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Toy example: a permutation problem

How to check if a polynomial f (x) permutes Fq?

f (x) permutes Fq

⇕

∀b ∈ Fq f (x) = b has exactly one solution x ∈ Fq

⇕

f (x) = f (y) has only solutions (x , x) ∈ F2
q

⇕

f (x)−f (y)
x−y = 0 has no solution (x , y) ∈ F2

q with x ̸= y
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Toy example: a permutation problem

Example

Does f (x) = x3 + x permute F7?

f (x)−f (y)
x−y = 0 reads x2 + xy + y2 + 1 = 0
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Toy example: a permutation problem

Example

Does f (x) = x3 + x permute F7?

f (x)−f (y)
x−y = 0 reads x2 + xy + y2 + 1 = 0

solutions −→ (1, 3),���(4, 4), (6, 4), (4, 6),���(3, 3), (3, 1)

f (x) = x3 + x does not permute F7



What is a curve?

Fq: finite field with q = ph elements

Definition (Affine plane)

AG(2, q) := (Fq)
2

Definition (Curve)

C in AG(2, q) Curve
class of proportional polynomials F (X ,Y ) ∈ Fq[X ,Y ]
degree of C = deg(F (X ,Y ))

2X + 7Y 2 + 3 ⇐⇒ 4X + 14Y 2 + 6
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What is a curve?

C defined by F (X ,Y )

Definition

(a, b) ∈ AG(2, q)
(affine) Fq-rational point of C

⇐⇒ F (a, b) = 0

C : F (X ,Y ) = 0



Curves: absolute irreducibility

Definition

C : F (X ,Y ) = 0 affine equation

Definition

C absolutely irreducible ⇐⇒

∄G (X ,Y ),H(X ,Y ) ∈ Fq[X ,Y ] :

F (X ,Y ) = G (X ,Y )H(X ,Y )

deg(G (X ,Y )), deg(H(X ,Y )) > 0

Example

X 2 + Y 2 + 1 absolutely irreducible
X 2 − sY 2, s /∈ 2q,
=⇒ (X − ηY )(X + ηY ), η2 = s, η ∈ Fq2 not absolutely irreducible



A fundamental tool: Hasse-Weil Theorem

Question

How many Fq-rational points can C have?

Theorem (Hasse-Weil Theorem)

C absolutely irreducible curve of degree d defined over Fq

The number Nq of Fq-rational points is

|Nq − (q + 1)| ≤ (d − 1)(d − 2)
√
q.

Example

C : X 2 − Y 2 = 0 has 2q + 1 Fq-rational points!
C : X 2 − sY 2 = 0, s /∈ 2q has 1 Fq-rational point!
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Algebraic curves and Permutation Polynomials

Theorem

f (x) ∈ Fq[x ] is PP ⇐⇒
Cf : f (X )−f (Y )

X−Y = 0

has no affine Fq-rational
points off X − Y = 0

Example

f (x) = x3 + x ∈ Fq[x ]

Cf :
f (X )− f (Y )

X − Y
= X 2 + XY + Y 2 + 1 = 0

Cf CONIC =⇒
with at least q − 3

affine Fq-rational points
not on X − Y = 0

if q > 3 =⇒ f (x) = x3 + x is NOT a PP



Algebraic curves and Permutation Polynomials

Theorem

f (x) ∈ Fq[x ] is PP ⇐⇒
Cf : f (X )−f (Y )

X−Y = 0

has no affine Fq-rational
points off X − Y = 0

Example

f (x) = x3 + x ∈ Fq[x ]

Cf :
f (X )− f (Y )

X − Y
= X 2 + XY + Y 2 + 1 = 0

Cf CONIC =⇒
with at least q − 3

affine Fq-rational points
not on X − Y = 0

if q > 3 =⇒ f (x) = x3 + x is NOT a PP



Algebraic curves and Permutation Polynomials

Theorem

f (x) ∈ Fq[x ] is PP ⇐⇒
Cf : f (X )−f (Y )

