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Notation

▶ For positive integers n and q greater than one, let Zn
q be the

set of all qn vectors of length n with entries in the group Zq

of residues modulo q.
▶ An order n de Bruijn sequence with alphabet in Zq is a
periodic sequence that includes every possible string of size n
exactly once as a subsequence of consecutive symbols in one
period of the sequence.

▶ A function d : Zn
q → Zq is said to be translation invariant if

d(w + λ) = d(w) for all w ∈ Zn
q and all λ ∈ Zq.

▶ The weight w(s) of a word or sequence s is the sum of all
elements in s (not taken modulo q). Similarly, the weight of a
cycle is the weight of the ring sequence that represents it.



Notation

▶ The order n de Bruijn digraph, Bn(q), is a directed graph with
Zn
q as its vertex set and for any two vectors x = (x1, . . . , xn)
and y = (y1, . . . , yn), (x; y) is an edge if and only if yi = xi+1
for every i (1 ¬ i < n).

▶ We then say that x is a predecessor of y and y is a successor
of x. Evidently, every vertex has exactly q successors and q
predecessors.

▶ Furthermore, two vertices are said to be conjugates if they
have the same successors.

▶ For an integer n > 1, define a map D : Bn(2)→ Bn−1(2) by

D(a1, . . . , an) = (a1 + a2, a2 + a3, . . . , an−1 + an)

where addition is modulo 2. This function defines a graph
homomorphism and is known as Lempel’s D-morphism since it
was studied in [2].



Lempel D-morphism

▶ We present a generalization to nonbinary alphabets [1].
▶ For a nonzero β ∈ Zq, we define a function Dβ from Bn(q) to

Bn−1(q) as follows.
▶ For a = (a1, . . . , an) and b = (b1, . . . , bn−1), Dβ(a) = b if
and only if bi = dβ(ai , ai+1) for i = 1 to n − 1, where
dβ(ai , ai+1) = β(ai+1 − ai ) mod q.

▶ Clearly Dβ is translation invariant.
▶ It is also onto if gcd(β, q) = 1.
▶ A cycle in Bn(q) is primitive if it does not simultaneously
contain a word and any of its translates.



Orientable sequences

▶ Definition 1
We define an n-window sequence S = (si ) to be a periodic
sequence of period m with the property that no n-tuple
appears more than once in a period of the sequence, i.e. with
the property that if sn(i) = sn(j) for some i , j , then i = j
mod m, where sn(i) = (si , si+1, . . . , si+n−1).

▶ Definition 2
An n-window sequence S = (si ) of period m is said to be an
q-orientable sequence of order n (an OSq(n)) if, for any
i , j , sn(i) ̸= sn(j)

R , where sn(j)R is the reverse of the word
sn(j).

▶ Definition 3
A pair of disjoint orientable sequences of order n, S = (si )
and S ′ = (s ′i ), are said to be orientable disjoint (or simply
o-disjoint) if, for any i , j , sn(i) ̸= s ′n(j)

R .



Orientable sequences

In the natural way we can define D−1β to be the inverse of Dβ, i.e.

if S is a periodic sequence than D−1β (S) is the set of all sequences
T with the property that Dβ(T ) = S .
Theorem 1
Suppose S = (si ) is an orientable sequence of order n and period
m with the property that (*)

if [s1, . . . , sn] is a word in S then [−sn,−sn−1, . . . ,−s1] is not a word of S . (∗)

Then
(a) If w(S) = 0 mod q then D−1β (S) consists of a disjoint set of
q primitive orientable sequences of order n + 1 and period m
satisfying the condition (∗).
(b) If gcd(w(S), q) = 1 then D−1β (S) is one sequence made of q
shifts T0,T1, . . . ,Tq−1, where Ti = Ti−1 + c .



An upper bound

▶ Definition 4
An n-tuple u = (u0, u1, . . . , un−1), ui ∈ Zq (0 ¬ i ¬ n − 1), is
m-symmetric for some m ¬ n if and only if ui = um−1−i for
every i (0 ¬ i ¬ m − 1).

▶ An n-tuple is simply said to be symmetric if it is n-symmetric.
We also need the notions of uniformity and alternating.

