Boolean Functions and Applications (BFA) 2023, Voss, Norway

A new method to represent the inverse map as a composition of quadratics in a binary finite field

Pante Stănică

Department of Applied Mathematics Naval Postgraduate School Monterey, CA 93943, USA; pstanica@nps.edu

Joint work with my friends and co-authors:

Florian Luca

Santanu Sarkar

Problem background I

• In 1953, Carlitz: all permutation polynomials over \mathbb{F}_q , q > 2 power of a prime, are generated by the special permutation polynomials

$$x^{q-2}$$
 (inversion) and $ax + b$ (affine) $a, b \in \mathbb{F}_q$.

- What is the reason?
- Any permutation is a product of transpositions, so it is sufficient to show (by shifting) that a transposition $(0, \alpha \neq 0)$ can be generated by such a composition:

$$g_{\alpha}(x) = -\alpha^2 \left(\left((x - \alpha)^{q-2} + \frac{1}{\alpha} \right)^{q-2} - \alpha \right)^{q-2}$$

Note:
$$g_{\alpha}(0) = \alpha$$
, $g_{\alpha}(\alpha) = 0$, $g_{\alpha}(\beta) = \beta$, for $\beta \in \mathbb{F}_q \setminus \{0, \alpha\}$.

Problem background II

- Carlitz rank: the smallest number of inversions in such a decomposition;
- Can the inverse in F₂n be written as a composition of quadratics, or quadratics and cubics PP?
- Equiv., we ask if \exists integers $a_1 \ge 0, \dots, a_r \ge 0, r \ge 1$ s.t.

$$-1 \equiv \prod_{i=1}^{r} (2^{a_i} + 1) \pmod{2^n - 1}.$$

 In 2019, Nikova, Nikov, Rijmen proposed an algorithm to find such a decomposition, and showed that for n ≤ 16 any permutation can be decomposed in quadratic PP, when 4 //n and in cubic PP, when 4 |n.

Problem background III

- In 2023, Petrides improved the complexity of the algorithm and gave a computational table of shortest decompositions for $n \le 32$, allowing also cubic permutations in addition to quadratics.
- He also proved a theoretical result (mentioned later) to find precisely such a decomposition for some special (good) integers.
- Here, we propose a number theoretical approach which allows us to cover all (surely, odd) exponents up to 250 (and beyond).

A theoretical result I

- Let ν_2 be the 2-valuation;
- Petrides (2023): if n is odd, some k, and $\frac{n-1}{2^{\nu_2(n-1)}} \equiv 2^k$ (mod $2^n 1$) (Moree (1997) calls them good (bad) integers, if they satisfy (do not satisfy) the congr.), then

$$\begin{split} 2^n - 2 &= 2\left(2^{\frac{n-1}{2^{\nu_2(n-1)}}} - 1\right) \prod_{j=1}^{\nu_2(n-1)} \left(2^{\frac{n-1}{2^j}} + 1\right) \\ &\equiv 2\left(2^{2^k} - 1\right) \prod_{j=1}^{\nu_2(n-1)} \left(2^{\frac{n-1}{2^j}} + 1\right) = 2 \prod_{j=0}^{k-1} \left(2^{2^j} + 1\right) \prod_{j=1}^{\nu_2(n-1)} \left(2^{\frac{n-1}{2^j}} + 1\right) \end{split}$$

• Thus, for all good integers, one can decompose any permutation polynomial in \mathbb{F}_{2^n} into affine and quadratic power permutations;

A theoretical result II

- Example of **bad** integer: n = 7, but $2^7 2 = 2(2^6 1) = 2(2 + 1)(2^4 + 2^2 + 1)$, and so, any permutation in F_{2^7} can be decomposed into affine, quadratic and cubic permutations;
- This observati on allows us to extend Petrides' result;

Theorem (Luca, Sarkar, P.S. 2023)

Let n be an odd integer satisfying

$$\frac{n-1}{2^{\nu_2(n-1)}} \equiv 2^k 3^s \pmod{2^n-1},$$

for some non-negative integers r, s. Then, the inverse power permutation in \mathbb{F}_{2^n} has a decomposition into affine, quadratic and cubic power permutations of length $k + s + \nu_2(n-1)$.

A theoretical result III

• Let $\mathcal{B}(x)$ be the counting function of such $n \leq x$;

Theorem (Luca, P.S. 2023)

We have

$$\#\mathcal{B}(x) \ll \frac{x}{(\log\log x)^{1+o(1)}}, \text{ as } x \to \infty.$$

 In fact, a more general result happens: replace the primes 2,3 by an arbitrary set of primes (S-unit), and a similar result will hold ([Luca, P.S. 2023]).