X−Y = 0

has no affine Fq-rational
points off X − Y = 0

Example

f (x) = x3 + x ∈ Fq[x ]

Cf :
f (X )− f (Y )

X − Y
= X 2 + XY + Y 2 + 1 = 0

Cf CONIC =⇒
with at least q − 3

affine Fq-rational points
not on X − Y = 0

if q > 3 =⇒ f (x) = x3 + x is NOT a PP



Algebraic curves and Permutation Polynomials

Theorem

f (x) ∈ Fq[x ] is PP ⇐⇒
Cf : f (X )−f (Y )

X−Y = 0

has no affine Fq-rational
points off X − Y = 0

Example

f (x) = x3 + x ∈ Fq[x ]

Cf :
f (X )− f (Y )

X − Y
= X 2 + XY + Y 2 + 1 = 0

Cf CONIC =⇒
with at least q − 3

affine Fq-rational points
not on X − Y = 0

if q > 3 =⇒ f (x) = x3 + x is NOT a PP



An easy criterion

Criterion (SEGRE)

P ∈ C has tangent t

non-repeated

t ∩ C = {P}
=⇒ C is absolutely irreducible

P

BARTOCCI-SEGRE. Acta Arith XVIII, 1971
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Frobenius automorphism and Fq-rational components

Definition (Frobenius automorphism)

φq : Fq → Fq

α 7→ αq

φq : A2(Fq) → A2(Fq)
(α, β) 7→ (αq, βq)

φq : Fq[X ,Y ] → Fq[X ,Y ]∑
αi ,jX

iY j 7→
∑
αq
i ,jX

iY j

φq(α) = α ⇐⇒ α ∈ Fq

φq(α, β) = (α, β) ⇐⇒ (α, β) ∈ A2(Fq)
φq(C) = C ⇐⇒ λF ∈ Fq[X ,Y ] for some λ ∈ Fq

∗
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Frobenius automorphism and Fq-rational components

F (X ,Y ) ∈ Fq[X ,Y ], C : F (X ,Y ) = 0 curve

F (X ,Y ) = F1(X ,Y ) · F2(X ,Y ) · · · · · Fk(X ,Y ), Fi ∈ Fq[X ,Y ]

Ci : Fi (X ,Y ) = 0 components of C
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Frobenius automorphism and Fq-rational components
F (X ,Y ) ∈ Fq[X ,Y ], C : F (X ,Y ) = 0 curve

F (X ,Y ) = F1(X ,Y ) · F2(X ,Y ) · · · · · Fk(X ,Y ), Fi ∈ Fq[X ,Y ]

Ci : Fi (X ,Y ) = 0 components of C

φq(Ci ) = Cj

Ci

φq(Ci ) = Cj

Remark

φq(Ci ) = Ci =⇒
Ci is defined over Fq

Ci Fq-rational A.I. component of C



Hasse-Weil again

Theorem (Hasse-Weil Theorem)

C absolutely irreducible curve of degree d defined over Fq

|Nq − (q + 1)| ≤ (d − 1)(d − 2)
√
q.

Corollary

deg f (x) < q1/4

f (x) PP =⇒ Cf has no Fq −A.I.C. distinct from X − Y = 0

Proof. D Fq-A.I.C. By Hasse-Weil Theorem

Nq ≥ −(d − 1)(d − 2)
√
q + (q + 1)

≥ −( 4
√
q − 2)( 4

√
q − 3)

√
q + (q + 1)

= 5 4
√

q3 − 6
√
q + 1

Number of points not at infinity nor on X − Y = 0

Nq − 2 deg(D) ≥ Nq − 2( 4
√
q − 1) ≥ 5 4

√
q3 − 6

√
q − 2 4

√
q + 3 > 0
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Existence of absolutely irreducible Fq-rational components

