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Outline

• Introduction to Boolean function.

• Motivation: Impact of FLIP, a new stream cipher over the study of
Boolean functions.

• Construction of Boolean functions with high nonlinearity and weightwise
nonlinearity.



Introduction to Boolean Function

A n-variable Boolean function is a map from Fn
2 to F2.

• Bn : set of all n-variable Boolean functions.
Cardinality of Bn = 22

n

• A basic representation is truth table.

x ∈ Fn
2 f (x)

00 . . . 0 f (00 . . . 0)
00 . . . 1 f (00 . . . 1)

...
...

11 . . . 1 f (11 . . . 1)

The output of the truth table is a 2n-tuple vector,

f = (f (00 . . . 0), f (00 . . . 1), . . . , f (11 . . . 1))



Representation of a Boolean Function: Algebraic normal
form (ANF)

Let f ∈ Bn. Then f can be expressed as:

f (x) =
⊕

I⊆{1,2,...,n}

aI (
∏
i∈I

xi )

= a0 +
n∑

i=1

aixi +
∑

1≤i<j≤n

ai,jxixj + · · ·+ a1,2,...,nx1x2 . . . xn

where a0, ai , ai,j , . . . , a1,2,...,n ∈ F2.
This implies, f (x) ∈ F2[x1, x2, . . . , xn]/ < x21 + x1, . . . , x

2
n + xn >.



Introduction to Boolean function (cont.).

{1, 2, . . . , n} := [n].

I The Hamming weight of x ∈ Fn
2 is wt(x) = |{i ∈ [n] : xi 6= 0}|.

I The support of f , sup(f ) = {x ∈ Fn
2 : f (x) = 1}. The Hamming weight

of f is wt(f ) = |sup(f )|.
I The algebraic degree of f , denoted by deg(f ) is the number of variables

in the highest order monomial with non-zero coe�cient .

I Let f , g ∈ Bn. The Hamming distance between f and g is
dH(f , g) = |{x ∈ Fn

2 : f (x) 6= g(x)}|.
I A function f ∈ Bn is balanced if wt(f ) = 2n−1 .
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Nonlinearity.

I The nonlinearity of f denoted by nl(f ) is

nl(f ) = min
la,b(x)∈An

dH(f (x), la,b(x))

where, An = {la,b ∈ Bn : la,b(x) = a.x + b; a ∈ Fn
2, b ∈ F2} is the set of

all a�ne functions on Fn
2.

I The upper bound of nonlinearity is,

nl(f ) ≤ 2n−1 − 2
n
2
−1.

I f ∈ Bn (n is even). If the nl(f ) reaches the upper bound i.e.

nl(f ) = 2n−1 − 2
n
2
−1,

then f is called a bent function.
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Algebraic Immunity

I Given f ∈ Bn, a nonzero g ∈ Bn is called an annihilator of f if f .g = 0,
i.e., f (x)g(x) = 0 for all x ∈ IF

n
2.

I The set of all annihilators of f ∈ Bn is denoted by An(f ). The algebraic
immunity of f ∈ Bn is de�ned as

AI(f ) = min{deg(g) : g ∈ An(f ) ∪ An(1+ f )}.

I Majority function has highest AI.
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Motivation

I A new stream cipher FLIP has been introduced by Méaux et al. [6] in
2016. The Boolean function used in FLIP, is restricted to
En, n

2
= {x ∈ Fn

2 : wt(x) = n
2
} ⊂ Fn

2.

I If the inputs of f ∈ Bn are restricted to some vectors with constant wt,
then the security analysis does not depend on the criteria de�ned for f
over Fn

2.

Symmetric bent function, majority function over En,k behaves like a
constant function.

I Let E be a family of subsets of Fn
2 i.e. E = {En,0,En,1, . . . ,En,n}, where

En,k = {x ∈ Fn
2 : wt(x) = k}. So, it is required to construct functions

that are balanced over En,k ,∀k ∈ [n] with high nonlinearity and
algebraic immunity over En,k .
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Weightwise almost perfectly balanced (WAPB) Boolean
function.

