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@ Algebraic curves over finite fields
@ How describe a problem via a curve?
© Which machineries?

©Q Applications:
» Permutation polynomials

» Planar polynomials in char 2
» APN rational functions
» APcN/PcN functions

» Crooked functions
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Toy example: a permutation problem

How to check if a polynomial f(x) permutes Fq?

f(x) permutes Fq

)
VbeFq f(x)= b has exactly one solution X € Fq
)
f(x) = f(y) has only solutions (x,X) € ]F?7
)

fF(x)=f(y)

= 0 has no solution (X,) € F2 with X #y



Toy example: a permutation problem

Example

Does f(x) = x> + x permute F7?
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Toy example: a permutation problem

Example

Does f(x) = x* + x permute F7?

f(X)fi(Y) =0reads x>+ xy +y2+1=0

X—

solutions —» (1, 3), (4,4), (6,4), (4,6),(3,3),(3,1)
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Example

Does f(x) = x3 + x permute F;?
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solutions —» (1, 3), (4-4),(6,4), (4,6), (3:3), (3,1)



Toy example: a permutation problem

Example

Does f(x) = x* + x permute F7?

7'(()())(:;()’) =0reads x> +xy +y>+1=0

solutions —» (1,3),%, (6,4), (4, 6),%, (3,1)

f(x) = x> + x does not permute F;




What is a curve?

Fy: finite field with q = p" elements

Definition (Affine plane)

AG(2,q) := (Fq)?
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What is a curve?

Fy: finite field with q = p" elements

Definition (Affine plane)
AG(2,q) = (Fy)?

Definition (Curve)

C in AG(2,q) Curve

class of proportional polynomials F(X, Y) € Fq[X, Y]
degree of C = deg(F(X,Y))

2X +7Y%2+3 < 4X +14Y?+6



What is a curve?

C defined by F(X,Y)
Definition

(a,b) € AG(2,q)

affine) IF,-rational point of C < F(a,b)=0
( q p

VLS

C: F(X,Y)=0




Curves: absolute irreducibility

Definition
C : F(X,Y) =0 affine equation

Definition
C absolutely irreducible <=

AG(X,Y), H(X,Y) e Fg[X, Y] :

F(X,Y) = G(X,Y)H(X,Y)
deg(G(X, Y)),deg(H(X, Y)) > 0

Example

X2 + Y? + 1 absolutely irreducible

X2~ sy?, s ¢ 0,

= (X —nY)(X+nY), n? =s, n € F, not absolutely irreducible




A fundamental tool: Hasse-Weil Theorem

Question
How many F g-rational points can C have?
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The number Ny of F4-rational points is

Ng — (q+1)| < (d — 1)(d - 2)/a.




A fundamental tool: Hasse-Weil Theorem

Question
How many T q-rational points can C have?

Theorem (Hasse-Weil Theorem)

C absolutely irreducible curve of degree d defined over IF,
The number Ny of F4-rational points is

Ng — (q+1)| < (d — 1)(d - 2)/a.

Example

C : X?—Y2=0 has 2q + 1 Fy-rational points!
C : X2-sY?=0, s¢ 0O, has 1 Fgrational point!




Algebraic curves and Permutation Polynomials

Theorem

. FX)—F(Y)
Cf - T X—Y 0
f(x) € Fq[x] is PP <= has no affine F,-rational

points off X — Y =0
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Theorem

. FX)—F(Y)
Cf - T X—Y 0
f(x) € Fq[x] is PP <= has no affine F,-rational

points off X — Y =0

Example
f(x) = x3 + x € Fq[x]

X)) = £(Y)

Cr - = X2+ XY +Y?+1=0
f X_Yy + + Y+

el
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Theorem

. FX)—F(Y)
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Example
f(x) = x3 + x € Fq[x]

f(X)
X

F(Y)
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Cr:

with at least ¢ — 3
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noton X — Y =0
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Algebraic curves and Permutation Polynomials