Remark

P ∈ C simple point =⇒ P belongs to a unique component of C

Criterion

F (X ,Y ,T ) ∈ Fq[X ,Y ,T ],
P ∈ C : F (X ,Y ,T ) = 0 simple
Fq-point
=⇒ C has Fq-A.I.C. defined over Fq

P = φq(P)
D

φq(D) = D
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Exceptional Planar Functions

Definition (Planar Function, q odd)

q odd prime power
f : Fq → Fq planar or perfect nonlinear if

∀ϵ ∈ F∗
q =⇒ x 7→ f (x + ϵ)− f (x) is PP

Construction of finite projective planes

DEMBOWSKI-OSTROM, Math. Z. 1968

Relative difference sets

GANLEY-SPENCE, J. Combin. Theory Ser. A 1975

Error-correcting codes

CARLET-DING-YUAN, IEEE Trans. Inform. Theory 2005

S-boxes in block ciphers

NYBERG-KNUDSEN, Advances in cryptology 1993.
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Exceptional Planar Functions

Definition (Planar Function, q even)
q even
f : Fq → Fq planar if

∀ϵ ∈ F∗
q =⇒ x 7→ f (x + ϵ) + f (x) + ϵx is PP

ZHOU, J. Combin. Des. 2013.

Other works

SCHMIDT-ZHOU, J. Algebraic Combin., 2014
SCHERR-ZIEVE, Ann. Comb., 2014

HU-LI-ZHANG-FENG-GE, Des. Codes Cryptogr., 2015
QU, IEEE Trans. Inform. Theory, 2016
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Exceptional Planar Functions

Theorem (B.-SCHMIDT, 2018)

f (X ) ∈ Fq[X ], deg(f ) ≤ q1/4

f (X ) planar on Fq ⇐⇒ f (X ) =
∑
i

aiX
2i

Proposition (Connection with algebraic surfaces)

f (X ) ∈ Fq[X ] planar ⇐⇒ Sf : ψ(X ,Y ,Z ) = 0

ψ(X ,Y ,Z ) = 1 +
f (X ) + f (Y ) + f (Z ) + f (X + Y + Z )

(X + Y )(X + Z )
∈ Fq[X ,Y ,Z ]

has no affine Fq-rational points off X = Y and Z = X
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Proof Strategy

Consider Sf

Cf = Sf ∩ π

Cf has Fq-rational A.I.
component

Hasse-Weil =⇒ Sf has
Fq-rational points (x , y , z),
x ̸= y , x ̸= z , if q is large
enough Sf

Cf



Another method based on singular points

JANWA-McGUIRE-WILSON, J. Algebra, 1995
JEDLICKA, Finite Fields Appl., 2007

HERNANDO-McGUIRE, J. Algebra, 2011
HERNANDO-McGUIRE, Des. Codes Cryptogr., 2012

HERNANDO-McGUIRE-MONSERRAT, Geometriae Dedicata, 2014
SCHMIDT-ZHOU, J. Algebraic Combin., 2014

LEDUCQ, Des. Codes Cryptogr., 2015
B.-ZHOU, J. Algebra, 2018



Another method based on singular points

• Consider a curve C defined by F (X ,Y ) = 0, deg(F ) = d

C



Another method based on singular points

• Consider a curve C defined by F (X ,Y ) = 0, deg(F ) = d
• Suppose C has no A.I. components defined over Fq

C



Another method based on singular points
• There are two components of C

A : A(X ,Y ) = 0, B : B(X ,Y ) = 0, with

F (X ,Y ) = A(X ,Y ) · B(X ,Y ), deg(A) · deg(B) ≥ 2d2/9

A

B



Another method based on singular points

• A ∩ B ⊂ SING (C)

A

B



Another method based on singular points

• I(P,A,B) ≤ MAXP for all P ∈ SING (C)

