Orientable sequences over nonbinary alphabets

Abbas Alhakim, Chris J. Mitchell, Janusz Szmidt, Peter R. Wild

September 2023

Notation

- ► For positive integers n and q greater than one, let Zⁿ_q be the set of all qⁿ vectors of length n with entries in the group Z_q of residues modulo q.
- An order n de Bruijn sequence with alphabet in Z_q is a periodic sequence that includes every possible string of size n exactly once as a subsequence of consecutive symbols in one period of the sequence.
- A function d : Zⁿ_q → Z_q is said to be translation invariant if d(w + λ) = d(w) for all w ∈ Zⁿ_q and all λ ∈ Z_q.
- The weight w(s) of a word or sequence s is the sum of all elements in s (not taken modulo q). Similarly, the weight of a cycle is the weight of the ring sequence that represents it.

Notation

- ▶ The order *n* de Bruijn digraph, $B_n(q)$, is a directed graph with \mathbb{Z}_q^n as its vertex set and for any two vectors $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$, $(\mathbf{x}; \mathbf{y})$ is an edge if and only if $y_i = x_{i+1}$ for every *i* $(1 \le i < n)$.
- We then say that x is a predecessor of y and y is a successor of x. Evidently, every vertex has exactly q successors and q predecessors.
- Furthermore, two vertices are said to be conjugates if they have the same successors.
- ▶ For an integer n > 1, define a map $D : B_n(2) \rightarrow B_{n-1}(2)$ by

$$D(a_1,\ldots,a_n) = (a_1 + a_2, a_2 + a_3,\ldots,a_{n-1} + a_n)$$

where addition is modulo 2. This function defines a graph homomorphism and is known as Lempel's D-morphism since it was studied in [2].

Lempel D-morphism

- We present a generalization to nonbinary alphabets [1].
- For a nonzero $\beta \in \mathbb{Z}_q$, we define a function D_β from $B_n(q)$ to $B_{n-1}(q)$ as follows.
- ► For $a = (a_1, ..., a_n)$ and $b = (b_1, ..., b_{n-1})$, $D_\beta(a) = b$ if and only if $b_i = d_\beta(a_i, a_{i+1})$ for i = 1 to n - 1, where $d_\beta(a_i, a_{i+1}) = \beta(a_{i+1} - a_i) \mod q$.
- Clearly D_β is translation invariant.
- lt is also onto if $gcd(\beta, q) = 1$.
- A cycle in B_n(q) is primitive if it does not simultaneously contain a word and any of its translates.

Orientable sequences

Definition 1

We define an *n*-window sequence $S = (s_i)$ to be a periodic sequence of period *m* with the property that no *n*-tuple appears more than once in a period of the sequence, i.e. with the property that if $s_n(i) = s_n(j)$ for some i, j, then i = j mod *m*, where $s_n(i) = (s_i, s_{i+1}, \ldots, s_{i+n-1})$.

Definition 2

An *n*-window sequence $S = (s_i)$ of period *m* is said to be an *q*-orientable sequence of order *n* (an $\mathcal{OS}_q(n)$) if, for any $i, j, s_n(i) \neq s_n(j)^R$, where $s_n(j)^R$ is the reverse of the word $s_n(j)$.

Definition 3

A pair of disjoint orientable sequences of order n, $S = (s_i)$ and $S' = (s'_i)$, are said to be orientable disjoint (or simply o-disjoint) if, for any $i, j, s_n(i) \neq s'_n(j)^R$.

Orientable sequences

In the natural way we can define D_{β}^{-1} to be the *inverse* of D_{β} , i.e. if S is a periodic sequence than $D_{\beta}^{-1}(S)$ is the set of all sequences T with the property that $D_{\beta}(T) = S$. **Theorem 1**

Suppose $S = (s_i)$ is an orientable sequence of order *n* and period *m* with the property that (*)

if $[s_1, \ldots, s_n]$ is a word in S then $[-s_n, -s_{n-1}, \ldots, -s_1]$ is not a word of S.

Then

(a) If w(S) = 0 mod q then D_β⁻¹(S) consists of a disjoint set of q primitive orientable sequences of order n + 1 and period m satisfying the condition (*).
(b) If gcd(w(S), q) = 1 then D_β⁻¹(S) is one sequence made of q

shifts $T_0, T_1, ..., T_{q-1}$, where $T_i = T_{i-1} + c$.

Definition 4

An *n*-tuple $u = (u_0, u_1, \ldots, u_{n-1})$, $u_i \in \mathbb{Z}_q$ $(0 \le i \le n-1)$, is *m*-symmetric for some $m \le n$ if and only if $u_i = u_{m-1-i}$ for every i $(0 \le i \le m-1)$.

An *n*-tuple is simply said to be symmetric if it is *n*-symmetric. We also need the notions of uniformity and alternating.

Definition 5

An *n*-tuple $u = (u_0, u_1, \ldots, u_{n-1})$, $u_i \in \mathbb{Z}_q$ $(0 \le i \le n-1)$, is uniform if and only if $u_i = c$ for every i $(0 \le i \le n-1)$ for some $c \in \mathbb{Z}_q$. An *n*-tuple $u = (u_0, u_1, \ldots, u_{n-1})$, $u_i \in \mathbb{Z}_q$ $(0 \le i \le n-1)$, is alternating if and only if $u_0 = u_{2i}$ and $u_1 = u_{2i+1}$ for every i $(0 \le i \le \lfloor (n-1)/2 \rfloor)$, where $u_0 \ne u_1$.