I Support of f restricted to En,k is
supk(f ) = {x ∈ Fn

2 : wt(x) = k, f (x) = 1}.

I Hamming weight of f restricted to En,k is wtk(f ) = |supk(f )|.

De�nition ([1])
f ∈ Bn is said to be weightwise almost perfectly balanced function (WAPB),
if ∀k ∈ {1, 2, . . . , n − 1},

wtk(f ) =


(nk)
2
;

(
n
k

)
even ,

(nk)±1
2

;
(
n
k

)
odd .

De�nition ([1])
f ∈ Bn is said to be weightwise perfectly balanced (WPB) if f is balanced

over En,k , for all k ∈ {1, 2, . . . , n − 1} i.e., wtk(f ) =
(nk)
2
.
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Nonlinearity over En,k

The non-linearity of f ∈ Bn over En,k is,

nlEn,k (f ) = minla,b(x)∈An
dH(f (x), la,b(x)).

By computing, we have

nlEn,k (f ) =
|En,k |
2
− 1

2
max
a∈Fn

2

|
∑

x∈En,k

(−1)f (x)+a.x |; a ∈ Fn
2.

The upper bound of nonlinearity over En,k is

nlEn,k (f ) ≤
1

2

[
|En,k | −

√
|En,k |

]
where |En,k | =

(
n
k

)
.
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Algebraic immunity over En,k

For En,k ⊆ IF
n
2, a function g ∈ Bn is called an annihilator of f over En,k if

g(x) 6= 0 for some x ∈ En,k and f (x)g(x) = 0 for all x ∈ En,k .

The set of all annihilators of f over En,k is denoted by AnEn,k (f ). The
algebraic immunity of f over En,k is de�ned by

AIEn,k (f ) = min{deg(g) : g ∈ AnEn,k (f ) ∪ AnEn,k (1+ f )}.

For f ∈ Bn and En,k ⊆ IF
n
2, if g ∈ AnEn,k (f ) then g 6= 0 over En,k . This

implies that an annihilator of f is not necessarily an annihilator of f on En,k .
That is,

• An(f ) 6⊆ AnEn,k (f ). Hence AIEn,k (f ) 6≤ AI(f ) for any f ∈ Bn and
En,k ⊆ IF

n
2
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Recursive Constructions of WPB and WAPB functions in
Literature.

Taking (x1, x2, . . . , xn) := Xn,

• [Carlet, Méaux, Rotella 2017[1]] Let fn ∈ Bn for n ≥ 3, be de�ned by

fn(Xn) =



fn−1(Xn−1) if n is odd ,

fn−1(Xn−1) + xn−2 +
2d−1∏
i=1

xn−i if n = 2d ; d > 1,

fn−1(Xn−1) + xn−2 +
2d∏
i=1

xn−i if n = p.2d ; p > 1 odd; d ≥ 1.

where f2(x1, x2) = x1, is a WAPB Boolean function.



Cont.

• [Mesnager, Su 2021 [7]] Given a positive integer m, a sup(fm) for
f ∈ B2m is de�ned as:

sup(fm) = 4m
i=1{(x , y , x , y , . . . , x , y) ∈ F2

m

2 : x , y ∈ F2
m−i

2 ,

wH(x) is odd}

The sup(fm) can also be written as

sup(fm) =


{(x , y) : x = 1, y ∈ F2}; m = 1

{(x , y) : x , y ∈ F2m−1

2 ,wH(x) is odd}
4{(x , x) : x ∈ sup(fm−1)}; m ≥ 2

The function fm with this de�ned supp(fm) is WPB.



Our Construction.

