mathbb{F}_{q} P P \Longleftrightarrow$

- $(r,(q-1) / d)=1$
- $x^{r} h(x)^{\frac{q-1}{d}}$ permutes $\mu_{d}=\left\{a \in \mathbb{F}_{q}: a^{d}=1\right\}$

PARK, LEE. Bull. Aust. Math. Soc., 2001 ZIEVE. Proc. Am. Math. Soc. 2009
AKBARY, GHIOCA, WANG. Finite Fields Appl., 2011

What to do when the degree is too high:

A Useful Criterion

$$
f_{\alpha, \beta}(x)=x+\alpha x^{q(q-1)+1}+\beta x^{2(q-1)+1}, q=2^{n}
$$

Problem

Find all $\alpha, \beta \in \mathbb{F}_{q^{2}}, q=2^{n}$, such that $f_{\alpha, \beta}$ is $P P$

What to do when the degree is too high:

A Useful Criterion

$$
f_{\alpha, \beta}(x)=x+\alpha x^{q(q-1)+1}+\beta x^{2(q-1)+1}, q=2^{n}
$$

Problem

Find all $\alpha, \beta \in \mathbb{F}_{q^{2}}, \boldsymbol{q}=2^{n}$, such that $f_{\alpha, \beta}$ is $P P$ TU, ZENG, LI, HELLESETH. Finite Fields Appl., 2018
$f_{\alpha, \beta}(x)=x+\alpha x^{q(q-1)+1}+\beta x^{2(q-1)+1}=x\left(1+\alpha\left(x^{q-1}\right)^{q}+\beta\left(x^{q-1}\right)^{2}\right)$
$f_{\alpha, \beta}(x) \in \mathbb{F}_{q^{2}} \mathrm{PP} \Longleftrightarrow g_{\alpha, \beta}(x)=x\left(1+\alpha x^{q}+\beta x^{2}\right)^{q-1}$ permutes μ_{q+1}

How to make life easier

$$
\begin{aligned}
& f_{\alpha, \beta}(x) \in \mathbb{F}_{q^{2}} P P \Longleftrightarrow g_{\alpha, \beta}(x)=x\left(1+\alpha x^{q}+\beta x^{2}\right)^{q-1} \text { permutes } \mu_{q+1} \\
& \text { - } i \in \mathbb{F}_{q^{2}}, i^{q}+i=1 \\
& \text { - } \alpha=A+i B, A, B \in \mathbb{F}_{q} \\
& \text { - } \beta=C+i D, C, D \in \mathbb{F}_{q} \\
& \text { - } x=\frac{x^{\prime}+i}{x^{\prime}+i+1}, x^{\prime} \in \mathbb{F}_{q}
\end{aligned}
$$

How to make life easier

$$
\begin{aligned}
& f_{\alpha, \beta}(x) \in \mathbb{F}_{q^{2}} \mathrm{PP} \Longleftrightarrow g_{\alpha, \beta}(x)=x\left(1+\alpha x^{q}+\beta x^{2}\right)^{q-1} \text { permutes } \mu_{q+1} \\
& \text { • } i \in \mathbb{F}_{q^{2}}, i^{q}+i=1 \\
& \text { - } \alpha=A+i B, A, B \in \mathbb{F}_{q} \\
& \text { - } \beta=C+i D, C, D \in \mathbb{F}_{q} \\
& \text { - } x=\frac{x^{\prime}+i}{x^{\prime}+i+1}, x^{\prime} \in \mathbb{F}_{q} \\
& \quad g_{\alpha, \beta}(x) \quad \mapsto \quad h(x)=\frac{h_{1}(x)}{h_{2}(x)}, \quad \begin{array}{l}
\\
\quad \begin{array}{l}
h_{1}, h_{2} \in \mathbb{F}_{q}[x] \\
\operatorname{deg}\left(h_{1}\right), \operatorname{deg}\left(h_{2}\right) \leq 3
\end{array}
\end{array} . \begin{array}{l}
\mapsto \quad
\end{array}
\end{aligned}
$$

How to make life easier

$$
\begin{aligned}
& f_{\alpha, \beta}(x) \in \mathbb{F}_{q^{2}} \mathrm{PP} \Longleftrightarrow g_{\alpha, \beta}(x)=x\left(1+\alpha x^{q}+\beta x^{2}\right)^{q-1} \text { permutes } \mu_{q+1} \\
& \bullet i \in \mathbb{F}_{q^{2}, i^{q}+i=1} \\
& \text { • } \alpha=A+i B, A, B \in \mathbb{F}_{q} \\
& \bullet \beta=C+i D, C, D \in \mathbb{F}_{q} \\
& \bullet x=\frac{x^{\prime}+i}{x^{\prime}+i+1}, x^{\prime} \in \mathbb{F}_{q} \\
& g_{\alpha, \beta}(x) \quad \mapsto \quad h(x)=\frac{h_{1}(x)}{h_{2}(x)}, \quad \begin{array}{l}
h_{1}, h_{2} \in \mathbb{F}_{q}[x] \\
\operatorname{deg}\left(h_{1}\right), \operatorname{deg}\left(h_{2}\right) \leq 3
\end{array}
\end{aligned}
$$

Proposition

$$
\mathcal{C}_{A, B}: \frac{h_{1}(X) h_{2}(Y)-h_{1}(Y) h_{2}(X)}{X-Y}=0,
$$

$$
f_{\alpha, \beta}(x) P P \text { of } \mathbb{F}_{q^{2}} \Longleftrightarrow \quad \operatorname{deg}\left(\mathcal{C}_{A, B}\right) \leq 4
$$ has no \mathbb{F}_{q}-rational points (\bar{x}, \bar{y}) with $\bar{x} \neq \bar{y}$

B. Finite Fields Appl., 2018