▶ Definition 5
An n-tuple u = (u0, u1, . . . , un−1), ui ∈ Zq (0 ¬ i ¬ n − 1), is
uniform if and only if ui = c for every i (0 ¬ i ¬ n − 1) for
some c ∈ Zq. An n-tuple u = (u0, u1, . . . , un−1), ui ∈ Zq

(0 ¬ i ¬ n − 1), is alternating if and only if u0 = u2i and
u1 = u2i+1 for every i (0 ¬ i ¬ ⌊(n − 1)/2⌋), where u0 ̸= u1.

▶ Lemma 1
If n  2 and u = (u0, u1, . . . , un−1) is a q-ary n-tuple that is
both symmetric and (n − 1)-symmetric, then u is uniform.



An upper bound

▶ Lemma 2
If n  2 and u = (u0, u1, . . . , un−1) is a q-ary n-tuple that is
both symmetric and (n − 2)-symmetric then either u is
uniform or n is odd and u is alternating.

▶ Definition 6
Let Nq(n) be the set of all non-symmetric q-ary n-tuples.

▶ Clearly, if an n-tuple occurs in an OSq(n) then it must belong
to Nq(n); moreover it is also immediate that
|Nq(n)| = qn − q⌈n/2⌉. Observing that all the tuples in
OSq(n) and its reverse must be distinct, this immediately give
the following well-known result.

▶ Lemma 3 ([3])
The period of an OSq(n) is at most (qn − q⌈n/2⌉)/2.



An upper bound

▶ As a first step towards establishing our bound we need to
define a special set of n-tuples, as follows.

▶ Definition 7
Suppose n  2, and that v = (v0, v1, . . . , vn−r−1) is a q-ary
(n − r)-tuple (r  1). Then let Ln(v) be the following set of
q-ary n-tuples:

Ln(v) = {u = (u0, u1, . . . , un−1) : ui = vi , 0 ¬ i ¬ n− r−1}.

▶ That is Ln(v) is simply the set of n-tuples whose first
n− r − 1 entries equal v. Clearly, for fixed r , the sets Ln(v) for
all (n − r)-tuples v are disjoint. We have the following simple
result.



An upper bound

▶ Lemma 4
Suppose v and w are symmetric tuples of lengths n − 1 and
n − 2, respectively, and they are not both uniform. Then

Ln(v) ∩ Ln(w) = ∅.

▶ We are particularly interested in how the sets Ln(v) intersect
with the sets of n-tuples occurring in either S or SR , when S
is an OSq(n) and v is symmetric. To this end we make the
following definition.

▶ Definition 8
Suppose n  2, r  1, S = (si ) is an OSq(n), and
v = (v0, v1, . . . , vn−r−1) is a k-ary (n − r)-tuple. Then let

LS(v) = {u ∈ Ln(v) : u appears in S or SR}.



An upper bound

▶ We can now state the first result towards deriving our bound.
▶ Lemma 5
Suppose n  2, r  1, S = (si ) is an OSq(n), and
v = (v0, v1, . . . , vn−r−1) is a q-ary symmetric (n − r)-tuple.
Then |LS(v)| is even.

▶ That is, if |Ln(v)| is odd, this shows that S and SR combined
must omit at least one of the n-tuples in Ln(v). We can now
state our main result. Observe that, although the theorem
below applies in the case q = 2, the bound is much weaker
than the bound of Dai et al. [4], which is specific to the binary
case. This latter bound uses arguments that only apply for
q = 2. The fact that q = 2 is a special case can be seen by
observing that, unlike the case for larger q, no string of n − 2
consecutive zeros or ones can occur in an OS2(n).



An upper bound

▶ Theorem 2 (Generalization of Theorem from [4])
Suppose that S = (si ) is an OSq(n) (q  2, n  2). Then the
period of S is at most

(qn − q⌈n/2⌉ − q⌈(n−1)/2⌉ + q)/2 if q is odd,

(qn − q⌈n/2⌉ − q)/2 if q is even.

▶ Table 1 provides the values of the bounds in the above
theorem for small q and n.

Tabela 1: Bounds on the period of an OSq(n) (from Theorem 2)

Order q = 2 q = 3 q = 4 q = 5
n = 2 0 3 4 10
n = 3 1 9 22 50
n = 4 5 33 118 290
n = 5 11 105 478 1490
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