Our idea:

The equation

$$-1 = \prod_{i=1}^{k} (2^{a_i} + 1)^{x_i} \pmod{2^p - 1}.$$

holds iff it holds one prime q_j at a time, where q_j is a prime divisor of the squarefree $2^p - 1$.

Heuristics I

- Let $N_p = 2^p 1$, p prime. We know that if a prime $q|N_p$, then $q \equiv 1 \pmod{p}$;
- Can we say anything about the number of distinct prime factors $\omega(N_p)$ of N_p ?

Conjecture (Luca, Sarkar, P.S. 2023)

There exists p_0 such that for $p > p_0$, $\omega(N_p) < 1.36 \log p$.

- Similar types of heuristics regarding lower bounds for $\Omega(2^n-1)$ and $\omega(2^n-1)$ can be found in Luca, P.S. (2005) and Kontorovich, Lagarias (2021).
- Our conjecture is based on statistical arguments originating from sieve methods.

Heuristics II

One could use <u>Túran-Kubilius</u> inequality:

$$\sum_{n \le x} (\omega(n) - \log \log x)^2 = O(x \log \log x),$$

so, if $\delta > 0$ is fixed, the set of $n \le x$ such that

$$\omega(n) \ge (1+\delta)\log\log x$$

is of counting function $O_{\delta}(x/\log\log x)$.

• We do better via sieves: Hall, Tenenbaum (*Divisors* 1988) showed that for fixed $\delta > 0$, then

$$\# \{ n \leq x : \omega(n) \geq (1+\delta) \log \log x \} \ll_{\delta} \frac{x}{(\log x)^{Q(\delta)}},$$

where

$$Q(\delta) := (1 + \delta) \log((1 + \delta)/e) + 1.$$

Heuristics III

• We want to apply such heuristics to $N_p = 2^p - 1$. Recall that if $q \mid N_p$, then $2^p \equiv 1 \pmod{q}$. In particular,

$$\left(\frac{2}{q}\right)=1,\quad \text{ so }\quad q\equiv \pm 1\pmod 8.$$

The same proof as in Hall-Tenenbaum shows that

$$\# \{ n \le x : q \mid n \Rightarrow q \equiv \pm 1 \pmod{8}, \omega(n) \ge (1+\delta) \log \log x \}$$

$$\le \frac{x}{(\log x)^{Q_1(\delta) + o(1)}}, \text{ as } x \to \infty, \text{ where}$$

$$Q_1(\delta) := (1+\delta) \log((1+\delta)/(0.5e)) + 1.$$

Heuristics IV

• Taking $\delta = 0.36$, we get $Q_1(\delta) = 1.00086...$ Thus, the probability that a number n having only prime factors congruent to $\pm 1 \pmod{8}$ with $\omega(n) \ge 1.36 \log \log n$ is

$$O\left(\frac{1}{(\log n)^{1.00008}}\right)$$

• Applying this to N_p , we get

$$O\left(\frac{1}{(\log{(2^p-1)})^{1.0008}}\right) \ll \frac{1}{p^{1.0008}},$$

and since $\sum_{n\geq 3} \frac{1}{p^{1.0008}}$ is convergent, we are led to believe

that perhaps there are at most finitely many primes p s.t.

$$\omega(N_p) \geq 1.36 \log p$$
.

Conjecture (Luca, Sarkar, P.S. 2023)

There exists p_0 such that if $p > p_0$, then N_p is squarefree.

- There's some heuristic evidence for the conjecture based upon some results of Murata, Pomerance from 2004;
- So, assuming the previous two conjectures, let

$$N_p := q_1 \cdots q_k$$
 for some distinct primes $q_1, \dots, q_k, k \le 1.36 \log p$.

• We take numbers of the form $2^a + 1$ with odd $a \in [5, p-2]$, and want to compute $\left(\frac{2^a+1}{2^p-1}\right)$.