Theorem

. FX)—F(Y)
Cf - T X—Y 0
f(x) € Fq[x] is PP <= has no affine F,-rational

points off X — Y =0

Example
f(x) = x3 + x € Fq[x]

f(X)
X

F(Y)

v =X+ XY +Y3 +1=0

Cr:

with at least ¢ — 3
Cr CONIC = affine F4-rational points
noton X — Y =0

if g>3 = f(x) =x>+xis NOT a PP

et




An easy criterion

Criterion (SEGRE)
P € C has tangent t
@ non-repeated
e tNC={P}
= C Is absolutely irreducible




An easy criterion

Criterion (SEGRE)
P € C has tangent t
@ non-repeated
o tNC={P}
= C is absolutely irreducible )

BARTOCCI-SEGRE. Acta Arith XVIII, 1971



Frobenius automorphism and [F,-rational components

Definition (Frobenius automorphism)

g : Fq—Tq

a— af




Frobenius automorphism and [F,-rational components

Definition (Frobenius automorphism)

g : Fq—Tq

a— af

pq: A%(Fq) — A%(F) J pq: FglX, Y] = FglX, V] J

(a,8) — (a9 39) Y XY Za?JXin




Frobenius automorphism and [F,-rational components

Definition (Frobenius automorphism)

g : Fq—Tq

a— af

(a,8) — (a9 39) Yai i XY = Y al XY

o AXF) — AX(F,) J co: FIX,Y] = FIX,Y] J
J

pg(a) =a <= a €l

SOCI(O‘HB) = (a’ﬂ) — (avﬂ) € Az(IFCI) .
©0q(C) =C < AF € Fg[X, Y] for some X € F,




Frobenius automorphism and [F,-rational components

F(X,Y) e Fq[X, Y], C:F(X,Y)=0 curve



Frobenius automorphism and [F,-rational components

F(X,Y) e Fq[X, Y], C:F(X,Y)=0 curve
FIX.Y)=F(X,Y) - Fa(X,Y) - Fi(X,Y), Fi€FqlX,Y]

Ci : Fi(X,Y) =0 components of C



Frobenius automorphism and [F,-rational components

F(X,Y) eFq[X, Y], C:F(X,Y)=0 curve
FIX.Y)=F(X,Y) - Fa(X,Y) - Fi(X,Y), Fi€Fq[X,Y]

Ci : Fi(X,Y) =0 components of C

PeC = pq(P)eC J

P ©q(P)



Frobenius automorphism and [F,-rational components
F(X,Y) €Fy[X, Y], C:F(X,Y)=0 curve

FX,Y)=F(X,Y) Fa(X,Y) - F(X,Y), Fi €F4[X,Y]

Ci: Fi(X,Y) = 0 components of C

Q ©q(Ci) =
Ci Q
Remark
0qg(Ci) = Ci = Ci is defined over I

C; Fq-rational A.l. component of C




Hasse-Weil again
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Hasse-Weil again
Theorem (Hasse-Weil Theorem)

C absolutely irreducible curve of degree d defined over I

Ng— (q+1)] < (d - 1)(d — 2)Va.

Corollary

deg f(x) <q
f(x) PP = Cr has no Fq — A.1.C. distinct from X —Y =0

Proof. D T,-A.l.C. By Hasse-Weil Theorem

Ng > —(d=1)(d-2)vg+(q9+1)
% ~(Va-2)(g-3)va+(a+1)
- 5v/q3 —6,/q+1

Number of points not at infinity noron X — Y =0

Ng — 2deg(D) > Ng —2(¥/q—1) = 5v/¢> — 6,/ —2¢q+3>0



Existence of absolutely irreducible [F,-rational components

Remark
P € C simple point => P belongs to a unique component of C
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Remark

P € C simple point => P belongs to a unique component of C

Criterion

F(X,Y,T)eFq,[X,Y,T],

PeC : F(X,Y,T)=0 simple

F4-point N
— C has F-A.I.C. defined over By | P = ©4(P)
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Remark

P € C simple point => P belongs to a unique component of C

Criterion

F(X,Y,T)€Fg[X,Y,T],
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Existence of absolutely irreducible [F,-rational components

Remark

P € C simple point => P belongs to a unique component of C

Criterion

F(X,Y,T)€Fg[X,Y,T],

PeC : F(X,Y,T)=0 simple (
F4-point

— C has F-A.I.C. defined over By | P = ©4(P)