2d2/9 ≤

BEZOUT ′S THEOREM︷ ︸︸ ︷
deg(A) · deg(B) =

∑
P∈A∩B

I(P,A,B)≤
∑

P∈A∩B
MAXP

A

B



How to get a contradiction

2d2/9 ≤

BEZOUT ′S THEOREM︷ ︸︸ ︷
deg(A) · deg(B) =

∑
P∈A∩B

I(P,A,B) ≤
∑

P∈A∩B
MAXP < 2d2/9︸ ︷︷ ︸

CONTRADICTION

Good estimates on I(P,A,B), P = (ξ, η)
▶ Analyzing the smallest homogeneous parts in

F (X + ξ,Y + η) = Fm(X ,Y ) + Fm+1(X ,Y ) + · · ·

▶ Proving that there is a unique branch centered at P
▶ Studying the structure of all the branches centered at P

Good estimates on the number of singular points of C
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▶ Studying the structure of all the branches centered at P

Good estimates on the number of singular points of C
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Another application: Exceptional APN rational functions

Definition

f : F2n → F2n is APN (Almost Perfect Nonlinear) if

∀α, β ∈ F2n , α ̸= 0,=⇒ f (x + α) + f (x) = β

has at most two solutions.
If f is APN over F2mn for infinitely many extensions F2mn of F2n , f is said
to be exceptional APN

Theorem (Rodier, 2009)

f ∈ F2n [X ] APN over F2n ⇐⇒ the surface

Sf : φf (X ,Y ,Z ) :=
f (X ) + f (Y ) + f (Z ) + f (X + Y + Z )

(X + Y )(X + Z )(Y + Z )
= 0

has no affine F2n -rational points off the planes X = Y , X = Z e Y = Z .
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Another application: Exceptional APN rational functions

Only polynomial functions have been considered so far (mostly)

Every function h : Fq → Fq can be described by a polynomial of degree at
most q − 1

non-existence results obtained via algebraic varieties require low degree

It could be useful to investigate functions h : Fq → Fq described by
rational functions f (x)/g(x) of “low degree” to get new non-existence
results
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Another application: Exceptional APN rational functions

Let consider

q = 219;

ψ : Fq → Fq, x 7→ x

x3 + x + 1
.

h ∈ Fq[X ], deg(h) ≤ q − 1, such that ψ(x) = h(x) for any x ∈ Fq.

By the Lagrange Interpolation Formula

h(X ) =
∑
a∈Fq

ψ(a)(1− (X − a)q−1)

and by computations with MAGMA,

deg(f ) = q − 1 > 4
√
q

so Rodier’s result cannot be applied.
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Another application: Exceptional APN functions

However, one can consider

the rational representation ψ = f
g = X

X 3+X+1
∈ Fq(X )

the corresponding surface

Sψ =

f
g (X ) + f

g (Y ) + f
g (Z ) +

f
g (X + Y + Z )

(X + Y )(X + Z )(Y + Z )

Sψ has degree 10, so the investigation of its Fq-rational points becomes
feasible by means of Lang-Weil bound.



Another application: Exceptional APN rational functions

q = 2n,

Fq(X ) rational field over Fq.

ψ = f
g ∈ Fq(X )

f = amX
m + am−1X

m−1 + · · ·+ ai+1X
i+1 + aiX

i ,

g = bdX
d + bd−1X

d−1 + · · ·+ b1X + b0,

g(x) ̸= 0 for all x ∈ Fq, am ̸= 0 ̸= bd , and ai ̸= 0.



Link with algebraic surfaces

Proposition

ψ APN over Fq ⇐⇒

Sψ : φψ(X ,Y ,Z ) :=
θψ(X ,Y ,Z )

(X + Y )(X + Z )(Y + Z )
= 0,

θψ(X ,Y ,Z ) := f (X )g(Y )g(Z )g(X + Y + Z ) + f (Y )g(X )g(Z )g(X + Y + Z ) +

+f (Z )g(X )g(Y )g(X + Y + Z ) + f (X + Y + Z )g(X )g(Y )g(Z ),

has no affine Fq-rational points off the planes X = Y , X = Z and Y = Z .