Theorem (Presented at ALCOCRYPT-2023)
For n ≥ 2, the support of an n variable Boolean function is de�ned as

sup(fn) =



{(x , 1) ∈ IF
2
2 : x ∈ IF2} = {(0, 1), (1, 1)} if n = 2,

{(x , 0) ∈ IF
n
2 : x ∈ sup(fn−1)}∪

{(x , 1) ∈ IF
n
2 : x /∈ sup(fn−1)} if n > 2 and odd,

{(x , y) ∈ IF
n
2 : x , y ∈ IF

n
2

2 , wt(x) is odd}4
{(z , z) ∈ IF

n
2 : z ∈ sup(f n

2
)}, if n > 2 and even,

is a WAPB Boolean function.



The ANF of fn, de�ned in the above Theorem is

fn(Xn) =


fp if n = p,

xn + fn−1(Xn−1) if n > p and odd,
n
2∑

i=1

xi + f n
2
(X n

2
)

n
2∏

i=1

(xi + x n
2
+i + 1) if n > p and even

• For n > p and even, the fn(Xn) over En,k for k odd fn(X ) is a linear
function. Hence nonlinearity is 0 over En,k .

• AIEn,k (fn) = 1 for k odd and AIEn,k (fn) = 2 for k even .



The ANF of fn, de�ned in the above Theorem is

fn(Xn) =


fp if n = p,

xn + fn−1(Xn−1) if n > p and odd,
n
2∑

i=1

xi + f n
2
(X n

2
)

n
2∏

i=1

(xi + x n
2
+i + 1) if n > p and even

• For n > p and even, the fn(Xn) over En,k for k odd fn(X ) is a linear
function. Hence nonlinearity is 0 over En,k .

• AIEn,k (fn) = 1 for k odd and AIEn,k (fn) = 2 for k even .



Modi�cation of Support for high nonlinearity.

The support of fn over En,k is de�ned as follows;

supk(fn) =


{(x , y) ∈ IF

n
2 : x , y ∈ IF

n
2

2 , wt(x) odd, wt(x , y) = k}
4{(z , z) ∈ IF

n
2 : z ∈ sup k

2

(f n
2
)} if k even

{(x , y) ∈ IF
n
2 : x , y ∈ IF

n
2

2 , wt(x) odd, wt(x , y) = k} if k odd

• For k odd,

supk(fn) = {(x , y) ∈ IF
n
2 : x , y ∈ IF

n
2

2 , wt(x) is odd, wt(x , y) = k}

=

n
2∑

i=1

xi



Lemma
Let a ∈ B n

2
. A function f ∈ Bn such that for k ∈ [0, n] and odd,

supk(f
a) = {(x , y) ∈ IF

n
2 : x , y ∈ IF

n
2

2 , wt(x) odd, y ∈ sup(a), wt(x , y) = k}

∪{(y , x) ∈ IF
n
2 : x , y ∈ IF

n
2

2 , wt(x) odd, y 6∈ sup(a), wt(y , x) = k}.

Then wtk(f
a) = 1

2

(
n
k

)
.

• For k even,

supk(fn) = {(x , y) ∈ IF
n
2 : x , y ∈ IF

n
2

2 , wt(x) is odd, wt(x , y) = k}

4{(z , z) ∈ IF
n
2 : z ∈ sup k

2

(f n
2
)}



Lemma
Let fn ∈ Bn be the function de�ned in above ANF. For k ∈ [0, n] and even,

let

Wk = {(x , y) ∈ supk(fn) : wt(x) odd, and there is an i ∈ [1,
n

2
] s.t. xj = yj

for 1 ≤ j ≤ i − 1 and yi = 1, xi = 0}

and

W ′k = {(x i , y i )|(x , y) ∈Wk and i ∈ [1,
n

2
] s.t. xj = yj for 1 ≤ j ≤ i − 1

and yi = 1, xi = 0} .

where (x i , y i ) = (x1, . . . , xi−1, yi , xi+1, . . . , x n
2
, y1, . . . , yi−1, xi , yi+1, . . . , y n

2
).