Spq(D) =D




Exceptional Planar Functions

Definition (Planar Function, g odd)
g odd prime power
f :Fq — Fq planar or perfect nonlinear if

Ve € Fy = x = f(x +¢) — f(x) is PP




Exceptional Planar Functions

Definition (Planar Function, g odd)

g odd prime power
f :Fq — Fq planar or perfect nonlinear if

Ve € Fy = x = f(x +¢€) — f(x) is PP

@ Construction of finite projective planes

DEMBOWSKI-OSTROM, Math. Z. 1968
o Relative difference sets

GANLEY-SPENCE, J. Combin. Theory Ser. A 1975
o Error-correcting codes

CARLET-DING-YUAN, IEEE Trans. Inform. Theory 2005
@ S-boxes in block ciphers

NYBERG-KNUDSEN, Advances in cryptology 1993.



Exceptional Planar Functions

Definition (Planar Function, g even)
q even

f:Fq — Fq planar if

Ve € Fy = x — f(x +¢€) + f(x) + ex is PP




Exceptional Planar Functions

Definition (Planar Function, g even)
g even

f:Fq — Fq planar if

Ve € F, = x = f(x +¢€) + f(x) + ex is PP

ZHOU, J. Combin. Des. 2013.
Other works

SCHMIDT-ZHOU, J. Algebraic Combin., 2014

SCHERR-ZIEVE, Ann. Comb., 2014
HU-LI-ZHANG-FENG-GE, Des. Codes Cryptogr., 2015

QU, IEEE Trans. Inform. Theory, 2016



Exceptional Planar Functions

Theorem (B.-SCHMIDT, 2018)
F(X) € FylX], deg(F) < qV/*

f(X) planar on Fq <= f(X) = ZaXT




Exceptional Planar Functions

Theorem (B.-SCHMIDT, 2018)
F(X) € FylX], deg(F) < qV/*

f(X) planar on Fq <= f(X) = ZaXT

Proposition (Connection with algebraic surfaces)
f(X) € Fg[X] planar <= S¢ : ¢(X,Y,Z)=0

fFX)+f(Y)+f(2)+f(X+Y+2)
X+ Y)(X+2)

has no affine Fq4-rational points off X =Y and Z = X

WX, Y,Z)=1+

IFCI[)<7 Y7 Z]




Proof Strategy

@ Consider Sf

N
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Proof Strategy

@ Consider Sf
e Cr=S5rNm

@ Cr has F4-rational ALl
component

o Hasse-Weil = S¢ has
[Fg-rational points (X,y,Z),
X#Yy, X #7z if qis large
enough

N



Another method based on singular points

JANWA-McGUIRE-WILSON, J. Algebra, 1995

JEDLICKA, Finite Fields Appl., 2007

HERNANDO-McGUIRE, J. Algebra, 2011

HERNANDO-McGUIRE, Des. Codes Cryptogr., 2012
HERNANDO-McGUIRE-MONSERRAT, Geometriae Dedicata, 2014
SCHMIDT-ZHOU, J. Algebraic Combin., 2014

LEDUCQ, Des. Codes Cryptogr., 2015

B.-ZHOU, J. Algebra, 2018



Another method based on singular points

e Consider a curve C defined by F(X,Y) =0, deg(F) =d



Another method based on singular points

e Consider a curve C defined by F(X,Y) =0, deg(F) =d
e Suppose C has no A.l. components defined over F



Another method based on singular points

e There are two components of C
A AX,Y)=0, B : B(X,Y)=0, with
F(X,Y)=A(X,Y)-B(X,Y), deg(A)-deg(B)>2d?/9



Another method based on singular points

e ANBC SING(C)



Another method based on singular points
o I(P, A, B) < MAXp for all P € SING(C)

BEZOUT'S THEOREM

2d°/9 < deg(A)-deg(B) = > I(P,AB)< >  MAXp
PeANB PeANB
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BEZOUT’S THEOREM

2d°/9 < deg(A) -deg(B) = > I(P,AB)< > MAXp<2d*/9
PeANB PeANB

CONTRADICTION

e Good estimates on Z(P, A, B), P = (&, 1)