 This was done by Rotkiewicz in 1983: write the Euclidean algorithm with even quotients and signed odd remainders:

$$p = (2k_1)a + \varepsilon_1 r_1, \quad \varepsilon_1 \in \{\pm 1\}, \quad 1 \le r_1 \le a - 1$$

$$a = (2k_2)r_1 + \varepsilon_2 r_2, \quad \varepsilon_2 \in \{\pm 1\}, \quad 1 \le r_2 \le r_1 - 1,$$

$$\dots = \dots$$

$$r_{\ell-2} = (2k_{\ell})r_{\ell-1} + \varepsilon_{\ell} r_{\ell}, \quad \varepsilon_{\ell} \in \{\pm 1\}, \quad r_{\ell} = 1,$$

where $\ell := \ell(a, p)$ is minimal with $r_{\ell} = 1$.

Then

$$\left(\frac{2^a+1}{2^p-1}\right) = \left(\frac{2^p-1}{2^a+1}\right) = \left(\frac{(2^a)^{2k_1} \cdot 2^{\epsilon_1 r_1} - 1}{2^a+1}\right) = \dots = (-1)^{\ell+1}$$

(the " \cdots " needs a bit of work)

- We select the set A(p) of odd $a \in [5, p-2]$ s.t. $\ell \equiv 0 \pmod{2}$.
- We assume that there are a positive proportion of such, namely $\exists c_1 > 0$ s.t. for large p, there are $> c_1 p$ odd numbers $a \in [5, p-2]$ such that $\ell(a, p) \equiv 0 \pmod{2}$. So, we have

$$\prod_{i=1}^k \left(\frac{2^a+1}{q_i}\right) = -1 \quad \text{for} \quad a \in \mathcal{A}(p).$$

We next assume that for such a, the values

$$\left(\left(\frac{2^a+1}{q_i}\right), 1 \le i \le k\right) \tag{1}$$

are uniformly distributed among the vectors $(\pm 1, \dots, \pm 1)$.

k times

In the full paper we give an argument why that should be

• We fix $i \in \{1, ..., k\}$ and search for a_i such that

$$\left(\frac{2^{a_i}+1}{q_i}\right)=(-1)^{\delta_{ij}},\tag{2}$$

where δ_{ij} is the Kronecker symbol.

- That is, $2^{a_i} + 1$ is a quadratic residue modulo q_j for all $j \neq i$ but it is not a quadratic residue modulo q_i .
- Do we expect to find it? Yes!
- The probability that $2^{a_i} + 1$ verifies the Legendre conditions given by (2) is $1/2^k$;
- Note that since $\left(\frac{2^{a_i}+1}{N_p}\right)=-1$ we know that an odd number of the $p=p_j$'s satisfy that $\left(\frac{2^{a_i}+1}{p_i}\right)=1$.

 So, if we assume that this is so for all possible a_i's, and that these events are independent, we get that the probability that this happens is

$$\ll \left(1-\frac{1}{2^k}\right)^{c_1\rho} < \left(1-\frac{1}{\rho^{1.36\log 2}}\right)^{c_1\rho} < \left(1-\frac{1}{\rho^{0.95}}\right)^{c_1\rho} \ll \frac{1}{e^{c_1\rho^{0.05}}}.$$

• Of course, this is for i fixed and now we sum up over i from 1 to k introducing another logarithmic factor in the above count, that is, $\sum_{p} \frac{\log p}{e^{c_1 p^{0.05}}}$, which converges, so we expect that the above event does not occur when $p > p_0$.

Thus, we have the following conjecture.

Conjecture (Luca, Sarkar, P.S. 2023)

Assume the prior two conjectures. For $p>p_0$ write $2^p-1=q_1\dots q_k$ with prime factors $q_1<\dots< q_k$ and $k<1.36\log p$. Then for each $i=1,\dots,k$, there exists an odd $a_i\in[5,p-2]$ such that equalities (2) hold.

• The rest of the proof is unconditional. We show $\exists x_i$ s.t.

$$-1 = \prod_{i=1}^{k} (2^{a_i} + 1)^{x_i} \pmod{2^p - 1}.$$
 (3)

- Equation (3) holds iff it holds one prime q_i at a time.
- Write $q_i 1 =: 2^{\alpha_i} R_i$ for 1 < i < k, R_i odd.
- Let $R := lcm[R_i : 1 \le i \le k]$ and $x_i = y_i R$ for $1 \le i \le k$. Let ρ_i be a primitive root modulo q_i .