Lemma 1

If $n \ge 2$ and $u = (u_0, u_1, \dots, u_{n-1})$ is a *q*-ary *n*-tuple that is both symmetric and (n-1)-symmetric, then u is uniform.

Lemma 2

If $n \ge 2$ and $u = (u_0, u_1, \dots, u_{n-1})$ is a *q*-ary *n*-tuple that is both symmetric and (n-2)-symmetric then either u is uniform or *n* is odd and u is alternating.

Definition 6

Let $N_q(n)$ be the set of all non-symmetric q-ary n-tuples.

- Clearly, if an *n*-tuple occurs in an OS_q(n) then it must belong to N_q(n); moreover it is also immediate that |N_q(n)| = qⁿ q^[n/2]. Observing that all the tuples in OS_q(n) and its reverse must be distinct, this immediately give the following well-known result.
- ▶ Lemma 3 ([3]) The period of an $OS_q(n)$ is at most $(q^n - q^{\lceil n/2 \rceil})/2$.

As a first step towards establishing our bound we need to define a special set of *n*-tuples, as follows.

Definition 7

Suppose $n \ge 2$, and that $v = (v_0, v_1, \dots, v_{n-r-1})$ is a *q*-ary (n-r)-tuple $(r \ge 1)$. Then let $L_n(v)$ be the following set of *q*-ary *n*-tuples:

$$L_n(v) = \{ u = (u_0, u_1, \dots, u_{n-1}) : u_i = v_i, 0 \leq i \leq n-r-1 \}.$$

► That is L_n(v) is simply the set of n-tuples whose first n - r - 1 entries equal v. Clearly, for fixed r, the sets L_n(v) for all (n - r)-tuples v are disjoint. We have the following simple result.

Lemma 4

Suppose v and w are symmetric tuples of lengths n-1 and n-2, respectively, and they are not both uniform. Then

$$L_n(v) \cap L_n(w) = \emptyset.$$

We are particularly interested in how the sets L_n(v) intersect with the sets of *n*-tuples occurring in either S or S^R, when S is an OS_q(n) and v is symmetric. To this end we make the following definition.

Definition 8

Suppose $n \ge 2$, $r \ge 1$, $S = (s_i)$ is an $\mathcal{OS}_q(n)$, and $v = (v_0, v_1, \dots, v_{n-r-1})$ is a k-ary (n - r)-tuple. Then let

 $L_S(v) = \{ u \in L_n(v) : u \text{ appears in } S \text{ or } S^R \}.$

We can now state the first result towards deriving our bound.

Lemma 5

Suppose $n \ge 2$, $r \ge 1$, $S = (s_i)$ is an $\mathcal{OS}_q(n)$, and $v = (v_0, v_1, \dots, v_{n-r-1})$ is a *q*-ary symmetric (n - r)-tuple. Then $|L_S(v)|$ is even.

► That is, if |L_n(v)| is odd, this shows that S and S^R combined must omit at least one of the *n*-tuples in L_n(v). We can now state our main result. Observe that, although the theorem below applies in the case q = 2, the bound is much weaker than the bound of Dai et al. [4], which is specific to the binary case. This latter bound uses arguments that only apply for q = 2. The fact that q = 2 is a special case can be seen by observing that, unlike the case for larger q, no string of n - 2 consecutive zeros or ones can occur in an OS₂(n).

Theorem 2 (Generalization of Theorem from [4]) Suppose that S = (s_i) is an OS_q(n) (q ≥ 2, n ≥ 2). Then the period of S is at most

$$(q^n - q^{\lceil n/2 \rceil} - q^{\lceil (n-1)/2 \rceil} + q)/2$$
 if q is odd,
 $(q^n - q^{\lceil n/2 \rceil} - q)/2$ if q is even.

Table 1 provides the values of the bounds in the above theorem for small q and n.

Tabela 1: Bounds on the period of an $OS_q(n)$ (from Theorem 2)

Order	<i>q</i> = 2	<i>q</i> = 3	<i>q</i> = 4	<i>q</i> = 5
<i>n</i> = 2	0	3	4	10
<i>n</i> = 3	1	9	22	50
<i>n</i> = 4	5	33	118	290
<i>n</i> = 5	11	105	478	1490

Bibliography

- A. Alhakim and M. Akinwande. A recursive construction of nonbinary de Bruijn sequences. Design, Codes and Cryptography. 60:155–169, (2011).
- A. Lempel. On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers. IEEE Trans. Comput. C 19, 1204–1209 (1970).
- J. Burns and C. J. Mitchell. Coding schemes for two-dimensional position sensing. Cryptography and Coding III (M. J. Ganley, ed.), Oxford University Press, pp. 31–66, 1993.
- Z.-D. Dai, K. M. Martin, M. J. B. Robshaw, and P. R. Wild. Orientable sequences. Cryptography and Coding III (M. J. Ganley, ed.), Oxford University Press, Oxford, pp. 97–115, 1993.