» Analyzing the smallest homogeneous parts in
F(X+£7Y+77) = Fm(Xa Y)+Fm+1(X7 Y)+

» Proving that there is a unique branch centered at P
» Studying the structure of all the branches centered at P

@ Good estimates on the number of singular points of C
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How to get a contradiction

BEZOUT'S THEOREM

2d°/9 < deg(A) -deg(B) = > I(P,AB)< > MAXp <2d°/9
PeANB PeANB

CONTRADICTION

e Good estimates on Z(P, A, B), P = (£,7)
» Analyzing the smallest homogeneous parts in
F(X+£7Y+77): Fm(X7 Y)+Fm+1(X7 Y)+

» Proving that there is a unique branch centered at P
» Studying the structure of all the branches centered at P

@ Good estimates on the number of singular points of C



Another application: Exceptional APN rational functions
Definition
f :Fan — Fon is APN (Almost Perfect Nonlinear) if

Va,B € Fan, a#0,= f(x+a)+f(x)=p

has at most two solutions.
If fis APN over Fomn for infinitely many extensions Fomn of Fon |, f is said
to be exceptional APN




Another application: Exceptional APN rational functions
Definition
f :Fan — Fon is APN (Almost Perfect Nonlinear) if

Va,B € Fan, a#0,= f(x+a)+f(x)=p

has at most two solutions.
If fis APN over Fomn for infinitely many extensions Fomn of Fon |, f is said
to be exceptional APN

Theorem (Rodier, 2009)
f € Fan[X] APN over Fon <= the surface

F(X) +F(Y)+F(2) + X+ Y +2) _

X+ )X +2)(Y 1 2) 0

Sripe(X,Y,2Z) =

has no affine Fan-rational points off the planes X =Y, X =ZeY = Z.

v




Another application: Exceptional APN rational functions

Only polynomial functions have been considered so far (mostly)

Every function h : F, — F4 can be described by a polynomial of degree at
most g — 1 J
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Another application: Exceptional APN rational functions

Only polynomial functions have been considered so far (mostly)

Every function h : F, — F4 can be described by a polynomial of degree at
most g — 1 J

non-existence results obtained via algebraic varieties require low degree )

It could be useful to investigate functions h : F; — g described by
rational functions f(x)/g(x) of “low degree” to get new non-existence
results



Another application: Exceptional APN rational functions

Let consider
e g=
o :Fg—>Fg, x>

219;
X
X34 x+1
e heFy[X], deg(h) < g — 1, such that 1)(x) = h(x) for any x € F,.




Another application: Exceptional APN rational functions

Let consider
e g=
o :Fg—>Fg, x>

219;
X
X3+ x+1
o heFy[X], deg(h) < g — 1, such that 1)(x) = h(x) for any x € F,.

By the Lagrange Interpolation Formula

h(X) = w(a)(l— (X —a)7™?)

acly




Another application: Exceptional APN rational functions

Let consider
o g=2%;

o :Fyg—Fy xr—

x3+x+1
o heFy[X], deg(h) < g — 1, such that 1)(x) = h(x) for any x € F,.
By the Lagrange Interpolation Formula

hX)= 3 91— (X~ )Y

acly

and by computations with MAGMA,

deg(f)=qg—1> y/q

so Rodier’s result cannot be applied.




Another application: Exceptional APN functions

However, one can consider

@ the rational representation ¢ = g = ﬁ € Fq(X)

@ the corresponding surface
X+ LM+ L@+ LX+Y+2)

S, — & g g
W X+ Y)X + 2)(Y + Z)

Sy has degree 10, so the investigation of its F4-rational points becomes
feasible by means of Lang-Weil bound.




Another application: Exceptional APN rational functions

e qg=2"
o Fy(X) rational field over Fy.
o =1L ecFy(X)

fo= apX"+am1X™ 42 X 42X
g = bgX?+ by_1 X9 4+ by X + by,

g(x) # 0 for all x € Fq, am # 0 # by, and a; # 0.



