Orientable sequences over nonbinary alphabets

Abbas Alhakim, Chris J. Mitchell, Janusz Szmidt, Peter R. Wild

September 2023

Notation

- For positive integers n and q greater than one, let \mathbb{Z}_{q}^{n} be the set of all q^{n} vectors of length n with entries in the group \mathbb{Z}_{q} of residues modulo q.
- An order n de Bruijn sequence with alphabet in \mathbb{Z}_{q} is a periodic sequence that includes every possible string of size n exactly once as a subsequence of consecutive symbols in one period of the sequence.
- A function $d: \mathbb{Z}_{q}^{n} \rightarrow Z_{q}$ is said to be translation invariant if $d(w+\lambda)=d(w)$ for all $w \in \mathbb{Z}_{q}^{n}$ and all $\lambda \in \mathbb{Z}_{q}$.
- The weight $w(s)$ of a word or sequence s is the sum of all elements in s (not taken modulo q). Similarly, the weight of a cycle is the weight of the ring sequence that represents it.

Notation

- The order n de Bruijn digraph, $B_{n}(q)$, is a directed graph with \mathbb{Z}_{q}^{n} as its vertex set and for any two vectors $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right),(\mathbf{x} ; \mathbf{y})$ is an edge if and only if $y_{i}=x_{i+1}$ for every $i(1 \leqslant i<n)$.
- We then say that \mathbf{x} is a predecessor of \mathbf{y} and \mathbf{y} is a successor of \mathbf{x}. Evidently, every vertex has exactly q successors and q predecessors.
- Furthermore, two vertices are said to be conjugates if they have the same successors.
- For an integer $n>1$, define a map $D: B_{n}(2) \rightarrow B_{n-1}(2)$ by

$$
D\left(a_{1}, \ldots, a_{n}\right)=\left(a_{1}+a_{2}, a_{2}+a_{3}, \ldots, a_{n-1}+a_{n}\right)
$$

where addition is modulo 2. This function defines a graph homomorphism and is known as Lempel's D-morphism since it was studied in [2].

Lempel D-morphism

- We present a generalization to nonbinary alphabets [1].
- For a nonzero $\beta \in \mathbb{Z}_{q}$, we define a function D_{β} from $B_{n}(q)$ to $B_{n-1}(q)$ as follows.
- For $a=\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n-1}\right), D_{\beta}(a)=b$ if and only if $b_{i}=d_{\beta}\left(a_{i}, a_{i+1}\right)$ for $i=1$ to $n-1$, where $d_{\beta}\left(a_{i}, a_{i+1}\right)=\beta\left(a_{i+1}-a_{i}\right) \bmod q$.
- Clearly D_{β} is translation invariant.
- It is also onto if $\operatorname{gcd}(\beta, q)=1$.
- A cycle in $B_{n}(q)$ is primitive if it does not simultaneously contain a word and any of its translates.

Orientable sequences

- Definition 1

We define an n-window sequence $S=\left(s_{i}\right)$ to be a periodic sequence of period m with the property that no n-tuple appears more than once in a period of the sequence, i.e. with the property that if $s_{n}(i)=s_{n}(j)$ for some i, j, then $i=j$ $\bmod m$, where $s_{n}(i)=\left(s_{i}, s_{i+1}, \ldots, s_{i+n-1}\right)$.

- Definition 2

An n-window sequence $S=\left(s_{i}\right)$ of period m is said to be an q-orientable sequence of order n (an $\left.\mathcal{O} \mathcal{S}_{q}(n)\right)$ if, for any $i, j, s_{n}(i) \neq s_{n}(j)^{R}$, where $s_{n}(j)^{R}$ is the reverse of the word $s_{n}(j)$.

- Definition 3

A pair of disjoint orientable sequences of order $n, S=\left(s_{i}\right)$ and $S^{\prime}=\left(s_{i}^{\prime}\right)$, are said to be orientable disjoint (or simply o-disjoint) if, for any $i, j, s_{n}(i) \neq s_{n}^{\prime}(j)^{R}$.