A function gn ∈ Bn such that for k ∈ [0, n] and even, such that

supk(gn) = (supk(fn) \Wk) ∪W ′k .

Then wtk(gn) = wtk(fn) if k is even.



Lemma
Let b ∈ B n

2
. Let gn ∈ Bn as de�ned in above Lemma with Wk and W ′k . A

function hbn ∈ Bn such that for k ∈ [0, n] and even,

supk(h
b
n) = {(x , y) ∈ supk(gn) : (x , y) 6∈W ′k}
∪ {(x , y) : (x , y) ∈W ′k ∩ sup(b)}
∪ {(y , x) : (x , y) ∈W ′k and (x , y) 6∈ sup(b)}

Then wtk(h
b
n) = wtk(gn).
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sup(Fn) =


{(x , 1) ∈ IF

2
2 : x ∈ IF2} = {(0, 1), (1, 1)} if n = 2,

{(x , 0) ∈ IF
n
2 : x ∈ sup(Fn−1)}

∪{(x , 1) ∈ IF
n
2 : x /∈ sup(fn−1)} if n > 2 and odd,

Sn4{(z , z) ∈ IF
n
2 : z ∈ sup(f n

2
)} if n > 2 and even.

Here Sn = ∪nk=0supk(Fn) and

supk(Fn) =

{
supk(h

b
n) if n > 2 and even and k is even

supk(h
a
n) if n > 2 and even and k is odd.

I We have chosen a, b ∈ B n
2
, a very high nonlinear function

a(y) = b(y) =

{
y1y2 + · · ·+ y n

2
−1y n

2
if n

2
is even

y1y2 + · · ·+ y n
2
−2y n

2
−1 + y n

2
if n

2
is even.



WPB/ WAPB functions nl2 nl3 nl4 nl5 nl6

Upper Bound [1] 11 24 30 24 11
[1] 2 12 19 12 6
[5] 6,9 0,8,14, 19,22,23, 19,20, 6,9

16,18,20, 24,25 21,22
21, 22 26, 27

[4, g2q+2 Equation(9)] 2 12 19 12 2
[7, fm Equation(13)] 2 0 3 0 2
[7, gm Equation(22)] 2 14 19 14 2
[8, fm Equation(2)] 2 8 8 8 2
[8, fm Equation(3)] 6 8 26 8 6
[2, Table 1] 5,3, 10,7, 16,15, 12,11, 5,3,

2, 2 12, 12 18, 19 12, 12 2,6
[2, Table 3] 5 16 20 17 5
[9, gm Equation(11)] 2 12 19 12 6
[3] 6,6,7 19,14,15 21,20,18 11,11,14 3,6,6
Fn 4 16 20 16 4

Table: Comparison of nlk of 8-variable WPB constructions.



n function nl nl2 nl3 nl4 nl5 nl6 nl7 nl8 nl9 nl10 nl11

∑n
k=0

nlk

8
UB 120 11 24 30 24 11 - - - - - 100

F8 96 4 16 20 16 4 - - - - - 60

9
UB 244 15 37 57 57 37 15 - - - - 218

F9 192 6 22 45 45 22 6 - - - - 146

10
UB 496 19 54 97 118 97 54 19 - - - 498

F10 416 9 36 69 94 73 12 9 - - - 302

11
UB 1000 23 76 155 220 220 155 76 23 - - 948

F11 832 11 50 113 163 173 117 34 11 - - 672

12
UB 2016 28 102 236 381 446 381 236 102 28 - 1940

F12 1596 12 36 146 264 286 264 148 36 14 - 1206

13
UB 4050 34 134 344 625 837 837 625 344 134 34 3948

F13 3192 15 69 219 507 660 660 495 240 69 17 2951

Table: Comparison nlk(Fn) with the upper bound(UB) presented in [1]
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