Link with algebraic surfaces

Proposition

1 APN over F, <=

Sy (X, Y, Z):

_ ‘9¢(X7 Y,Z) _
XYY X+2)(Y+2)

0,

0p(X,Y,Z) = f(X)g(Y)g(2)g(X + Y + Z) + f(Y)e(X)g(2)g(X + Y + Z) +

+f(2)g(X)g(Y)g(X + Y + Z) + (X + Y + Z)g(X)g(Y)g(2),

has no affine IF4-rational points off the planes X =Y, X =Z and Y = Z.

.




Another application: Exceptional APN rational functions

Theorem (B.-FATABBI-GHIANDONI, 2023)
o deg(f) —deg(g) =2¢, £ >0 odd
g & Fq[XP], or
f' # ~g for all v € F, = Y= é is not exceptional APN
o deg(g) —deg(f) =4, ¢ > 1 odd
e deg(f) =1

@ Intersection with specific hyperplanes
@ Lang-Weil bound for surfaces




Another application: c-planar functions

Definition (Planar functions, odd characteristic)
f(X) € Fq4[X] is planar polynomial if

Ve € F;, x— f(x+¢) — f(x) BWECTION




Another application: c-planar functions

Definition (Planar functions, odd characteristic)
f(X) € Fq4[X] is planar polynomial if

Ve € F;, x— f(x+¢) — f(x) BWECTION

Definition (c-Planar functions, odd characteristic)
c e Fa\ {0,1}, f(X) € Fg[X] is c-planar polynomial if

Vee Fqg x— f(x+¢€)— cf(x) BIJECTION

v

[P. Ellingsen, P. Felke, C. Riera, P. Stanicd, A. Tkachenko, C-differentials,
multiplicative uniformity and (almost) perfect c-nonlinearity, 2020]



Another application: c-planar functions

Theorem (B.-TIMPANELLA, J. Alg. Combin. 2020)
ceF,\{0,—-1}, k such that (t — 1) | (pk — 1)
ptt <</p", Xt is NOT c-planar if
@ ptt—1, ptI[L_ [II=™ mBSt +4, > 470;
Q@ t=p*m+1, (p,a)#(3,1), a>1, ptm m#p —1Vr|{,
where { = min;{m | p' — 1, c(P'=1)/m =1}




Another application: c-planar functions

¢ Ry KED - (YXJ’_l);_ X =YY cmix,v]




Another application: c-planar functions

(X +1)f— (Y +1)f — ¢(Xt — V)

C: FX,Y)= P eFy[X, Y].
Singular points SING(C) satisfy
X t—1
wol o
(¥) rh
x4\ g
Y+1



Another application: c-planar functions

(X +1)f— (Y +1)f — ¢(Xt — V)

C: FX,Y)= o eFy[X, Y].
Singular points SING(C) satisfy
(5" =
-1
()7 =1

We use estimates on the number of points of particular Fermat curves

GARCIA-VOLOCH, Manuscripta Math., 1987
GARCIA-VOLOCH, J. Number Theory, 1988



Another application: Crooked functions

Definition
f : Fon — Fon crooked if
Q@ 7(0)=0
Q f(x)+f(y)+f(z)+ f(x+y+z)#0 for any x, y, z distinct

Q f(x)+f(y)+f(z)+f(x+a)+f(y+a)+f(z+a)#0 for any
x,y,z,and a # 0




FX)+F(Y)+f(2)+F(X+U)+f(Y+U)+(Z+ V)

Wr - U

=0

Theorem

f: Fon — Fon, f(O) =0

If there exists an affine Fan-rational point P € Wr not lying on U = 0,
then f(X) is not crooked over Fan.

Theorem

Let g(X) = (f(X))?,j >0, f(X) = X% a;X", ag # 0. g(X) exceptional
crooked function implies one of the following cases

o f(X) = X2+ 4 n(X), deg(h(X)) = 2 + 1, and f(X) is quadratic;

o f(X) = X¥*1 4 h(X), where deg(h(X)) > 25=1 + 2 is even;

o d=4de + ...

[B.-CALDERINI-TIMPANELLA, Exceptional crooked functions, 2022]




X))+ (Y)+ () + X+ U)+f(Y+U)+f(Z+ V)

. =0
We U

Theorem

f: an — ]F2n, f(O) =0

If there exists an affine Fan-rational point P € Wy not lying on U = 0,
then f(X) is not crooked over Fan.