Orientable sequences

In the natural way we can define D_{β}^{-1} to be the inverse of D_{β}, i.e. if S is a periodic sequence than $D_{\beta}^{-1}(S)$ is the set of all sequences T with the property that $D_{\beta}(T)=S$.

Theorem 1

Suppose $S=\left(s_{i}\right)$ is an orientable sequence of order n and period m with the property that $\left(^{*}\right)$
if $\left[s_{1}, \ldots, s_{n}\right]$ is a word in S then $\left[-s_{n},-s_{n-1}, \ldots,-s_{1}\right]$ is not a word of S.

Then

(a) If $w(S)=0 \bmod q$ then $D_{\beta}^{-1}(S)$ consists of a disjoint set of q primitive orientable sequences of order $n+1$ and period m satisfying the condition $(*)$.
(b) If $\operatorname{gcd}(w(S), q)=1$ then $D_{\beta}^{-1}(S)$ is one sequence made of q shifts $T_{0}, T_{1}, \ldots, T_{q-1}$, where $T_{i}=T_{i-1}+c$.

An upper bound

- Definition 4

An n-tuple $u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right), u_{i} \in \mathbb{Z}_{q}(0 \leqslant i \leqslant n-1)$, is m-symmetric for some $m \leqslant n$ if and only if $u_{i}=u_{m-1-i}$ for every $i(0 \leqslant i \leqslant m-1)$.

- An n-tuple is simply said to be symmetric if it is n-symmetric. We also need the notions of uniformity and alternating.
- Definition 5

An n-tuple $u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right), u_{i} \in \mathbb{Z}_{q}(0 \leqslant i \leqslant n-1)$, is uniform if and only if $u_{i}=c$ for every $i(0 \leqslant i \leqslant n-1)$ for some $c \in \mathbb{Z}_{q}$. An n-tuple $u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right), u_{i} \in \mathbb{Z}_{q}$ $(0 \leqslant i \leqslant n-1)$, is alternating if and only if $u_{0}=u_{2 i}$ and $u_{1}=u_{2 i+1}$ for every $i(0 \leqslant i \leqslant\lfloor(n-1) / 2\rfloor)$, where $u_{0} \neq u_{1}$.

- Lemma 1

If $n \geqslant 2$ and $\mathrm{u}=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ is a q-ary n-tuple that is both symmetric and ($n-1$)-symmetric, then u is uniform.

An upper bound

- Lemma 2

If $n \geqslant 2$ and $u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ is a q-ary n-tuple that is both symmetric and ($n-2$)-symmetric then either u is uniform or n is odd and u is alternating.

- Definition 6

Let $N_{q}(n)$ be the set of all non-symmetric q-ary n-tuples.

- Clearly, if an n-tuple occurs in an $\mathcal{O} \mathcal{S}_{q}(n)$ then it must belong to $N_{q}(n)$; moreover it is also immediate that $\left|N_{q}(n)\right|=q^{n}-q^{\lceil n / 2\rceil}$. Observing that all the tuples in $\mathcal{O} \mathcal{S}_{q}(n)$ and its reverse must be distinct, this immediately give the following well-known result.
- Lemma 3 ([3])

The period of an $\mathcal{O} \mathcal{S}_{q}(n)$ is at most $\left(q^{n}-q^{[n / 2\rceil}\right) / 2$.

An upper bound

- As a first step towards establishing our bound we need to define a special set of n-tuples, as follows.
- Definition 7

Suppose $n \geqslant 2$, and that $v=\left(v_{0}, v_{1}, \ldots, v_{n-r-1}\right)$ is a q-ary ($n-r$)-tuple $(r \geqslant 1)$. Then let $L_{n}(v)$ be the following set of q-ary n-tuples:
$L_{n}(v)=\left\{u=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right): u_{i}=v_{i}, \quad 0 \leqslant i \leqslant n-r-1\right\}$.

- That is $L_{n}(\mathrm{v})$ is simply the set of n-tuples whose first $n-r-1$ entries equal v. Clearly, for fixed r, the sets $L_{n}(\mathrm{v})$ for all $(n-r)$-tuples v are disjoint. We have the following simple result.