Another application: Exceptional APN rational functions

Theorem (B.-FATABBI-GHIANDONI, 2023)

deg(f )− deg(g) = 2ℓ, ℓ > 0 odd
▶ g /∈ Fq[X

p], or
▶ f ′ ̸= γg for all γ ∈ Fq =⇒ ψ = f

g is not exceptional APN

deg(g)− deg(f ) = ℓ, ℓ > 1 odd

deg(f ) = 1

1 Intersection with specific hyperplanes

2 Lang-Weil bound for surfaces



Another application: c-planar functions

Definition (Planar functions, odd characteristic)

f (X ) ∈ Fq[X ] is planar polynomial if

∀ϵ ∈ F∗
q x 7→ f (x + ϵ)− f (x) BIJECTION

Definition (c-Planar functions, odd characteristic)

c ∈ Fq \ {0, 1}, f (X ) ∈ Fq[X ] is c-planar polynomial if

∀ϵ ∈ Fq x 7→ f (x + ϵ)− cf (x) BIJECTION

[P. Ellingsen, P. Felke, C. Riera, P. Stănică, A. Tkachenko, C -differentials,
multiplicative uniformity and (almost) perfect c-nonlinearity, 2020]
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Another application: c-planar functions

Theorem (B.-TIMPANELLA, J. Alg. Combin. 2020)

c ∈ Fpr \ {0,−1}, k such that (t − 1) | (pk − 1)
p ∤ t ≤ 4

√
pr , X t is NOT c-planar if

1 p ∤ t − 1, p ∤
∏7

m=1

∏7−m
ℓ=−7m

pk−1
t−1 + ℓ, t ≥ 470;

2 t = pαm + 1, (p, α) ̸= (3, 1), α ≥ 1, p ∤ m, m ̸= pr − 1 ∀ r | ℓ,
where ℓ = mini{m | pi − 1, c(p

i−1)/m = 1}.



Another application: c-planar functions

C : F (X ,Y ) =
(X + 1)t − (Y + 1)t − c(X t − Y t)

X − Y
∈ Fpr [X ,Y ].

Singular points SING (C) satisfy
(
X+1
X

)t−1
= c(

X
Y

)t−1
= 1(

X+1
Y+1

)t−1
= 1

We use estimates on the number of points of particular Fermat curves

GARCIA-VOLOCH, Manuscripta Math., 1987
GARCIA-VOLOCH, J. Number Theory, 1988
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Another application: Crooked functions

Definition

f : F2n → F2n crooked if

1 f (0) = 0

2 f (x) + f (y) + f (z) + f (x + y + z) ̸= 0 for any x , y , z distinct

3 f (x) + f (y) + f (z) + f (x + a) + f (y + a) + f (z + a) ̸= 0 for any
x , y , z , and a ̸= 0



Wf :
f (X ) + f (Y ) + f (Z ) + f (X + U) + f (Y + U) + f (Z + U)

U
= 0

Theorem

f : F2n → F2n , f (0) = 0
If there exists an affine F2n -rational point P ∈ Wf not lying on U = 0,
then f (X ) is not crooked over F2n .

Theorem

Let g(X ) = (f (X ))2
j
, j ≥ 0, f (X ) =

∑d
i=0 aiX

i , ad ̸= 0. g(X ) exceptional
crooked function implies one of the following cases

f (X ) = X 2k+1 + h(X ), deg(h(X )) = 2j + 1, and f (X ) is quadratic;

f (X ) = X 2k+1 + h(X ), where deg(h(X )) ≥ 2k−1 + 2 is even;

d = 4e + . . .

[B.-CALDERINI-TIMPANELLA, Exceptional crooked functions, 2022]



Wf :
f (X ) + f (Y ) + f (Z ) + f (X + U) + f (Y + U) + f (Z + U)

U
= 0

Theorem

f : F2n → F2n , f (0) = 0
If there exists an affine F2n -rational point P ∈ Wf not lying on U = 0,
then f (X ) is not crooked over F2n .