- Write $2^{a_i} + 1 = \rho_j^{b_{ij}} \pmod{q_j}$. Conditions $\left(\frac{2^{a_i}+1}{q_i}\right) = (-1)^{\delta_{ij}}$ show that $b_{ij} \equiv \delta_{ij} \pmod{2}$.
- Thus, we want

$$\rho_j^{(q_j-1)/2} \equiv \rho_j^{R \sum_{i=1}^k y_i b_{ij}} \pmod{q_j},$$

which holds (via Fermat Little Thm) provided that

$$\frac{(q_j-1)}{2}\equiv R\sum_{i=1}^k y_ib_{ij}\pmod{q_j-1}.$$

This in turn is equivalent to

$$2^{\alpha_j-1} \equiv (R/R_j) \sum_{i=1}^k y_i b_{ij} \pmod{2^{\alpha_j}}.$$

• As R/R_j is odd, it is invertible mod 2^{α_j} , of inverse $(R/R_j)^{\alpha_j}$

- Next, 2^{α_j-1} (since $(R/R_j)^*$ odd) $\equiv 2^{\alpha_j-1}(R/R_j)^* \equiv \sum_{i=1} y_i b_{ij}$ (mod 2^{α_j}).
- This is a nondegenerate (the coefficient matrix

 B = (b_{ij})_{1≤i,j≤k} modulo 2 is the identity matrix) linear
 system of modular equations.
- This shows that \exists an integer solution y_1, \ldots, y_k . To solve it, we can generate $b_{i,j} \pmod{2^{\alpha_j}}$ (for each i,j) as an integer in the interval $[0,2^{\alpha_j}-1]$.
- Then we solve the (nondegenerate) linear system

$$\sum_{i=1}^{k} y_i b_{ij} = 2^{\alpha_j - 1} \quad \text{for} \quad j = 1, 2, \dots, k, \text{ with rational}$$

$$(y_1, \dots, y_k) \text{ (treating them as residue classes modulo } 2^{\alpha},$$
where (y_1, \dots, y_k) is the residue classes modulo y_1, \dots, y_k .

where $\alpha = \max\{\alpha_i : 1 \le i \le k\}$, by inverting the odd determinant mod 2^{α}).

- We have implemented and checked that our algorithm works for most primes (in fact, odd integers) up to 250. But there are a few primes like 47 for which there is no $a_j \in [5, p-2]$ such that $\left(\frac{2^{a_j}+1}{q_i}\right) = (-1)^{\delta_{ij}}$.
- In these cases, we use the following trick: we first take a_i and calculate

$$\left(\frac{2^{a_j}+1}{q_i}\right)=(-1)^{d_{i,j}}.$$

- Ideally, d_{i,j} should be Kronecker symbols, but if they are not, we cannot be certain that the system is solvable because it may have an even determinant;
- However, we observed that in the case of failure, we can always get suitable a_i's such that the corresponding matrix has odd determinant, and is therefore invertible.

Table: Factorization of $2^n - 2 \pmod{2^n - 1}$ for odd $33 \le n \le 250$.

n = 33	$(2^5+1)^{599478} \cdot (2^{13}+1)^{299739} \cdot (2^{29}+1)^{1798434}$
n = 35	$((2+1)(2^{17}+1))^{967995} \cdot (2^{29}+1)^{276570}$
n = 37	$(2^5+1)^{77039772} \cdot (2^{13}+1)^{19259943}$
n = 39	$((2^{11}+1)(2^{21}+1))^{1592955}$
n = 41	$(2^9+1)^{20111512782} \cdot (2^{13}+1)^{3351918797}$
n = 43	$((2^5+1)(2^{17}+1)(2^{23}+1))^{593211015}$
n = 45	$(2+1)^{407925} \cdot (2^{13}+1)^{349650} \cdot \left((2^{25}+1)(2^{33}+1)(2^{41}+1)\right)^{116550}$
n = 47	$(2^{11}+1)^{1927501725} \cdot (2^{37}+1)^{435242325} \cdot (2^{41}+1)^{1616614350}$
n = 49	$(2^9+1)^{34630287489} \cdot (2^{11}+1)^{3393768173922}$
n = 51	$(1+2^{29})^{150009615}$
n = 53	$(1+2^5)^{6512186850} \cdot (1+2^{15})^{3506562150} \cdot (1+2^{21})^{250468725}$
n = 55	$ (1+2)^{6588945} \cdot (1+2^{11})^{5856840} \cdot (1+2^{17})^{732105} $ $ \cdot (1+2^{25})^{1464210} \cdot (1+2^{33})^{10249470} \cdot (1+2^{47})^{732105} $
n = 57	$(1+2^5)^{396029391534} \cdot (1+2^{17})^{1188088174602} \cdot (1+2^{21})^{594044087301} \cdot (1+2^{47})^{198014695767}$
n = 59	$(1+2^7)^{3663925098759300} \cdot (1+2^{13})^{305327091563275}$
n = 61	$(1+2^9)^{1152921504606846975}$
n — 63	$(1+2)^{42958503} \cdot (1+2^5)^{3735522} \cdot (1+2^{39})^{56032830}$.