An upper bound

- Lemma 4

Suppose v and w are symmetric tuples of lengths $n-1$ and $n-2$, respectively, and they are not both uniform. Then

$$
L_{n}(\mathrm{v}) \cap L_{n}(\mathrm{w})=\emptyset
$$

- We are particularly interested in how the sets $L_{n}(v)$ intersect with the sets of n-tuples occurring in either S or S^{R}, when S is an $\mathcal{O} \mathcal{S}_{q}(n)$ and v is symmetric. To this end we make the following definition.
- Definition 8

Suppose $n \geqslant 2, r \geqslant 1, S=\left(s_{i}\right)$ is an $\mathcal{O} \mathcal{S}_{q}(n)$, and $v=\left(v_{0}, v_{1}, \ldots, v_{n-r-1}\right)$ is a k-ary $(n-r)$-tuple. Then let

$$
L_{S}(\mathrm{v})=\left\{\mathrm{u} \in L_{n}(\mathrm{v}): \mathrm{u} \text { appears in } S \text { or } S^{R}\right\}
$$

An upper bound

- We can now state the first result towards deriving our bound.
- Lemma 5

Suppose $n \geqslant 2, r \geqslant 1, S=\left(s_{i}\right)$ is an $\mathcal{O} \mathcal{S}_{q}(n)$, and $v=\left(v_{0}, v_{1}, \ldots, v_{n-r-1}\right)$ is a q-ary symmetric $(n-r)$-tuple. Then $\left|L_{S}(\mathrm{v})\right|$ is even.

- That is, if $\left|L_{n}(\mathrm{v})\right|$ is odd, this shows that S and S^{R} combined must omit at least one of the n-tuples in $L_{n}(v)$. We can now state our main result. Observe that, although the theorem below applies in the case $q=2$, the bound is much weaker than the bound of Dai et al. [4], which is specific to the binary case. This latter bound uses arguments that only apply for $q=2$. The fact that $q=2$ is a special case can be seen by observing that, unlike the case for larger q, no string of $n-2$ consecutive zeros or ones can occur in an $\mathcal{O S}_{2}(n)$.

An upper bound

- Theorem 2 (Generalization of Theorem from [4]) Suppose that $S=\left(s_{i}\right)$ is an $\mathcal{O} \mathcal{S}_{q}(n)(q \geqslant 2, n \geqslant 2)$. Then the period of S is at most

$$
\begin{aligned}
\left(q^{n}-q^{\lceil n / 2\rceil}-q^{\lceil(n-1) / 2\rceil}+q\right) / 2 & \text { if } q \text { is odd, } \\
\left(q^{n}-q^{\lceil n / 2\rceil}-q\right) / 2 & \text { if } q \text { is even. }
\end{aligned}
$$

- Table 1 provides the values of the bounds in the above theorem for small q and n.

Tabela 1: Bounds on the period of an $\mathcal{O S}_{q}(n)$ (from Theorem 2)

Order	$q=2$	$q=3$	$q=4$	$q=5$
$n=2$	0	3	4	10
$n=3$	1	9	22	50
$n=4$	5	33	118	290
$n=5$	11	105	478	1490

Bibliography

目 A．Alhakim and M．Akinwande．A recursive construction of nonbinary de Bruijn sequences．Design，Codes and Cryptography．60：155－169，（2011）．
圊 A．Lempel．On a homomorphism of the de Bruijn graph and its applications to the design of feedback shift registers．IEEE Trans．Comput．C 19，1204－1209（1970）．
圊 J．Burns and C．J．Mitchell．Coding schemes for two－dimensional position sensing．Cryptography and Coding III （M．J．Ganley，ed．），Oxford University Press，pp．31－66， 1993.
R Z．－D．Dai，K．M．Martin，M．J．B．Robshaw，and P．R．Wild． Orientable sequences．Cryptography and Coding III（M．J． Ganley，ed．），Oxford University Press，Oxford，pp．97－115， 1993.