Theorem

Let g(X) = (F(X))?,j >0, f(X) = 27:0 aiX', ag # 0. g(X) exceptional
crooked function implies one of the following cases

o f(X) = X2+ 4 h(X), deg(h(X)) = 2 + 1, and f(X) is quadratic;
o F(X) = X¥*1 4 h(X), where deg(h(X)) > 25~1 + 2 is even;
o d=14de + ...

© Existence of simple F4-rational points
@ Direct proofs of irreducibility




Another application: c-differential uniformity

Definition (c-Planar functions)
c € Fg\ {0,1}, f(X) € Fg[X] is c-planar polynomial if

Vee Fqy x— f(x+¢€)— cf(x) BIJECTION




Another application: c-differential uniformity

Definition (c-Planar functions)
c € Fg\ {0,1}, f(X) € Fg[X] is c-planar polynomial if

Vee Fqy x— f(x+¢€)— cf(x) BIJECTION

What about the maximum number of solutions of
f(x+¢€)—cf(x) =0,

for B € IFy?



Another application: c-differential uniformity

Definition (c-Planar functions)
c € Fg\ {0,1}, f(X) € Fg[X] is c-planar polynomial if

Vee Fqy x— f(x+¢€)— cf(x) BIJECTION

What about the maximum number of solutions of

f(x+¢€)—cf(x) =0,

(X +1)7 — (Y +1)? — (X9~ YY)
X-Y

C: F(X,Y)= eFy[X,Y].




Another application: c-differential uniformity

o

Theorem
ptd(d—1)

1—¢\9" B .
C#(ﬂ) ) §d1:1717.]7k€{07"'7d_2}

Then the c-uniformity of x is d (asymptotically)

v

[B.-CALDERINI, On construction and (non)existence of c-(almost) perfect
nonlinear functions. Finite Fields Their Appl. 2021]



Another application: c-differential uniformity

S i

Theorem
ptd(d—1)

1—¢\9" B .
C#(ﬂ) ) §d1:1717.]7k€{07"'7d_2}

Then the c-uniformity of x is d (asymptotically)

v

[B.-CALDERINI, On construction and (non)existence of c-(almost) perfect
nonlinear functions. Finite Fields Their Appl. 2021]
© Algebraic curves

© Monodromy groups of function field extensions
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What to do when the degree is too high:
A Useful Criterion

Problem

The degree of Cr : %;(y) = 0 can be too high to use Hasse-Weil

—1

fr.an(x) =x"h (qu>

Criterion

o (r, (q—l)/d)—l

f, €Fy PP < -
an(x) € Fo o xTh(x)'5" permutes g = {a € Fy : af = 1)

PARK, LEE. Bull. Aust. Math. Soc., 2001
ZIEVE. Proc. Am. Math. Soc. 2009
AKBARY, GHIOCA, WANG. Finite Fields Appl., 2011
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TU, ZENG, LI, HELLESETH. Finite Fields Appl., 2018




What to do when the degree is too high:
A Useful Criterion

fa,B(X) = x+ O[Xq(qfl)Jrl + ﬁx2(q71)+1’ q= on

Problem
Find all o, 8 € F2, q = 2", such that fo g is PP

TU, ZENG, LI, HELLESETH. Finite Fields Appl., 2018

fo

’

al0) = x+ T 4 BT (140 (771) 7 4.6 (1))

fa,3(x) € Fp2 PP <= go5(x) = x (1 + ax9 + ,sz)q_l permutes fiq41
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How to make life easier

fa,3(x) € Fp2 PP <= go5(x) = x (1 + ax9 + 5X2)q_1 permutes fiq41
o icFp i4i=1
oa=A+iB ABeT,
o f=C+iD, C,DeF,

_ X'+ /
o x = X €Fq

Cm(x) by, € Fglx]
gap(x) = h(x)= m d;g(fn),deg(’u) =3

Proposition
Cag + BRI g

)

fa,8(x) PP of Fe <= deg(Ca) < 4,
has no Fg-rational points (X,y) withX #y

B. Finite Fields Appl., 2018