n = 103	$(1+2^5)^{8204858250687037849538541156} \cdot (1+2^9)^{2051214562671759462384635289}$
n = 105	$(1+2^7)^{736412106675} \cdot (1+2^{29})^{6627708960075} \cdot (1+2^{37})^{1472824213350}$.
	$(1+2^{55})^{6627708960075} \cdot (1+2^{69})^{15464654240175} \cdot (1+2^{79})^{736412106675}$
	$(1+2^{83})^{4418472640050} \cdot (1+2^{85})^{441847264005} \cdot (1+2^{87})^{13255417920150}$
n = 107	$(1+2^5)^{27043212804868893898596335048021}$
n = 109	$(1+2^7)^{744308608310570490215126499806}$.
	$(1+2^{15})^{372154304155285245107563249903}$
n = 111	$(1+2^{17})^{2078233794395472907116} \cdot (1+2^{31})^{742226355141240323970}$.
	$(1+2^{39})^{890671626169488388764} \cdot (1+2^{71})^{180254971962872650107}$
	$(1+2^{87})^{519558448598868226779}$
n = 113	$(1+2^{15})^{82901226266607482846190} \cdot (1+2^{25})^{13816871044434580474365}$.
	$(1+2^{29})^{37854441217628987601} \cdot (1+2^{75})^{13816871044434580474365}$.
	$(1+2^{97})^{82901226266607482846190}$
n = 115	$(1+2^{17})^{23588654041464621525} \cdot (1+2^{23})^{165120578290252350675}$.
	$(1+2^{39})^{23588654041464621525} \cdot (1+2^{45})^{23588654041464621525}$
	$(1+2^{75})^{188709232331716972200}$
n = 117	$(1+2^5)^{350280341971560} \cdot (1+2^{11})^{481635470210895} \cdot (1+2^{31})^{1225981196900460}$
	$(1+2^{55})^{1269766239646905} \cdot (1+2^{71})^{1225981196900460} \cdot (1+2^{87})^{744345726689565}$
	$(1+2^{93})^{1903697510715} \cdot (1+2^{111})^{1094626068661125} \cdot (1+2^{115})^{1182196154154015}$
n = 119	$(1+2^{21})^{121807344007626864485535} \cdot (1+2^{25})^{28109387078683122573585}$.
	$(1+2^{51})^{6635419517925198843570} \cdot (1+2^{81})^{5968559856373716359791215}$

n = 245	$(1+2^{69})^{404534281273826986829987345146663806009193260698421162909645}$.
	$(1+2^{117})^{652474647215849978758044105075264203240634291449066391789750}$.
	$(1+2^{125})^{1096157407322627964313514096526443861444265609634431538206780$.
	$(1+2^{141})^{1057008928489676965588031450221928009249827552147487554699395}$.
	$(1+2^{151})^{404534281273826986829987345146663806009193260698421162909645}$
	$(1+2^{165})^{1578988646262356948594466734282139371842334985306740668131195}$
	$(1+2^{167})^{404534281273826986829987345146663806009193260698421162909645$
n = 247	$(1+2)^{134057357388441380704540286280333486890775035828909707815645}$
	$(1+2^9)^{130787665744820859223941742712520475015390278857472885673800}$
	$(1+2^{35})^{16348458218102607402992717839065059376923784857184110709225}$
	$(1+2^{71})^{85011982734133558495562132763138308760003681257357375687970$.
	$(1+2^{147})^{81742291090513037014963589195325296884618924285920553546125}$
	$(1+2^{195})^{15040581560654398810753300411939854626769882068609381852487$
n = 249	$(1+2^{97})^{292527702190729434230102491312771097283901482612310325863937852070$.
	$(1+2^{119})^{204769391533510603961071743918939768098731037828617228104756496449}$
	$(1+2^{137})^{585055404381458868460204982625542194567802965224620651727875704140}$
	$(1+2^{173})^{633810021413247107498555397844337377448453212326672372705198679485}$.
	$(1+2^{199})^{536300787349670629421854567406747011687152718122568930750552728795}$

Thank you for your attention!

[Pante Stanica: http://faculty.nps.edu/pstanica]