Theorem

Let g(X ) = (f (X ))2
j
, j ≥ 0, f (X ) =

∑d
i=0 aiX

i , ad ̸= 0. g(X ) exceptional
crooked function implies one of the following cases

f (X ) = X 2k+1 + h(X ), deg(h(X )) = 2j + 1, and f (X ) is quadratic;

f (X ) = X 2k+1 + h(X ), where deg(h(X )) ≥ 2k−1 + 2 is even;

d = 4e + . . .

1 Existence of simple Fq-rational points

2 Direct proofs of irreducibility



Another application: c-differential uniformity

Definition (c-Planar functions)

c ∈ Fq \ {0, 1}, f (X ) ∈ Fq[X ] is c-planar polynomial if

∀ϵ ∈ Fq x 7→ f (x + ϵ)− cf (x) BIJECTION

What about the maximum number of solutions of

f (x + ϵ)− cf (x) = β,

for β ∈ Fq?

f (x) = xd

C : F (X ,Y ) =
(X + 1)d − (Y + 1)d − c(X d − Y d)

X − Y
∈ Fpr [X ,Y ].
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Another application: c-differential uniformity

Theorem

p ∤ d(d − 1)

c ̸=
(

1− ξi

ξk − ξj

)d−1

, ξd−1 = 1, i , j , k ∈ {0, . . . , d − 2}

Then the c-uniformity of xd is d (asymptotically)

[B.-CALDERINI, On construction and (non)existence of c-(almost) perfect
nonlinear functions. Finite Fields Their Appl. 2021]

1 Algebraic curves
2 Monodromy groups of function field extensions
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What to do when the degree is too high:
A Useful Criterion

Problem

The degree of Cf : f (x)−f (y)
x−y = 0 can be too high to use Hasse-Weil

fr ,d ,h(x) = x rh
(
x

q−1
d

)

Criterion

fr ,d ,h(x) ∈ Fq PP ⇐⇒
• (r , (q − 1)/d) = 1

• x rh(x)
q−1
d permutes µd = {a ∈ Fq : ad = 1}

PARK, LEE. Bull. Aust. Math. Soc., 2001
ZIEVE. Proc. Am. Math. Soc. 2009

AKBARY, GHIOCA, WANG. Finite Fields Appl., 2011
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What to do when the degree is too high:
A Useful Criterion

fα,β(x) = x + αxq(q−1)+1 + βx2(q−1)+1, q = 2n

Problem

Find all α, β ∈ Fq2 , q = 2n, such that fα,β is PP

TU, ZENG, LI, HELLESETH. Finite Fields Appl., 2018

fα,β(x) = x + αxq(q−1)+1 + βx2(q−1)+1= x
(
1 + α

(
xq−1

)q
+ β

(
xq−1

)2)
fα,β(x) ∈ Fq2 PP ⇐⇒ gα,β(x) = x

(
1 + αxq + βx2

)q−1
permutes µq+1
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How to make life easier

fα,β(x) ∈ Fq2 PP ⇐⇒ gα,β(x) = x
(
1 + αxq + βx2

)q−1
permutes µq+1

i ∈ Fq2 , i
q + i = 1

α = A+ iB, A,B ∈ Fq

β = C + iD, C ,D ∈ Fq

x = x ′+i
x ′+i+1 , x

′ ∈ Fq

gα,β(x) 7→ h(x) =
h1(x)

h2(x)
,

h1, h2 ∈ Fq[x ]
deg(h1), deg(h2) ≤ 3

Proposition

fα,β(x) PP of Fq2 ⇐⇒
CA,B : h1(X )h2(Y )−h1(Y )h2(X )

X−Y = 0,

deg(CA,B) ≤ 4,
has no Fq-rational points (x , y) with x ̸= y

B. Finite Fields Appl., 2018
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